. 26
( 27)


Now ∆ := k ∆k is the required set. In order to show that Q∆ (K) ⊆ K let x ∈ K
be arbitrary. Since Q∆k (x) is contained in the closure of Q∆k ({xk ∈ K © E :

592 53. Appendix: Projective resolutions of identity on Banach spaces 53.19

carr(xk ) ⊆ ∆k+1 }) and hence in the closed set Q∆k ({xk ∈ K : carr(xk ) ⊆ “}).
Thus there is an xk ∈ K with carr(xk ) ⊆ “ and such that x agrees with xk on ∆k .
Thus K xk ’ Q∆ (x), since every ¬nite subset of ∆ is contained in some ∆k and
outside ∆ all xk and Q∆ (x) are zero. Since K is closed we get Q∆ (x) ∈ K.
˜ ˜

Without loss of generality we may assume that µ > ω. Let {x± : ω ¤ ± < µ} be a
dense subset of K © E. Let “ω := carr(xω ). By trans¬nite induction we de¬ne

(“β ∪ carr(xβ ))∼ for ± = β + 1,
“± :=
“β for limit ordinals ±.

Then the “± satisfy all the requirements.

53.18. Corollary. Let K be Valdivia compact. Then C(K) has a PRI.

Proof. We choose “± as in (53.17) and set K± := Q“± (K). Let Q± := Q“± |K .
Then Q± is a continuous retraction.


! IdK±



incl ±


R    u

C(K± ) C(K± )
incl R  Q


C(K) u |E ±

We have dens(C(R“± )) = |±|, since we have a base of the topology of this space of
that cardinality. Hence dens(C(K± )) ¤ |±|. Let E± := (Q± )— (C(K± )). Then E± is
a closed subspace of C(K) and (53.13.3) holds. Furthermore P± := Q± —¦ incl— ± is
a norm-1 projection from C(K) to E± . The inclusion “± ⊆ “β for ± ¤ β implies
(53.13.1). To see (53.13.6) and (53.13.5) let µ > 0 and choose a ¬nite covering of
K± by sets
Uj := {x ∈ R“± : |xγ ’ xj | < δj for all γ ∈ ∆j },

where xj ∈ R“± , δj > 0 and ∆j ⊆ “± is ¬nite and such that for x , x ∈ Uj © K
we have |f (x ) ’ f (x )| < µ. Now choose ±0 < ± such that “±0 ⊇ ∆j for all of the
¬nitely many j. Since the Uj cover K± , we have x ∈ K± © Uj for some j and hence
Qβ (x) ∈ K± © Uj for all ±0 ¤ β < ±. Hence |f (x) ’ f (Qβ (x))| < µ for all x ∈ K±
and so P± (f ) ’ Pβ (f ) = (1 ’ Pβ )P± (f ) ¤ µ. Thus we have shown that E has
a PRI (P± )± , with all E± ∼ C(K± ) and dens(K± ) ¤ |“± | ¤ ±.

53.19. Remark. The space C([0, ±]) has a PRI given by

for µ ¤ β
f (µ)
Pβ (f )(µ) := .
for µ ≥ β
f (β)

53.20 53. Appendix: Projective resolutions of identity on Banach spaces 593

However, there is no PRI on the hyperplane E := {f ∈ C([0, ω1 ]) : f (ω1 ) = 0} of
the space C[0, ω1 ]. And, in particular, C[0, ω1 ] is not WCD.

Proof. Assume {P± : ω ¤ ± ¤ ω1 } is a PRI on E. Put ±0 := ω0 . We may ¬nd
β0 < ω1 with
P±0 E ⊆ Eβ0 := {f ∈ E : f (±) = 0 for ± > β0 },
because for each f in dense countable subset D ⊆ P±0 E we ¬nd a βf with f (±) = 0
for ± ≥ βf . Since Eβ0 is separable, there is an ±0 < ±1 < ω1 such that

Eβ0 ⊆ P±1 E,

in fact D ⊆ Eβ0 is dense and hence for each f ∈ D and n ∈ N there exists an
˜ ˜
±f,n < ω1 and f ∈ P±f,n E such that f ’ f ¤ 1/n. Then ±1 := sup{±f,n : n ∈
N, f ∈ D} ful¬lls the requirements.
Now we proceed by induction. Let ±∞ := supn ±n and β∞ := supn βn . Then

P±n E = Fβ∞ := {f ∈ E : f (±) = 0 for ± ≥ β∞ }.
P±∞ E =

But Fβ∞ is not the image of a norm-1 projection: Suppose P were a norm-1 pro-
jection on Fβ∞ . Let π : E ’ C(X) be the restriction map, where X := [0, β∞ ].
˜ ˜
It is left inverse to the inclusion ι given by f ’ f with f (γ) = 0 for γ ≥ β∞ .
˜ ˜
Let P := π —¦ P —¦ ι ∈ L(C(X)). Then P is a norm-1 projection with image
Cβ∞ (X) := {f ∈ C[0, β∞ ] : f (β∞ ) = 0}. Then C(X) = ker(P ) • Cβ∞ (X).
˜ /˜
We pick 0 = f0 ∈ ker(P ). Since f0 ∈ P (C(X)) = Cβ∞ (X) = ker(evβ∞ ), we
have f0 (β∞ ) = 0, and without loss of generality we may assume that f0 (β∞ ) = 1.
˜ ˜
For f ∈ C(X) we have that f ’ P (f ) ∈ ker P and hence there is a »f ∈ R
with f ’ P (f ) = »f f0 . In fact evaluating at β∞ gives f (β∞ ) ’ 0 = »f 1, hence
P (f ) = f ’ f (β∞ ) f0 . Since β∞ is a limit point, there is for each µ > 0 a xµ < β∞
with f0 (xµ ) > 1 ’ µ. Now choose fµ ∈ C(X) with fµ = 1 = ’fµ (β∞ ) = fµ (xµ ).

= fµ ’ fµ (β∞ ) f0
P fµ ∞ ∞

≥ |fµ (xµ ) ’ fµ (β∞ ) f0 (xµ )|
≥ 1 + 1(1 ’ µ) = 2 ’ µ.

Hence P ≥ 2, a contradiction.
Note however that every separable subspace is contained in a 1-complemented sep-
arable subspace.

53.20. Theorem. [Bistr¨m, 1993, 3.16] If E is a realcompact (i.e. non-measurab-
le) Banach space admitting a SPRI, then there is a non-measurable set “ and a
injective continuous linear operator T : E ’ c0 (“).

Proof. We proof by trans¬nite induction that for every ordinal ± with ± ¤ µ :=
dens(E) there is a non-measurable set “± and an injective linear operator T± :

594 53. Appendix: Projective resolutions of identity on Banach spaces 53.21

E± := P± (E) ’ c0 (“± ) with T± ¤ 1.
Note that if E is separable, then there are x— ∈ E with x— ¤ 1, and which are
n n
σ(E , E) dense in the unit-ball of E . Then T : E ’ c0 (N), de¬ned by T (x)n :=
n xn (x), satis¬es the requirements: It is obviously a continuous linear mapping into
c0 , and it remains to show that it is injective. So let x = 0. By Hahn-Banach
there is a x— ∈ E with x— (x) = x and x— ¤ 1. Hence there is some n with
|(x— ’ x— )(x)| < x and hence x— (x) = 0.
n n
In particular we have Tω0 : Eω0 ’ c0 (“ω0 ).
For successor ordinals ± + 1 we have E±+1 ∼ E± — (E±+1 /E± ) = E± — (P±+1 ’
P± )(E). Let R± := (P±+1 ’ P± )/ P±+1 ’ P± , let F := (P±+1 ’ P± )(E) and let
T : F ’ c0 be the continuous injection for the, by (53.13.7), separable space F
with T ¤ 1. Then we de¬ne “±+1 := “± N and T±+1 : E±+1 ’ c0 (“±+1 ) by

T± ( P± (x) )γ for γ ∈ G±

T±+1 (x)γ := .
for γ ∈ N
T (R± (x))γ
Now let ± be a limit ordinal. We set

“± := “ω “β+1 ,

and de¬ne T± : E± := P± (E) ’ c0 (“± ) by

Tω ( Pω (x) ) for γ ∈ “ω

T± (x)γ :=
for γ ∈ “β+1
Tβ+1 (Rβ (x))γ
We show ¬rst that T± (x) ∈ c0 (“± ) for all x ∈ E. So let µ > 0. Then the set
{β : Rβ (x) ≥ µ, β < ±} is ¬nite by (53.13.8).
Obviously T± is linear and T± ¤ 1. It is also injective: In fact let T± (x) = 0
for some x ∈ E± . Then Rβ (x) = 0 for all β < ± and Pω (x) = 0, hence by
x = P± (x) = 0.
As card(E) is non-measurable, also the smaller cardinal dens(E) is non-measur-
able. Thus the union “± of non-measurable sets over a non-measurable index set
is non-measurable.

53.21. Corollary. The WCD Banach spaces and the duals of Asplund spaces
continuously and linearly inject into some c0 (“). The same is true for C(K), where
K is Valdivia compact.

For WCG spaces this is due to [Amir, Lindenstrauss, 1968] and for C(K) with K
Valdivia compact it is due to [Argyros, Mercourakis, Negrepontis, 1988.]

Proof. For WCD and duals of Asplund spaces this follows using (53.15). For
Valdivia compact spaces K one proceeds by induction on dens(K) and uses the
PRI constructed in (53.18). The continuous linear injection C(K) ’ c0 (“) is then
given as in (53.20) for ± := dens(K), where Tβ exists for β < ±, since Eβ ∼ C(Kβ )
with Kβ Valdivia compact and dens(Kβ ) ¤ β < ±.

53.22 53. Appendix: Projective resolutions of identity on Banach spaces 595

53.22. Theorem. [Bartle, Graves, 1952] Let T : E ’ F be a bounded linear
surjective mapping between Banach spaces. Then there exists a continuous mapping
S : F ’ E with T —¦ S = Id.

Proof. By the open mapping theorem there is a constant M0 > 0 such that for all
y ¤ 1 there exists an x ∈ T ’1 (y) with y ¤ M0 . In fact there is an M0 such
that B1/M0 ⊆ T (B1 ) or equivalently B1 ⊆ T (BM0 ). Let (fγ )γ∈“ be a continuous
partition of unity on oF := {y ∈ F : y ¤ 1} with diam(supp(fγ )) ¤ 1/2. Choose
xγ ∈ T ’1 (carr(fγ )) with xγ ¤ M0 and for y ¤ 1 set

S0 y := fγ (y)xγ and recursively
Sn (an (y ’ T Sn y)),
Sn+1 y := Sn y +
where an := 22 .
By induction we show that the continuous mappings Sn : {y : y ¤ 1} ’ E satisfy
y ’ T Sn y ¤ 1/an and Sn y ¤ Mn := M0 · k=0 (1 + 1/ak ).
(n = 0) Obviously S0 y ¤ fγ (y) xγ ¤ M0 and

y ’ T S0 y = fγ (y)(y ’ T xγ ) ¤ fγ (y) y ’ T xγ ¤ = a0 ,
γ γ∈“y

where “y := {γ ∈ “ : fγ (y) = 0}.
(n + 1) For y ¤ 1 and yn := an (y ’ T Sn y) we have yn ¤ 1 by induction
hypothesis. Then

1 1
Sn+1 y ¤ Sn y + S n y n ¤ Mn + Mn = Mn+1 .
an an

y ’ T Sn+1 y = y ’ T Sn y ’ T Sn (an (y ’ T Sn y))
1 1 1 1
¤ y n ’ T S n yn ¤ · = .
an an an an+1

Now (Sn ) is Cauchy with respect to uniform convergence on {y : y ¤ 1}. In fact

1 Mn M∞
Sn+1 y ’ Sn y ¤ Sn (an (y ’ T Sn y)) ¤ ¤ ,
an an an

where M∞ := limn Mn . Thus S := limn Sn is continuous and y’T Sy = limn y’
T Sn y = 0, i.e. T Sy = y. Now S : F ’ E de¬ned by S(y) := y S( y ) and
S(0) := 0 is the claimed continuous section.



Abraham, R., Lectures of Smale on di¬erential topology, Lecture Notes, Columbia University,
New York, 1962.
Adam, E., Smoothly real compact spaces, Diplomarbeit, Universit¨t Wien, 1993.
Adam, E., Approximation properties and spaces of smooth functions, doctoral thesis, Universit¨t
Wien, Vienna, 1995.
Adam, E.; Bistr¨m, P.; Kriegl, A., Countably evaluating homomorphisms on real function alge-
bras, Archivum mathematicum 35 (1999), 165“192.
Adams, M.; Ratiu, T.; Schmid, R., The Lie group structure of di¬eomorphism groups and invert-
ible Fourier Integral operators, In¬nite dimensional groups with applications (V. Kac, ed.),
Springer-Verlag, New York, 1985, pp. 1“69.
Adams, M.; Ratiu, T.; Schmid, R., A Lie group structure for pseudo di¬erential operators, Math.
Ann. 273 (1986a), 529“551.
Adams, M.; Ratiu, T.; Schmid, R., A Lie group structure for Fourier integral operators, Math.
Ann. 276 (1986b), 19“41.
Aharoni, I.; Lindenstrauss, J., Uniform equivalence between Banach spaces, Bull. Am. Math. Soc.
84 (1978), 281“283.
Alekseevsky, D.; Michor, P.W., Di¬erential geometry of g-manifolds, Di¬er. Geom. Appl. 5
(1995a), 371“403.
Alekseevsky, D.; Michor, P.W., Di¬erential geometry of Cartan connections, Publ. Math. 47
(1995b), 349“375.
Alekseevsky, D.; Kriegl, A.; Losik, M.; Michor, P.W., Choosing roots of polynomials smoothly,
Israel J. Math 105 (1998), 203-233, math.CA/9801026.
Ambrose, W.; Palais, R.S.; Singer, I.M., Sprays, An. Acad. Bras. Cienc. 32 (1960), 163“178.
Amir, D.; Lindenstrauss, J., The structure of weakly compact sets in Banach spaces, Ann. Math.
88 (1968), 35“46.
Argyros, S.; Mercourakis, S.; Negrepontis, S., Functional-analytic properties of Corson-compact
spaces, Stud. Math. 89 (1988), 197“229.
Arias-de-Reyna, J., A real valued homomorphism on algebras of di¬erentiable functions, Proc.
Am. Math. Soc. 104, No. 4 (1988), 1054“1058.
Arnold, V.I., Sur la g´ometrie di¬erentielle des groupes de Lie de dimension in¬nie et ses appli-
cations ` l™hydrodynamique des ¬‚uides parfaits, Ann. Inst. Fourier 16 (1966a), 319“361.
Arnold, V.I., An a priori estimate in the theory of hydrodynamic stability, Russian, Izv. Vyssh.
Uchebn. Zaved. Mat. 54,5 (1966b), 3“5.
Arnold, V.I., Mathematical methods of classical mechanics, Graduate Texts in Math. 60, Springer-
Verlag, New York, Heidelberg, 1978.
Aron, R.M., Compact polynomials and compact di¬erentiable mappings between Banach spaces,
Sem. P. Lellong 1974/1975, Lecture notes in Math. 524, Springer-Verlag, 1976, pp. 231“222.
Aronszajn, N., Di¬erentiability of Lipschitzian mappings between Banach spaces, Stud. Math. 57
(1976), 147“190.
Asplund, E., Fr´chet di¬erentiability of convex functions, Acta Math. 121 (1968), 31“48.
Atiyah, M., Complex analytic connections on ¬ber bundles, Trans. Am. Math. Soc. 85 (1957),
Averbukh, V.I.; Smolyanov, O.G., The various de¬nitions of the derivative in linear topological
spaces, Russ. Math. Surv. 23 (1968), 67“113.
Balanzat, M.M., La di¬´rential en les espacios m´tricas a¬nes, Math. Notae 9 (1949), 29“51.
e e
Balanzat, M.M., La di¬´rentielle d™Hadamard-Fr´chet dans les espaces vectoriels topologiques, C.
e e
R. Acad. Sci. Paris 251 (1960), 2459“2461.
Banach, S., Th´orie des op´rations lin´aires, Warszawa, 1932.
e e e
Banaszczyk, W., On the existence of exotic Banach Lie groups, Math. Ann. 264 (1983), 485“493.
Banaszczyk, W., Characterization of nuclear spaces by means of additive subgroups, Math. Z. 186
(1984), 125“133.
Banaszczyk, W., Pontryagin duality for subgroups and quotients of nuclear spaces, Math. Ann.
273 (1986), 653“664.
Banaszczyk, W., Additive subgroups of topological vector spaces, Lecture Notes in Math. 1466,
Springer-Verlag, 1991.
598 References

Banyaga, A., Sur la structure du groupe des di¬eomorphismes qui preservent une forme symplec-
tique, Comment. Math. Helv. 53 (1978), 174“227.
Banyaga, A., On ¬xed points of symplectic maps, Invent. Math. 56 (1980), 215“229.
Bartle, R.G.; Graves, L.M., Mappings between function spaces, Trans. Am. Math. Soc. 72 (1952),
Bastiani, A., Applications di¬´rentiables et vari´t´s di¬´rentiables de dimension in¬nie, J. Anal.
e ee e
Math. 13 (1964), 1“114.
Baumg¨rtel, H., Endlichdimensionale analytische St¨rungstheorie, Akademie-Verlag, Berlin, 1972.
a o
Bemelmans, J.; Hildebrandt, St.; von Wahl, W., Partielle Di¬erentialgleichungen und Variantion-
srechnung, Ein Jahrhundert Mathematik 1890“1990 (Fischer, G.; Hirzebruch, F.; Scharlau,
W.; T¨rnig, W., eds.), Festschrift zum Jubil¨um der DMV, Vieweg, Braunschweig, Wiesbaden,
o a
1990, pp. 149“230.
Bessaga, C., Every in¬nite-dimensional Hilbert space is di¬eomorphic with its unit sphere, Bull.
Pol. Acad. Sci. Math. 14 (1966), 27“31.
Bessaga, C.; Pelczy´ski, A., Selected topics in in¬nite dimensional topology, Monogra¬e Matem-
atyczne, Tom 58, Polish Scienti¬c Publishers, Warszawa, 1975.
Binz, E., Ein Di¬erenzierbakeitsbegri¬ in limitierten Vektorr¨umen, Comment. Math. Helv. 41
(1966), 137“156.
Binz, E., Two natural metrics and their covariant derivatives on a manifold of embeddings,
Monatsh. Math. 89 (1980), 275“288.
Binz, E.; Fischer, H.R., The manifold of embeddings of a closed manifold, Proc. Di¬erential geo-
metric methods in theoretical physics, Clausthal 1978, Lecture Notes in Physics 139, Springer-
Verlag, 1981.
Bistr¨m, P., The homomorphisms on algebras of functions de¬ned on locally convex spaces and
bounding sets, Doctoral thesis, University of ˚bo, 1993.
Bistr¨m, P.; Bjon, S.; Lindstr¨m, M., Homomorphisms on some function algebras, Monatsh.
o o
Math. 111 (1990), 5.
Bistr¨m, P.; Bjon, S.; Lindstr¨m, M., Function algebras on which homomorphisms are point
o o
evaluations on sequences, Manuscr. Math. 73 (1991), 179“185.
Bistr¨m, P.; Bjon, S.; Lindstr¨m, M., Remarks on homomorphisms on certain subalgebras of
o o
C(X), Math. Jap. 37 (1992), 105“109.
Bistr¨m, P.; Bjon, S.; Lindstr¨m, M., On C m -bounding sets, J. Aust. Math. Soc. 54 (1993),
o o
Bistr¨m, P.; Jaramillo, J.A., C ∞ -bounding sets and compactness, Math. Scand. 75 (1994), 82“86.
Bistr¨m, P.; Jaramillo, J.A.; Lindstr¨m, M., Algebras of real analytic functions; Homomorphisms
o o
and bounding sets, Stud. Math. 115 (1995), 23“37.
Bistr¨m, P.; Lindstr¨m, M., Homomorphisms on C ∞ (E) and C ∞ -bounding sets, Monatsh. Math.
o o
115 (1993a), 257“266.
Bistr¨m, P.; Lindstr¨m, M., Characterization of the spectra of certain function algebras, Arch
o o
Math. 60 (1993b), 177“181.
Bochnak, J.; Siciak, J., Analytic functions in topological vector spaces, Stud. Math. 39 (1971),
Bockstein, M., Une th´or`me de s´parabilit´ pour les produits topologiques, Fundam. Math. 35
ee e e
(1948), 242“246.
Bolza, O., Vorlesungen uber Variationsrechnung, Leipzig, 1909; Second edition, New York, Chel-
sea, 1962.
Boman, J., Di¬erentiability of a function and of its compositions with functions of one variable,
Math. Scand. 20 (1967), 249“268.
Bonic, R.; Frampton, J., Di¬erentiable functions on certain Banach spaces, Bull. Am. Math. Soc.
71 (1965), 393“395.
Bonic, R.; Frampton, J., Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966),
Bonic, R.; Reis, F., A characterization of Hilbert space, An. Acad. Bras. Cienc. 38 (1966), 239“
Boothby, W.M., The transitivity of the automorphisms of certain geometric structures, Trans.
Am. Math. Soc. 137 (1969), 93“100.
Borel, A.; Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math. 75 (1962),
References 599

Borel, A.; Serre, J.P., Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436“491.
Borwein, J.; Fitzpatrick, S.; Kenderov, P., Minimal convex uscos and monotone operators on
small sets, Can. J. Math. 43 (1991), 461“476.
Bourbaki, N., General Topology, Hermann, Paris, 1966.
Bourguignon, J.-P., Une strati¬cation de l™espace des structures Riemanniens, Compos. Math. 30
(1975), 1“41.
Br¨cker, T.; J¨nich, K., Einf¨hrung in die Di¬erentialtopologie, Heidelberger Taschenb¨ cher 143,
o a u u
Springer-Verlag, Heidelberg, 1973.
Browder, W., Di¬eomorphisms of 1-connected manifolds, Trans. Am. Math. Soc. 128 (1967),
Brown, R., Some problems of algebraic topology, Ph. D. Thesis, Oxford, 1961.
Brown, R., Ten topologies for X — Y , Q. J. Math. Oxf. 14 (1963), 303“319.
Brown, R., Function spaces and product topologies, Q. J. Math. Oxf. 15 (1964), 238“250.
Buchwalter, H., Espaces vectoriels bornologiques, Publ. Dep. Math. Lyon 2 (1965), 1“53.
Cap, A.; Kriegl, A.; Michor, P.W.; Vanˇura, J., The Fr¨licher-Nijenhuis bracket in non commu-
z o
tative di¬erential geometry, Acta Math. Univ. Comenianae 62 (1993), 17“49.
Carne, T.K.; Cole, B.; Gamelin, T.W., A uniform algebra of analytic functions on a Banach
space, Trans. Am. Math. Soc. 314 (1989), 639“659.
Cartan, H.; Eilenberg, S., Homological Algebra, Princeton University Press, Princeton, 1956.
Cascales, B.; Orihuela, J., On compactness in locally convex spaces, Math. Z. 195 (1987), 365“381.
Cerf, J., La strati¬cation naturelle des espaces de fonctions di¬´rentiables re´lles et le th´or´me
e e ee
de la pseudoisotopie, Publ. Math. Inst. Hautes Etud. Sci. 39 (1970).
Cervera, V.; Mascaro, F.; Michor, P.W., The orbit structure of the action of the di¬eomorphism
group on the space of immersions, Di¬er. Geom. Appl. 1 (1991), 391“401.
Ciesielski, K.; Pol, R., A weakly Lindel¨f function space C(K) without continuous injection into
c0 (“), Bull. Pol. Acad. Sci. Math. 32 (1984), 681“688.
Cigler, J.; Losert, V.; Michor, P.W., Banach modules and functors on categories of Banach spaces,
Lecture Notes in Pure and Applied Mathematics 46, Marcel Dekker Inc., 1979, pp. xv+282.
Collier, J.B., A class of strong di¬erentiability spaces, Proc. Am. Math. Soc. 53 (1975), 420“422.
Colombeau, J.F., Di¬´rentiation et Bornologie, Dissertation, Bordeaux, 1973.
Colombeau, J.F., In¬nite dimensional C ∞ -mappings with a given sequence of derivatives at a
given point, J. Math. Anal. Appl. 71 (1979), 95“104.
Colombeau, J.F., Di¬erential Calculus and Holomorphy, Math. Studies 64, North Holland, Ams-
terdam, 1982.
Colombeau, J.F.; Meise, R., C ∞ -functions on locally convex and on bornological vector spaces,
Functional analysis, holomorphy, and approximation theory, Proc. Semin., Rio de Janeiro
1978, Lect. Notes Math. 843, Springer-Verlag, 1981, pp. 195“216.
Colombeau, J.F.; Perrot, B., The (partial d) equation in DFN spaces., J. Math. Anal. Appl. 78
(1980), 466“487.
Corson, H.H., The weak topology of a Banach space, Trans. Am. Math. Soc. 101 (1961), 1“15.
Cudia, D., The geometry of Banach spaces. Smoothness, Trans. Am. Math. Soc. 110 (1964),
Daniell, P.J., The derivative of a functional, Bull. Am. Math. Soc. 25 (1919), 414“416.
Day, M.M., Strict convexity and smoothness of normed spaces, Trans. Am. Math. Soc. 78 (1955),
Deville, R.; Godefroy, G.; Zizler, V.E., The three space problem for smooth partitions of unity and
C(K) spaces, Math. Ann. 288 (1990), 613“625.
Deville, R.; Godefroy, G.; Zizler, V.E., Smoothness and renormings in Banach spaces, Pitman
Monographs and Surveys in Pure and Applied Mathematics 64, Longman, John Wiley, Lon-
don, New York, 1993.
De Wilde, M., Closed graph theorems and webbed spaces, Pitman, London, 1978.
DeWitt, B.S., Quantum theory of gravity. I. The canonical theory, Phys. Rev. 160 (5) (1967),
Diestel, J., Geometry of Banach spaces, selected topics, Lecture Notes in Math. 485, Springer-
Verlag, 1975, pp. New York.
Diestel, J., Sequences and series in Banach spaces, Springer Verlag, 1984.
Dieudonn´, J., Sur les espaces uniformes complets, Ann. Sci. Ec. Norm. Super. 56 (1939), 277“
600 References

Dieudonn´, J.A., Foundations of modern analysis, I, Academic Press, New York, London, 1960.
Dieudonn´, J., Sur un theoreme de Glaeser, J. Anal. Math. 23 (1970), 85“88.
Douady, A., Le probl`me des modules pour les sous-espaces analytiques compacts d™un espace
analytique donn´, Ann. Inst. Fourier 16 (1966), 1“95.
Dubois-Violette, M.; Michor, P.W., A common generalization of the Fr¨licher-Nijenhuis bracket
and the Schouten bracket for symmetric multi vector ¬elds, Indag. Math. New Ser. 6 (1995),
Dubois-Violette, M.; Michor, P.W., More on the Fr¨licher-Nijenhuis bracket in non commutative
di¬erential geometry, J. Pure Appl. Algebra 121 (1997), 107“135, dg-ga/9410007.
Ebin, D., The manifold of Riemannian metrics, Proc. Symp. Pure Math. 15, Am. Math. Soc.,
1970, pp. 11“40.
Ebin, D.G.; Marsden, J.E., Groups of di¬eomorphisms and the motion of an incompressible ¬‚uid,
Ann. Math. 92 (1970), 102“163.
Edgar, G.A., Measurability in Banach spaces, Indiana Univ. Math. J. 26 (1977), 663“677.
Edgar, G.A., Measurability in a Banach space, II, Indiana Univ. Math. J. 28 (1979), 559“579.
Eells, J., A setting for global analysis, Bull. Am. Math. Soc. 72 (1966), 571“807.
Eells, J.; Elworthy, K.D., Open embeddings of certain Banach manifolds, Ann. Math. 91 (1970),
Eichhorn, J., Gauge theory on open manifolds of bounded geometry, Int. J. Mod. Phys. A 7 (1992),
Eichhorn, J., The manifold structure of maps between open manifolds, Ann. Global Anal. Geom.
11 (1993), 253“300.
Eichhorn, J., Spaces of Riemannian metrics on open manifolds, Result. Math. 27 (1995), 256-283.
Ehresmann, C., Les prolongements d™une vari´t´ di¬´rentiable, I: Calcul des jets, prolongement
ee e
principal, II: L™espace des jets d™ordre r de Vn dans Vm , C. R. Acad. Sci. Paris 233 (1951),
598“600, 777“779.
Ekeland, I.; Lebourg, G., Generic Fr´chet-di¬erentiability and perturbed optimization problems
in Banach spaces, Trans. Am. Math. Soc. 224 (1976), 193“216.
En¬‚o, P., Uniform structures and square roots in topological groups II, Isr. J. Math. 9 (1970),
En¬‚o, P., On Banach spaces which can be given an equivalent uniformly convex norm, Isr. J.
Math. 13 (1972), 114“146.
En¬‚o, P.; Lindenstrauss, J.; Pisier, G., On the ˜three space problem™, Math. Scand. 36 (1975),
Engelking, R., Outline of General Topology, Polish Scienti¬c Publishers, Warszawa, 1968.
Engelking, R., General Topology, revised and completed edition, Heldermann-Verlag, Berlin, 1989.
Epstein, D.B.A., The simplicity of certain groups of homeomorphisms, Compos. Math. 22 (1970),
Fabian, M.; Godefroy, G., The dual of every Asplund space admits a projectional resolution of
identity, Stud. Math. 91 (1988), 141“151.
Fantappi´, L., I functionali analitici, Atti Accad. Naz. Lincei, Mem. 3“11 (1930), 453“683.
Fantappi´, L., Uberblick uber die Theorie der analytischen Funktionale und ihre Anwendungen,
e ¨
Jahresber. Dtsch. Math. Ver. 43 (1933), 1“25.
Faure, C.-A., Sur un th´or`me de Boman, C. R. Acad. Sci. Paris 309 (1989), 1003“1006.
Faure, C.-A., Th´orie de la di¬´rentiation dans les espaces convenables, Th´se, Universit´ de
e e e e
Gen´ve, 1991.
Federer, H., Geometric Measure Theory, Springer-Verlag, Berlin, 1969.
Fitzpatrick, S., Metric projections and the di¬erentiability of distance functions, Bull. Aust. Math.
Soc. 22 (1980), 291“312.
Floret, K., Lokalkonvexe Sequenzen mit kompakten Abbildungen, J. Reine Angew. Math. 247
(1971), 155“195.
Fr´chet, M., Sur la notion de di¬´rentielle, C. R. Acad. Sci. Paris 152 (1911), 845“847, 1050“1051.
e e
Fr´chet, M., Sur la notion de di¬´rentielle dans l™analyse g´n´rale, C. R. Acad. Sci. Paris 180
e e ee
(1925a), 806“809.
Fr´chet, M., La notion de di¬´rentielle dans l™Analyse g´n´rale, Ann. Sci. Ec. Norm. Super. XLII
e e ee
(1925b), 293“323.
Fr´chet, M., Sur la notion de di¬´rentielle, J. Math. Pures Appl. 16 (1937), 233“250.
e e
References 601

Freed, D.S. ; Groisser, D., The basic geometry of the manifold of Riemannian metrics and of its
quotient by the di¬eomorphism group, Mich. Math. J. 36 (1989), 323“344.
Freed, D.; Uhlenbeck, K., Instantons and 4-manifolds, MSRI Publications 1, Springer-Verlag,
New York, 1984.
Freedman, M.H., The topology of four dimensional manifolds, J. Di¬er. Geo. 17 (1982), 357“454.
Freifeld, C., One-parameter subgroups do not ¬ll a neighborhood of the identity in an in¬nite
dimensional Lie (pseudo)-group, Battelle Rencontres, Lectures in Mathematics and Physics,
Benjamin, New York, 1967, pp. 538“543.
Fr¨licher, A., Categories cart´siennement ferm´es engendr´es par des monoides, Cah. Topologie
o e e e
G´om. Di¬er. 21 (1980), 367“375.
Fr¨licher, A., Applications lisses entre espaces et vari´t´s de Fr´chet, C. R. Acad. Sci. Paris 293
o ee e
(1981), 125“127.
Fr¨licher, A.; Bucher, W., Calculus in vector spaces without norm, Lecture Notes in Math. 30,
Springer-Verlag, Heidelberg, 1966.
Fr¨licher, A.; Gisin, B.; Kriegl, A., General di¬erentiation theory, Various publications series No.
35, Aarhus Universitet, 1983, pp. 125“153.
Fr¨licher, A.; Kriegl, A., Convergence vector spaces for Analysis, Convergence Structures 1984,
Akademie Verlag, Berlin, 1985, pp. 115“126.
Fr¨licher, A.; Kriegl, A., Linear spaces and di¬erentiation theory, Pure and Applied Mathematics,
J. Wiley, Chichester, 1988.
Fr¨licher, A.; Kriegl, A., Di¬erentiable extensions of functions, Di¬er. Geom. Appl. 3 (1993),
Fuks, D.B., Cohomology of in¬nite dimensional Lie algebras, (Russian), Nauka, Moscow, 1984;
English, Contemporary Soviet Mathematics, Consultants Bureau (Plenum Press), New York,
Fulp, R.O., Connections on the path bundle of a principal ¬ber bundle, Di¬er. Geom. Appl. 4
(1994), 201“237.
Gabriel, P.; Zisman, M., Fondements de la topologie simpliciale, S´minaire homotopique, Univer-
sit´ de Strasbourg, 1963/64.
G¨hler, W., Grundstrukturen der Analysis I, II, Birkh¨user/Akademie Verlag, Basel/Berlin, 1977,
a a
Garrido, I.; G´mez, J.; Jaramillo, J.A., Homomorphisms on function algebras, Can. J. Math. 46
(1994), 734“745.
Gˆteaux, M.R., Sur les fonctionnelles continues et les fonctionnelles analytiques, C. R. Acad.
Sci. Paris 157 (1913), 325“327.
Gˆteaux, M.R., Fonctions d™une in¬nit´ de variables independantes, Bull. Soc. Math. Fr. 47
a e
(1919), 70“96.
Gˆteaux, M.R., Sur les fonctionnelles continues et les fonctionnelles analytiques, Bull. Soc. Math.
Fr. 50 (1922), 1“21.
Gelfand, I.M.; Dorfman, I.Y., Hamiltonian operators and the algebraic structures connected with
them, Funct. Anal. Appl. 13 (1979), 13“30.
Gieraltowska-Kedzierska, M.; Van Vleck, F.S., Fr´chet di¬erentiability of regular locally Lipschitz-
ian functions, J. Math. Anal. Appl. 159 (1991), 147“157.
Gillman, L.; Jerison, M., Rings of continuous functions, Van Nostrand, Princeton, 1960.
Gil-Medrano, O.; Michor, P.W., The Riemannian manifold of all Riemannian metrics, Q. J.
Math. Oxf. 42 (1991), 183“202.
Gil-Medrano, O.; Michor, P.W.; Neuwirther, M., Pseudoriemannian metrics on spaces of bilinear
structures, Q. J. Math. Oxf. 43 (1992), 201“221.
Gil-Medrano, O.; Michor, P.W., Pseudoriemannian metrics on spaces of almost hermitian struc-
tures, Israel J. Math. 8 (1994), 319“332.
Glaeser, G., Racine carr´ d™une fonction di¬´rentiable, Ann. Inst. Fourier 13,2 (1963), 203“210.
e e
Godefroy, G.; Pelant, J.; White¬eld, J.H.M.; Zizler, V.E., Banach space properties of Ciesielski-
Pol™s C(K)-space, Proc. Am. Math. Soc. 103 (1988), 1087“1093.
Godefroy, G.; Troyanski, S.L; Whit¬eld, J.H.M; Zizler, V.E., Smoothness in weakly compactly
generated spaces, J. Funct. Anal. 52 (1983), 344“352.
Godefroy, G.; Troyanski, S.L.; Whit¬eld, J.H.M; Zizler, V.E., Locally uniformly rotund renorming
and injection into c0 (“), Can. Math. Bull. 27 (1984), 494“500.
Godement, R., Topologie alg´brique et th´orie des fausceaux, Hermann, Paris, 1958.
e e
602 References

G´mez, J.; Llavona, J.G., Multiplicative functionals on function algebras, Rev. Mat. Univ. Com-
plutense Madrid 1 (1988), 19“22.
Grabowski, J., Free subgroups of di¬eomorphism groups, Fundam. Math. 131 (1988), 103“121.
Grabowski, J., Derivative of the exponential mapping for in¬nite dimensional Lie groups, Ann.
Global Anal. Geom. 11 (1993), 213“220.
Grauert, H., On Levi™s problem and the embedding of real analytic manifolds, Ann. Math. 68
(1958), 460“472.
Greub, W.; Halperin, S.; Vanstone, R., Connections, Curvature, and Cohomology I, II, III,
Academic Press, New York, London, 1972, 1973, 1976.
Gri¬ths, P., On Cartan™s method of Lie groups and moving frames as applied to uniqueness and
existence questions in di¬erential geometry, Duke Math. J. 41 (1974), 775“814.
Gromov, M., Partial di¬erential relations, Ergebnisse 3. Folge, Band 9, Springer-Verlag, Berlin,
Heidelberg, New York, 1986.
Grothendieck, A., Sur certains espaces de fonctions holomorphes. I, J. Reine Angew. Math. 192
(1953), 35“64.
Grothendieck, A., Produits tensoriels topologiques et espaces nucl´aires, Mem. Am. Math. Soc.
16, Am. Math. Soc., 1955.
Gunning, R.C.; Rossi, H., Analytic functions in several complex variables, Prentice-Hall, Engle-
wood Cli¬s, N.J., 1965.
G¨nther, M., Beitr¨ge zur lokalen L¨sbarkeit nichtlinearer partieller Di¬erentialgleichungen, Dis-
u a o
sertation, Karl-Marx-Universit¨t, Leipzig, 1988, pp. 150.
G¨nther, M., On the perturbation problem associated to isometric embeddings of Riemannian
manifolds, Ann. Global Anal. Geom. 7,1 (1989), 69“77.
G¨nther, M., Isometric embeddings of Riemannian manifolds, Proc. Int. Congr. Math., Kyoto
1990, Vol. II, 1991, pp. 1137“1143.
Hadamard, J., Le¸ons sur le calcul des variations, Hermann, Paris, 1910.
Hadamard, J., La notion de di¬´rentielle dans l™enseignement, Scripta Univ. Ab. 3, Bib Hi-
erosolymitanarum, J´rusalem, 1923.
Hahn, H., Uber lineare Gleichungssysteme in linearen R¨umen, J. Reine Angew. Math. 157
(1926), 214“229.
Hahn, H., Reelle Funktionen I (1932), Leipzig.
Hamilton, R.S., The inverse function theorem of Nash and Moser, Bull. Am. Math. Soc. 7 (1982),
de la Harpe, P., Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert
space, Lecture Notes in Math. 285, Springer-Verlag, 1972.
Hatakeyama, Y., Some notes on the groups of automorphisms of contact and symplectic struc-
tures, Tˆhoku Math. J. 18 (1966), 338“347.
Hatcher, A., A proof of a Smale conjecture, Ann. Math. 117 (1983), 553“607.
Hatcher, A.; Wagoner, J., Pseudo-isotopies of compact manifolds, Asterisque 6 (1973).
Haydon, R., A counterexample to several questions about scattered compact spaces, Bull. Lond.
Math. Soc. 22 (1990), 261“268.
Haydon, R., Trees and renormings, Publ. Math. Univ. Pierre Marie Curie 104, No.8 (1991).
Heber, G., Die Topologie des Kon¬gurationsraumes der Yang-Mills-Theorie uber o¬enen Man-
nigfaltigkeiten beschr¨nkter Geometrie, Dissertation, Universit¨t Greifswald, 1994.
a a
Hewitt, E., Rings of real valued continuous functions. I, Trans. Am. Math. Soc. 64 (1948), 45“99.
Hewitt, E., Linear functionals on spaces of continuous functions, Fundam. Math. 37 (1950),
Hirai, T., Irreducible unitary representations of the group of di¬eomorphisms of a non-compact
manifold, J. Math. Kyoto Univ. 33, 3 (1993), 827“864.
Hirsch, M.W., Di¬erential topology, GTM 33, Springer-Verlag, New York, 1976.
Hirzebruch, F., Neue topologische Methoden in der algebrischen Topologie, Ergebnisse der Math.
9, 2. edition, Springer-Verlag, Berlin, G¨ttingen, Heidelberg, 1962.
Hogbe-Nlend, H., Compl´tions, tenseurs, nucl´arit´ en bornologie, J. Math. Pures Appl. (1970).
e e e
Hogbe-Nlend, H., Th´orie des Bornologies et Applications, Lecture Notes in Math. 213, Springer-
Verlag, Berlin, 1971.
Hogbe-Nlend, H., Bornologies and Functional Analysis, Math. Studies 26, North Holland, Ams-
terdam, 1977.
References 603

H¨rmander, L., The Analysis of linear partial di¬erential operators I, Grundlehren 256, Springer-
Verlag, Berlin, 1983.
Horv´th, J., Topological vector spaces and distributions, Addison Wesley, Reading, Mass., 1966.
Igusa, K., What happens to Hatcher and Wagoner™s formula for π0 (C(M )) when the ¬rst Post-
nikoc invariant of M is nontrivial, Lecture Notes in Math. 1046, Springer-Verlag, New York,
Heidelberg, 1984, pp. 104“172.
Imayoshi, Y., Holomorphic maps of compact Riemannian surfaces into 2-dimensional compact
C-hyperbolic manifolds, Math. Ann. 270 (1985), 403“416.
Imayoshi, Y., Holomorphic maps of projective algebraic manifolds into compact C-hyperbolic
manifolds, J. Math. Soc. Japan 46 (1994), 289“307.
Jacobowitz, H., Implicit function theorems and isometric embeddings, Ann. Math. 95 (1972),
James, R.C., A non-re¬‚exive Banach space isometric with its second conjugate space, Proc. Natl.
Acad. Sci. USA 37 (1951), 174“177.
Jaramillo, J.A., Multiplicative functionals on algebras of di¬erentiable functions, Arch Math. 58
(1992), 384“387.
Jarchow, H., Locally convex spaces, Teubner, Stuttgart, 1981.
Jayne, J.E.; Rogers, C.A., Borel selectors for upper semicontinuous set valued maps, Acta Math.
155 (1985), 41“79.
John, K.; Torunczyk, H.; Zizler, V., Uniformly smooth partitions of unity on superre¬‚exive Banach
spaces, Stud. Math. 70 (1981), 129“137.
John, K.; Zizler, V., A note on strong di¬erentiability spaces, Commentat. Math. Univ. Carol. 17
(1976), 127“134.
John, K.; Zizler, V., On rough norms on Banach spaces, Commentat. Math. Univ. Carol. 19
(1978), 335“349.
Johnson, W.B.; Lindenstrauss, J., Some remarks on weakly compactly generated Banach spaces,
Isr. J. Math. 17 (1974), 219“230.
Joris, H., Une C ∞ -application non-immersive qui poss`de la propri´t´ universelle des immer-
e ee
sions., Arch Math. 39 (1982), 269“277.
Josefson, B., Bounding subsets of ∞ (A), J. Math. Pures. Appl. 57 (1978), 397“421.
Kadec, M.I., Spaces isomorphic to a locally uniformly convex space, Izv. Vyssh. Uˇebn. Zaved.
Mat. 13 (1959), 51“57.
Kadec, M.I., Letters to the editors, Izv. Vyssh. Uˇebn. Zaved. Mat. 15 (1961), 139“141.
Kadec, M.I., Some conditions of the di¬erentiability of the norm of Banach spaces, Uspechi Mat.
Nauk 20 (1965), 183“187.
Kainz, G., A note on the manifold of immersions and its Riemannian curvature, Monatsh. Math.
98 (1984), 211“217.
Kainz, G. ; Kriegl, A. ; Michor, P.W., C ∞ -algebras from the functional analytic viewpoint, J.
Pure Appl. Algebra 46 (1987), 89“107.
Kainz, G.; Michor, P.W., Natural transformations in di¬erential geometry, Czech. Math. J. 37
(1987), 584“607.
Kashiwara, M.; Kawai, T.; Kimura, T., Foundations of algebraic analysis, Princeton Univ. Press,
Princeton, 1986.
Katˇtov, M., Measures in fully normal spaces, Fundam. Math. 38 (1951), 73“84.
Kato, T., Perturbation theory for linear operators, Grundlehren 132, Springer-Verlag, Berlin,
Keller, H.H., R¨ume stetiger multilinerarer Abbildungen als Limesr¨ume, Math. Ann. 159 (1965),
a a
Keller, H.H., Di¬erential calculus in locally convex spaces, Lecture Notes in Math. 417, Springer-
Verlag, 1974.
Kenderov, P.S., The quasi-di¬erentiable functionals are almost everywhere di¬erentiable, Math.
Educ. 2 (1974), 123“126.
Kervaire, M; Milnor, J., Groups of homotopy spheres, I, Ann. Math. 77 (1963), 504“537.
Kirillov, A.A., Elements of the theory of representations, Springer-Verlag, Berlin, 1976.
Kirillov, A.A., The orbits of the group of di¬eomorphisms of the circle, and local Lie superalgebras,
Funct. Anal. Appl. 15 (1981), 135“136.
604 References

Kirillov, A.A., The orbit method I: geometric quantization; II: In¬nite dimensional Lie groups
and Lie algebras, Notes by J. Adams, A. Kleppner, R. Lipsman, J.-Sh. Li, and J. Rosenberg,
Department of Math., University of Maryland, 1991.
Knapp, A.W., Representation theory of semisimple Lie groups, Princeton University Press, Prince-
ton, 1986.
Kneser, A., Lehrbuch der Variationsrechnung, Vieweg, Braunschweig, 1900.
Kodaira, K; Spencer, D.C., On the deformations of complex analytic structures, Ann. Math. 67
(1958), 328“460.
Kodaira, K; Nirenberg, L; Spencer, D.C., On the existence of deformations of complex analytic
structures, Ann. Math. 68 (1958), 450“459.
Kol´ˇ, I.; Michor, P.W., Determination of all natural concomitants of the type of the Fr¨licher
ar o
Nijenhuis bracket, Rend. Circ. Mat. Palermo, Suppl. 16 (1987), 101“108.
Kol´ˇ, I.; Michor, P.W.; Slov´k, J., Natural operations in di¬erential geometry, Springer-Verlag,
ar a
Berlin, Heidelberg, New York, 1993.
Koppell, N., Commuting di¬eomorphisms, Proc. Symp. Pure Math. 14 (1970), Am. Math. Soc.,
Koszul, J.L., Homologie et Cohomologie des alg`bres de Lie, Bull. Soc. Math. Fr. 78 (1950),
K¨the, G., Dualit¨t in der Funktionentheorie, J. Reine Angew. Math. 191 (1953), 30“49.
o a
Kriegl, A., Eine Theorie glatter Mannigfaltigkeiten und Vektorb¨ndel, Dissertation, Universit¨t
u a
Wien, 1980.
Kriegl, A., Die richtigen R¨ume f¨r Analysis im Unendlich - Dimensionalen, Monatsh. Math. 94
a u
(1982), 109“124.
Kriegl, A., Eine kartesisch abgeschlossene Kategorie glatter Abbildungen zwischen beliebigen
lokalkonvexen Vektorr¨umen, Monatsh. Math. 95 (1983), 287“309.
Kriegl, A., A cartesian closed extension of the category of smooth Banach manifolds, Categorical
Topology, Proc. Conference Toledo, Ohio, 1983 (Bentley, L., eds.), Heldermann, Berlin, 1984,
pp. 323“336.
Kriegl, A., Remarks on germs in in¬nite dimensions, Acta Math. Univ. Comenianae 66 (1997),
Kriegl, A.; Michor, P.W., A convenient setting for real analytic mappings, Acta Math. 165 (1990),
Kriegl, A.; Michor, P.W., Aspects of the theory of in¬nite dimensional manifolds, Di¬er. Geom.
Appl. 1 (1991), 159“176.
Kriegl, A.; Michor, P.W., More smoothly real compact spaces, Proc. Am. Math. Soc. 117 (1993),
Kriegl, A.; Michor, P.W., Regular in¬nite dimensional Lie groups, J. Lie Theory 7,1 (1997),
61“99, math.DG/9801007.
Kriegl, A.; Michor, P.W. ; Schachermayer, W., Characters on algebras of smooth functions, Ann.
Global Anal. Geom. 7, No. 2 (1989), 85“92.
Kriegl, A.; Nel, L.D., A convenient setting for holomorphy, Cah. Topologie G´om. Di¬er. 26
(1985), 273“309.
Kriegl, A.; Nel, L.D., Convenient vector spaces of smooth functions, Math. Nachr. 147 (1990), 7.
Kuranishi, M., On the locally complete families of complex analytic structures, Ann. Math. 75
(1962), 536“577.
Kurzweil, J., On approximation in real Banach spaces, Stud. Math. 14 (1954), 214“231.
Ky Fan, M., Sur quelques notions fondamentales de l™analyse g´n´rale, J. Math. Pures Appl. 21
(1942), 289“368.
Lang, S., Di¬erential manifolds, Addison Wesley, 1972.
Lawvere, F.W., Categorical dynamics, Lectures given 1967 at the University of Chicago, reprinted
in, Topos Theoretical Methods in Geometry (A. Kock, ed.), Aarhus Math. Inst. Var. Publ.
Series 30, Aarhus Universitet, 1979.
Lawvere, F.W.; Schanuel, S.H.; Zame, W.R., On C ∞ -function spaces, Preprint, State University
of New York, Bu¬alo (1981).
Lazet, D., Sur la di¬´rentiabilit´ des applications analytiques en dimension in¬nie, C. R. Acad.
e e
Sci. Paris 273 (1971), 155“157.
Leach, E.B.; Whit¬eld, J.H.M., Di¬erentiable functions and rough norms on Banach spaces, Proc.
Am. Math. Soc. 33 (1972), 120“126.
References 605

Leduc, M., Densit´ de certaines familles d˜hyperplans tangents, C. R. Acad. Sci. Paris 270 (1970),
Leslie, J., On a di¬erential structure for the group of di¬eomorphisms, Topology 6 (1967), 264“
Leslie, J., On the group of real analytic di¬eomorphisms of a compact real analytic manifold,
Trans. Am. Math. Soc. 274 (2) (1982), 651“669.
L´vy, M.P., Le¸ons d™analyse fonctionnelle, Gauthier-Villars, Paris, 1922.
e c
Libermann, P.; Marle, C.M., Symplectic geometry and analytical mechanics, Mathematics and its
applications, D. Reidel, Dordrecht, 1987.
Lindenstrauss, J.; Tzafriri, L., On the complemented subspace problem,, Isr. J. Math. 9 (1971),
Llavona, J.G., Approximation of continuously di¬erentiable functions, North-Holland, 1986.
Long de Foglio, S. Fernandez, La di¬´rentielle au sens d™Hadamard dans les espaces L vectorielles,
Port. Math. 19 (1960), 165“184.
Lovaglia, A.R., Locally uniformly convex Banach spaces, Trans. Am. Math. Soc. 78 (1955), 225“
Lychagin, V., On su¬cient orbits of a group of contact di¬eomorphisms, Math. USSR Sb. 33
(1977), 223“242.
Mackey, G.W., Equivalence of a problem in measure theory to a problem in the theory of vector
lattices, Bull. Am. Math. Soc. 50 (1944), 719“722.
Mackey, G.W., On in¬nite dimensional spaces, Trans. Am. Math. Soc. 57 (1945), 155“207.
MacLaughlin, D.P., Smooth partitions of unity in preduals of WCG spaces, Math. Z. 211 (1992),
Maissen, B., Lie Gruppen mit Banach R¨umen als Parameterr¨umen, Acta Math. 108 (1962),
a a
Maissen, B., Uber Topologien im Endomorphismenraum eines topologischen Vektorraums, Math.
Ann. 151 (1963), 283“285.
Malgrange, B., Ideals of di¬erentiable functions, Oxford Univ. Press, London, 1966.
Margalef Roig, J.; Outerelo Dominguez, E., Une variedad diferenciable de dimension in¬nita,
seperada y no regular, Rev. Mat. Hisp.-Amer. 42 (1982), 51“55.
Marinescu, G., Espaces vectoriels pseudo topologiques et le theorie des distributions, Deutsche
Verlag d. Wiss., Berlin, 1963.
Mather, J.N., Commutators of di¬eomorphisms I, Comment. Math. Helv. 49 (1974), 512“528.
Mather, J.N., Commutators of di¬eomorphisms II, Comment. Math. Helv. 50 (1975), 33“40.
Mather, J.N., A curious remark concerning the geometric transfer map, Comment. Math. Helv.
59 (1984), 86“110.
Mather, J.N., Commutators of di¬eomorphisms III, Comment. Math. Helv. 60 (1985), 122“124.
Mattes, J., On the convenient setting for real analytic mappings, Monatsh. Math. 116 (1993),
Mauhart, M.; Michor, P.W., Commutators of ¬‚ows and ¬elds, Arch. Math. Brno 28 (1992),
Mazur, S., Uber konvexe Mengen in linearen normierten R¨umen, Stud. Math. 4 (1933), 70“84.
Mazur, S., On continuous mappings on cartesian products, Fundam. Math. 39 (1952), 229“238.
Mazur, S.; Orlicz, W., Grundlegende Eigenschaften der polynomischen Operationen, Stud. Math.
5 (1935), 50“68.
Meshkov, V.Z., Smoothness properties in Banach spaces, Stud. Math. 63 (1978), 111“123.
Michal, A.D., Di¬erential calculus in linear topological spaces, Proc. Natl. Acad. Sci. USA 24
(1938), 340“342.
Michor, P.W., Manifolds of smooth maps, Cah. Topologie G´om. Di¬er. 19 (1978), 47“78.
Michor, P.W., Manifolds of smooth maps II: The Lie group of di¬eomorphisms of a non compact
smooth manifold, Cah. Topologie G´om. Di¬er. 21 (1980a), 63“86.
Michor, P.W., Manifolds of smooth maps III: The principal bundle of embeddings of a non compact
smooth manifold, Cah. Topologie G´om. Di¬er. 21 (1980b), 325“337.
Michor, P.W., Manifolds of di¬erentiable mappings, Shiva, Orpington, 1980c.
Michor, P.W., The manifold of embeddings of a non compact manifold, Appendix to: E. Binz,
H.R. Fischer: The manifold of embeddings of a closed manifold, Proc. Di¬erential geometric
methods in theoretical physics, Clausthal 1978, Lecture Notes in Physics 139, Springer-Verlag,
606 References

Michor, P.W., Manifolds of smooth mappings IV: Theorem of De Rham, Cah. Topologie G´om. e
Di¬er. 24 (1983), 57“86.
Michor, P.W., A convenient setting for di¬erential geometry and global analysis I, II, Cah. Topolo-
gie G´om. Di¬er. 25 (1984a), 63“109, 113“178..
Michor, P.W., Applications of Hamilton˜s inverse function theorem to manifolds of mappings,
Proc. Convergence structures and applications II, Schwerin 1983, Akademie Verlag, Berlin,
1984b, pp. 159“162.
Michor, P.W., The cohomology of the di¬eomorphism group is a Gelfand-Fuks cohomology, Rend.
Circ. Mat. Palermo, Suppl. 14 (1987a), 235“ 246.
Michor, P.W., Remarks on the Fr¨licher-Nijenhuis bracket, Proc. Conference Di¬erential Geom-
etry and its Applications, Brno 1986, D. Reidel, 1987b, pp. 197“220.
Michor, P.W., Gauge theory for the di¬eomorphism group, Proc. Conf. Di¬erential Geometric
Methods in Theoretical Physics, Como 1987, K. Bleuler and M. Werner (eds), Kluwer, Dor-
drecht, 1988, pp. 345“371.
Michor, P.W., Knit products of graded Lie algebras and groups, Rend. Circ. Mat. Palermo, Suppl.
22 (1989), 171“175.
Michor, P.W., The moment mapping for a unitary representation, Ann. Global Anal. Geom. 8,
No 3 (1990), 299“313.
Michor, P.W., Gauge theory for ¬ber bundles, Monographs and Textbooks in Physical Sciences,
Lecture Notes 19, Bibliopolis, Napoli, 1991, pp. 107.
Michor, P.W., All unitary representations admit moment mappings, Colloquia Mathematica Soci-
etatis J´nos Bolyai, 56. Di¬erential Geometry, Eger (Hungary), 1989 (J. Szenthe, L. Tam´ssy,
a a
eds.), J´nos Bolyai Math. Soc. and Elsevier, Budapest and Amsterdam, 1992, pp. 477“489.
Michor, P.W.; Ratiu, T., Curvature of the Virasoro-Bott group, J. Lie Theory 8 (1997), 293-309,
Michor, P.W.; Schichl, H., No slices on the space of generalized connections, Acta Math. Univ.
Comenianiae 66 (1997), 221“228, math.DG/9801023.
Michor, P.W.; Vanˇura, J., Characterizing algebras of smooth functions on manifolds, Commentat.
Math. Univ. Carol. 37,3 (1996), 519“521.
Michor, P.W.; Vizman, C., n-transitivity of certain di¬eomorphism groups, Acta Math. Univ.
Comenianae 63 (1994), 4.
Mikusinski, J., Distributions a valeurs dans le re´nions d™espaces de Banach, Stud. Math. 19
(1960), 251“285.
Milnor, J., Topology from the di¬erentiable viewpoint, University Press of Virginia, Charlottesville,
Milnor, J., Remarks on in¬nite dimensional Lie groups, Relativity, Groups, and Topology II, Les
Houches, 1983, B.S. DeWitt, R. Stora, Eds., Elsevier, Amsterdam, 1984.
Milnor, J.; Stashe¬, J., Characteristic classes, Annals of Math. Studies 76, Princeton University
Press, Princeton, 1974.
Moerdijk, I.; Reyes, G.E., Models for smooth in¬nitesimal analysis, Springer-Verlag, Heidelberg,
Berlin, 1991.
Moreau, J.J., Proximit´ et dualit´ dans un espace hilbertien, Bull. Soc. Math. Fr. 93 (1965),
e e
Morrow, J., The denseness of complete Riemannian metrics, J. Di¬er. Geo. 4 (1970), 225“226.
Moser, J., A new technique for the construction of solutions of nonlinear di¬erential equations,
Proc. Natl. Acad. Sci. USA 47 (1961), 1824“1831.
Moser, J., A rapidly cenvergent iteration method and non-linear partial di¬erential equations I,
II, Ann. Sc. Norm. Super. Pisa 20 (1966), 265“315, 499“535.
Namioka, I.; Phelps, R.R, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975),
Nash, J., The embedding problem for Riemannian manifolds, Ann. Math. 63 (1956), 20“63.
Natarajan, L.; Rodr´uez-Carrington, E.; Wolf, J.A., Di¬erentiable structures for direct limit
groups, Lett. Math. Phys. 23 (1991), 99“109.
Natarajan, L.; Rodr´uez-Carrington, E.; Wolf, J.A., New classes of in¬nite dimensional Lie
groups, Proceedings of the 1991 Am. Math. Soc. Summer Research Institute ˜Algebraic groups
and their generalizations™, Proc. Symp. Pure Math. 56, Pt. 2, AMS, Providence, 1994, pp. 377“
References 607

Natarajan, L.; Rodr´uez-Carrington, E.; Wolf, J.A., Locally convex Lie groups, Nova J. Algebra
Geom. 2 (1993), 59“87.
Negrepontis, S., Banach spaces and topology,, Handbook of set theoretic topology (K. Kunen and
J.E. Vaughan, eds.), North-Holland, 1984.
Neuwirther, M., A family of pseudo metrics on the space of all pseudo metrics, Diplomarbeit,
Universit¨t Wien, 1990.
Neuwirther, M., Submanifold geometry and Hessians on the Pseudoriemanninan manifold of
metrics, Dr. rer. nat. Dissertation, Universit¨t Wien, 1992.
Neuwirther, M., Submanifold geometry and Hessians on the Pseudoriemanninan manifold of
metrics, Acta Math. Univ. Comenianae 62 (1993), 51“85.
Nijenhuis, A., On a class of common properties of some di¬erent types of algebras I, II, Nieuw
Arch. Wiskd. 17 (1969), 17“46, 87“108.
Nijenhuis, A.; Richardson, R., Cohomology and deformations in graded Lie algebras, Bull. Am.
Math. Soc. 72 (1966), 1“29.
Nijenhuis, A.; Richardson, R., Deformation of Lie algebra structures, J. Math. Mech. 17 (1967),
Nomizu, K.; Ozeki, H., The existence of complete Riemannian metrics, Proc. Am. Math. Soc. 12
(1961), 889“891.
Omori, H., In¬nite dimensional Lie transformation groups, Lecture Notes in Math. 427, Springer-
Verlag, Berlin, 1974.
Omori, H., Theory of in¬nite dimensional Lie groups, Kinokuniya, 1978a. (Japanese)
Omori, H., On Banach Lie groups acting on ¬nite dimensional manifolds, Tˆhoku Math. J. 30
(1978b), 223“250.
Omori, H.; de la Harpe, P., About interactions between Banach Lie groups and ¬nite dimensional
manifolds, J. Math. Kyoto Univ. 12 (1972), 543“570.
Omori, H.; Maeda, Y.; Yoshioka, A., On regular Fr´chet Lie groups I. Some di¬erential geometric
expressions of Fourier integral operators on a Riemannian manifold, Tokyo J. Math. 3 (1980),
Omori, H.; Maeda, Y.; Yoshioka, A., On regular Fr´chet Lie groups II. Composition rules of
Fourier Integral operators on a Riemannian manifold, Tokyo J. Math. 4 (1981a), 221“253.
Omori, H.; Maeda, Y.; Yoshioka, A., On regular Fr´chet Lie groups III, Tokyo J. Math. 4 (1981b),
Omori, H.; Maeda, Y.; Yoshioka, A., On regular Fr´chet Lie groups IV. De¬nitions and funda-
mental theorems, Tokyo J. Math. 5 (1982), 365“398.
Omori, H.; Maeda, Y.; Yoshioka, A., On regular Fr´chet Lie groups V. Several basic properties,
Tokyo J. Math. 6 (1983), 39“64.
Omori, H.; Maeda, Y.; Yoshioka, A.; Kobayashi, O., On regular Fr´chet Lie groups VI. In¬nite
dimensional Lie groups which appear in general relativity, Tokyo J. Math. 6 (1983), 217“246.
Onishchik, A.L., On the classi¬cation of ¬ber spaces, Sov. Math. Dokl. 2 (1961), 1561“1564.
Onishchik, A.L., Connections with zero curvature and the de Rham theorem, Sov. Math. Dokl. 5
(1964), 1654“1657.
Onishchik, A.L., Some concepts and applications of non-abelian cohomology theory, Trans. Mosc.
Math. Soc. 17 (1967), 49“98.
Orihuela, J.; Valdivia, M., Projective generators and resolutions of identity in Banach spaces,
Rev. Mat. Univ. Complutense Madrid 2 (1989), 179“199.
Ovsienko, V.Y; Khesin, B.A., Korteweg“de Vrieß superequations as an Euler equation, Funct.
Anal. Appl. 21 (1987), 329“331.
Palais, R., Foundations of global non-linear analysis, Benjamin, New York, 1968.
Palais, R.S.; Terng, C.L., Critical point theory and submanifold geometry, Lecture Notes in Math-
ematics 1353, Springer-Verlag, Berlin, 1988.
Phelps, R.R., Convex functions, monotone operators and di¬erentiability, Lecture Notes in Math.
1364, Springer-Verlag, New York, 1989.
Pierpont, J., Theory of functions of real variables, Vol. 1, Boston, 1905.
Pisanelli, D., Applications analytiques en dimension in¬nie, C. R. Acad. Sci. Paris 274 (1972a),
Pisanelli, D., Applications analytiques en dimension in¬nie, Bull. Sci. Math. 96 (1972b), 181“191.
Preiss, D., Gˆteaux di¬erentiable functions are somewhere Fr´chet di¬erentiable, Rend. Circ.
a e
Mat. Pal. 33 (1984), 122“133.
608 References

Preiss, D., Di¬erentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990),
Pressley, A.; Segal, G., Loop groups, Oxford Mathematical Monographs, Oxford University Press,
Procesi, C., Positive symmetric functions, Adv. Math. 29 (1978), 219“225.
Quinn, F., Ends III, J. Di¬er. Geo. 17 (1982), 503“521.
Rademacher, H., Uber partielle und totale Di¬erenzierbarkeit von Funktionen mehrerer Variablen
und uber die Transformation der Doppelintegrale, Math. Ann. 79 (1919).
Ramadas, T.R., On the space of maps inducing isomorphic connections, Ann. Inst. Fourier 32
(1982), 263“276.
Rao, M.M., Characterisation of Hilbert spaces by smoothness, Nederl. Akad. v. W. 71 (1967),
Ratiu, T.; Schmid, R., The di¬erentiable structure of three remarkable di¬eomorphism groups,
Math. Z. 177 (1981), 81“100.
Rellich, F., St¨rungstheorie der Spektralzerlegung, I, Math. Ann. 113 (1937), 600“619.
Rellich, F., St¨rungstheorie der Spektralzerlegung, V, Math. Ann. 118 (1940), 462“484.
Rellich, F., Perturbation theory of eigenvalue problems, Lecture Notes, New York University,
1953; Gordon and Breach, New York, London, Paris, 1969.
Restrepo, G., Di¬erentiable norms in Banach spaces, Bull. Am. Math. Soc. 70 (1964), 413“414.
Restrepo, G., Di¬erentiable norms, Bol. Soc. Mat. Mex. 10 (1965), 47“55.
Riemann, B., Ueber die Hypothesen, welche der Geometrie zu Grunde liegen, Habilitationsvortrag
10. Juni 1854, Gesammelte Werke (H. Weber, ed.), Teubner, Leipzig, 1876.
Schaefer, H.H., Topological vector spaces, GTM 3, Springer-Verlag, New York, 1971.
Schichl, H., On the existence of slice theorems for moduli spaces on ¬ber bundles, Doctoral dis-
sertation, Univ. Wien, 1997.
Schla¬‚i, R, Universal connections, Invent. Math. 59 (1980), 59“65.
Schmidt, H.-J., The metric in the superspace of Riemannian metrics and its relation to gravity,
Di¬erential Geometry and its Applications, Brno, Csechoslovakia, 1989, World Scienti¬c,
Singapur, 1990, pp. 405“411.
Sebasti˜o e Silva, J., As fun¸˜es anal´
a co iticas e a an´lise funcional, Dissertation, 1948.
Sebasti˜o e Silva, J., As fun¸˜es anal´
a co iticas e a an´lise funcional, Port. Math. 9 (1950a), 1“130.
Sebasti˜o e Silva, J., Sobre a topologia dos espa¸os funcionais anal´
a c iticos, Rev. Fac. Cienc. Lisboa,
ser. A1 2 (1950b), 23“102.
Sebasti˜o e Silva, J., Sui fondamenti della teoria dei funzionali analitici, Port. Math. 12 (1953),
Sebasti˜o e Silva, J., Le calcul di¬´rentielle et int´gral dans les espaces localement convexes, r´els
a e e e
ou complexes, I, Atti. Acad. Naz. Lincei 20 (1956a), 743“750.
Sebasti˜o e Silva, J., Le calcul di¬´rentielle et int´gral dans les espaces localement convexes, r´els
a e e e
ou complexes, II, Atti. Acad. Naz. Lincei 21 (1956b), 40“46.
Sebasti˜o e Silva, J., Conceitos de fun¸˜ o diferenci´vel em espa¸os localmente convexos, Publ.
a ca a c
do Centro Estudos Math. de Lisboa (1957).
Sebasti˜o e Silva, J., Les espaces ` born´s et la notion de fonction di¬´rentiable, Colloque sur
a a e e
l™analyse fonctionnelle, Louvain, 1960, CBRM, 1961, pp. 57“63.
Seeley, R.T., Extension of C ∞ -functions de¬ned in a half space, Proc. Am. Math. Soc. 15 (1964),
Segal, G., The geometry of the KdV equation, Int. J. Mod. Phys. A 6 (1991), 2859“2869.
Seip, U., Kompakt erzeugte Vektorr¨ume und Analysis,, Lecture Notes in Math. 273, Springer-
Verlag, Heidelberg, 1972.
Seip, U., Di¬erential calculus and cartesian closedness, Categorical Topology, Mannheim 1975
(Binz, E., Herrlich, H., eds.), Lecture Notes in Math. 540, Springer-Verlag, Heidelberg, 1976,
pp. 578“604.
Seip, U., A convenient setting for di¬erential calculus, J. Pure Appl. Algebra 14 (1979), 73“100.
Seip, U., A convenient setting for smooth manifolds, J. Pure Appl. Algebra 21 (1981), 279“305.
Shirota, A class of topological spaces, Osaka Math. J. 4 (1952), 23“40.
Siegl, E., A free convenient vector space for holomorphic spaces, Monatsh. Math. 119 (1995),
Siegl, E., Free convenient vector spaces, doctoral thesis, Universit¨t Wien, Vienna, 1997.
Smale, S., Di¬eomorphisms of the 2-sphere, Proc. Am. Math. Soc. 10 (1959), 621“626.
References 609

Sova, M., Conditions of di¬erentiability in topological vector spaces, Czech. Math. J. 16 (1966a),
Sova, M., General theory of di¬erentiability in linear topological spaces,, Czech. Math. J. 14
(1966b), 485“508.
Steenrod, N.E., A convenient category for topological spaces, Mich. Math. J. 14 (1967), 133“152.
Stegall, Ch., The Radon-Nikodym property in conjugate Banach spaces, Trans. Am. Math. Soc.
206 (1975), 213“223.
Stegall, Ch., The duality between Asplund spaces and spaces with the Radon-Nikodym property,
Isr. J. Math. 29 (1978), 408“412.
Stegall, Ch., The Radon-Nikodym property in conjugate Banach spaces II, Trans. Am. Math. Soc.
264 (1981), 507“519.
Stein, E.M., Singular integrals and di¬erentiability properties of functions, Princeton Univ. Press,
Princeton, 1970.
Stolz, O., Grundz¨ge der Di¬erential- und Integralrechnung, Bd. 1, Leipzig, 1893.
Sullivan, D., In¬nitesimal computations in topology, Publ. Math. Inst. Hautes Etud. Sci. 47
(1978), 269“331.
Sylvester, J., On a theory of the syzygetic relations of two rational integral functions, comprising
an application to the theory of Sturm™s functions, and that of the greatest algebraic common
measure, Philos. Trans. R. Soc. Lond. 143 (1853), 407“548; Mathematical papers, Vol. I, At
the University Press, Cambridge, 1904, pp. 511¬.
Talagrand, M., Renormages de quelques C(K), Isr. J. Math. 54 (1986), 327“334.
Thurston, W., Foliations and groups of di¬eomorphisms, Bull. Am. Math. Soc. 80 (1974), 304“
Toeplitz, O., Die linearen vollkommenen R¨ume der Funktionentheorie, Comment. Math. Helv.
23 (1949), 222“242.
Toru´zcyk, H., Smooth partitions of unity on some non“separable Banach spaces, Stud. Math.
46 (1973), 43“51.
Toru´czyk, H., Characterizing Hilbert space topology, Fundam. Math. 111 (1981), 247“262.
Toru´czyk, H., A correction of two papers concerning Hilbert manifolds, Fundam. Math. 125
(1985), 89“93.
Tougeron, J.C., Id´aux de fonctions di¬´rentiables, Ergebnisse 71, Springer-Verlag, Heidelberg,
e e
Treves, F., Topological vector spaces, distributions, and kernels, Academic Press, New York, 1967.
Trianta¬llou, G., Di¬eomorphisms of manifolds with ¬nite fundamental group, Bull. Am. Math.
Soc. 31 (1994), 50“53.
Troyanski, S.L., Equivalent norms in unseparable B-spaces with an unconditional basis, Teor.
Funkts. Funkts. Anal. Prilozh. 6 (1968), 59“65.
Troyanski, S.L., On locally convex and di¬erentiable norm in certain non-separable Banach spaces,
Stud. Math. 37 (1971), 173“180.
Turner, E., Di¬eomorphisms of a product of spheres, Invent. Math. 8 (1969), 69“82.
Tzafriri, L., Some directions of results in Banach space theory, Functional analysis, surveys and
recent results, North. Holl., 1980, pp. 2“18.
Valdivia, M., Topics in locally convex spaces, North Holland, 1982.
Valdivia, M., Resolution of identity in certain metrizable locally convex spaces, Rev. R. Acad.
Cienc. Exactas Fis. Nat. Madr. 83 (1989), 75“96.
Valdivia, M., Projective resolution of identity in C(K) spaces, Arch. Math. 54 (1990), 493“498.
Vanderwer¬, J., Smooth approximations in Banach spaces, Proc. Am. Math. Soc. 115 (1992),
Van Est, W.T. ; Korthagen, T.J., Nonenlargable Lie algebras, Indag. Math. 26 (1964), 15“31.
Van Hove, L., Topologie des espaces fontionnels analytiques et de groupes in¬nis de transforma-
tions, Bull. Cl. Sci., Acad. R. Belg. 38 (1952), 333“351.
Varadarajan, V.S., Harmonic analysis on real reductive groups, Lecture Notes in Mathematics
576, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
Vaˇ´k, L., On one generalization of weakly compactly generated Banach spaces, Stud. Math. 70
(1981), 11“19.
Veblen, O.; Whitehead, J.H.C., The foundations of di¬erential geometry, Cambridge University
Press, Cambridge, 1932.
Ver Eecke, P., Fondements du calcul di¬´rentiel, Presses Universitaires de France, Paris, 1983.
610 References

Ver Eecke, P., Applications du calcul di¬´rentiel, Presses Universitaires de France, Paris, 1985.
Verde-Star, L., Interpolation and Combinatorial Functions, Stud. Appl. Math. 79 (1988), 65“92.
Vogt, R., Convenient categories of topological spaces for Homotopie theory,, Arch. Math. 22
(1971), 545“555.
Volterra, V., Sopra le funzioni che dipendone de altre funzioni, Nota I,II,III, Rend. Acad. Naz.
Lincei 4 (3) (1887), 97“105, 141“146, 153“158.
Waelbroeck, L., Etudes spectrale des alg`bres compl`tes, M´m. Cl. Sci., Collect., Acad. R. Belg.
e e e
31 (1960), 142“.
Waelbroeck, L., Some theorems about bounded structures, J. Funct. Anal. 1 (1967a), 392“408.
Waelbroeck, L., Di¬erentiable Mappings in b-spaces, J. Funct. Anal. 1 (1967b), 409“418.
Warner, F.W., Foundations of di¬erentiable manifolds and Lie groups, Scott Foresman, 1971.
Warner, G., Harmonic analysis on semisimple Lie groups, Volume I, Springer-Verlag, New York,
Wegenkittl, K., Topologien auf R¨umen di¬erenzierbarer Funktionen, Diplomarbeit (1987), Uni-
versit¨t Wien, 1“72.
Wegenkittl, K., The space of isometric immersions into Euclidean space, Dissertation (1989),
Universit¨t Wien, 1“147.
Weil, A., Th´orie des points proches sur les vari´t´s di¬erentielles, Colloque de topologie et
e ee
g´om´trie di¬´rentielle, Strasbourg, 1953, pp. 111“117.
ee e
Weinstein, A., Symplectic manifolds and their Lagrangian submanifolds, Adv. Math. 6 (1971),
Weinstein, A., Lectures on symplectic manifolds, Reg. Conf. Ser. Math. 29 (1977), Am. Math.
Wells, J.C., Di¬erentiable functions on Banach spaces with Lipschitz derivatives, J. Di¬er. Geo.
8 (1973), 135“152.
Whitney, H., Analytic extensions of di¬erentiable functions de¬ned in closed sets, Trans. Am.
Math. Soc. 36 (1934), 63“89.
Whitney, H., Di¬erentiable Even Functions, Duke Math. J. 10 (1943), 159“166.
Whitney, H.; Bruhat, F., Quelques propri´t´s fondamentales des ensembles analytiques-r´els,
ee e
Comment. Math. Helv. 33 (1959), 132“160.
Wojty´ ski, W., One parameter subgroups and B-C-H formula, Stud. Math. 111 (1994), 163“185.
Yamamuro, S., A theory of di¬erentiation in locally convex spaces, Mem. Am. Math. Soc. 212
Yamamuro, S., Notes on the inverse mapping theorem in locally convex spaces, Bull. Austr. Math.
Soc. 21 (1980), 419“461.
Young, W.H., The fundamental theorems of di¬erential calculus, University Press, Cambridge,
Zhivkov, N.V., Generic Gˆteaux di¬erentiability of directionally di¬erentiable mappings, Rev.
Roum. Math. Pure. Appl. 32 (1987), 179“188.
Zivkov, N.V., Generic Gˆteaux di¬erentiability of locally Lipschitzian functions, Constructive
Function Theory, 1981, So¬a, 1983, pp. 590“594..
Zorn, M.A., Gˆteaux-di¬erentiability and essential boundedness, Duke Math. J. 12 (1945), 579“
Index 611


1, 1-norm, 137 “, real analytic, 264
∞ , ∞-norm, 139 “, smooth, 264
„µ0 , ¬rst countable cardinal, 46 “, stereographic, 512
, diagonal mapping, 59 “, vector bundle, 287
augmented local convenient C ∞ -algebra, 316
—β bornological tensor product, 55
β , bornological tensor algebra, 57 automorphism, inner, 373
A<k> , set of points in Ak+1 with pairwise
, bornological symmetric algebra, 57
distinct coordinates, 227
, bornological exterior algebra, 57
1-form, kinematic, 337
“, modular, 337
Bµ (x), µ-ball centered at x, 156
“, operational, 337
barrelled locally convex space, 579
1-isolating, 203
base of a vector bundle, 287
A “ space of a ¬ber bundle, 376
basis of a ¬ber bundle, 376
absolutely convex, 576
Bezoutiant matrix, 537
“ convex Lipschitz bound, 17
Bianchi identity, 377
absorbing, 575
biholomorphic mappings, 264
absorbs, 34
bilinear concomitants, natural, 367
addition, local, 441
bipolar U oo , 16
adherence of order ±, Mackey, 49
bornivorous, 34
“, Mackey, 48, 51
“ set, 35
“, sequential, 41
adjoint mapping — , 8 bornological approximation property, 70, 280
“ embedding, 48
“ representation, 373
“ isomorphism, 8
algebra, bounded, 63
“ locally convex space, 575
“, commutative, 57
“ mapping, 19
“, De Rham cohomology, 354
“ tensor product —β , 55
“, exterior, 57
“ vector space, 34
“, formally real commutative, 305
bornologically compact set, 62, 88
“, graded-commutative, 57
“ compact subset, 41
“, symmetric, 57
“ real analytic curve, 99
“, tensor, 57
bornologi¬cation, 35
“, Weil, 306
“ of a locally convex space, 575
algebraic bracket of vector valued di¬erential
forms, 359 bornology of a locally convex space, 8, 575
“ derivation, 358 “ on a set, 21
almost complex structure, 368 bounded set, 575
“ continuous function, 87 “ algebra, 63
alternating tensor, 57 “ completant set, 580
alternator, alt, 57 “ linear mapping, 8
analytic subsets, 241 “ mapping, 19
anti-derivative, 20 “ modules, 63
approximation of unity, 27 bounding set, 19
“ property, bornological, 70, 280 bump function, 153
“ property, Mackey, 70
arc-generated vector space, 39
c∞ -approximation property, 70
Asplund space, 135
c∞ -complete space, 20
“ space, weakly, 136
c∞ -completion, 47
associated bundle, 382
c∞ -open set, 19
atlas, 264
c∞ -topology, 19
“, equivalent, 264
C ∞ , smooth, 30
“, holomorphic, 264
C ∞ (R, E), space of smooth curves, 28
“, principal bundle, 380
612 Index

C ∞ (U, F ), space of smooth mappings, 30 complete space, Mackey, 15
∞ “ space, locally, 20
Cb , space of smooth functions with bounded
derivatives, 159 completely regular space, 46
∞ -algebra, augmented local convenient, 316 completion of a locally convex space, 16
C ∞ -algebras, Chart description of functors complex di¬erentiable mapping, 81
complexi¬cation MC of manifold M , 20
induced by, 316
∞ -structure, 264 composition, smoothness of, 444
C∞ (M, N ), manifold of smooth mappings, 439 “, truncated, 431
C k -topology, compact-open, 436 conjugate pair, dual, 586
C k -topology, Whitney, 436 “ pair, 583
Cb , space of C k -functions with k-th derivative
k conjugation, 373
connection, 366
bounded, 159
k , space of C k -functions with k-th derivative “ form, Lie algebra valued, 387
“ on a ¬ber bundle, 376
bounded by B, 159
ω -manifold structure of C ω (M, N ), 442 “, classifying, 485
C ω -manifold structure on C∞ (M, N ), 443 “, induced, 394, 394
“, linear, 396, 397
c0 -ext, a class of locally convex spaces, 212
“, principal, 387
c0 (“), space of 0-sequences, 142
connections, space of, 479
c0 (X), 50
connector, 397
Cc (X), 50
contact di¬eomorphisms, 467
canonical ¬‚ip, 293
“ distribution, 467
“ involution, 293
“ form, 467
carrier of a mapping, 153
“ graph of a di¬eomorphism, 470
Cartan developing, 427
“ manifold, 467
Cartesian closedness, 30
ˇ “ structure, exact, 467
Cech cohomology set, 288
continuous derivation over eva , 276
chain rule, 33
convenient co-algebras, 246
characteristic vector ¬eld, 467
“ C ∞ -algebra, augmented local, 316
chart changing mapping, 264
“ description of functors induced by C ∞ - “ vector space, 2, 7, 20
convex function, dual of a, 131
algebras, 316
convolution, 27
“ description of Weil functors, 307
coproduct, 576
“ of a foliation, distinguished, 273
cotangent bundle, kinematic, 337
“, vector bundle, 287
“ bundle, operational, 337
“, submanifold, 268
CO-topology, 434
Christo¬el forms, 377
covariant derivative, 397
classifying connection, 485
“ exterior derivative, 392, 399
“ space, 485, 487
“ Lie derivative, 399
closed di¬erential forms, 353
covering space, universal, 271
co-algebras, convenient, 246
COk -topology, 436
co-commutative, 246
curvature, 366, 398
cocurvature of a connection, 366
curve, bornologically real analytic, 99
cocycle condition, 288, 376, 414
“, di¬erentiable, 8
“ of transition functions, 288, 376
“, holomorphic, 81
cohomologous transition functions, 288, 380
“, locally Lipschitzian, 9
cohomology algebra, De Rham, 354
“, smooth, 9
“ classes of transition functions, 288
“, topologically real analytic, 99
co-idempotent, 247
colimit, 576
commensurable groups, 510
δ, natural embedding into the bidual, 16
commutative algebra, 57
d, di¬erentiation operator, 33
comp, the composition mapping, 31
dn , iterated directional derivative, 26
compact-open C k -topology, 436 v
(d) d [j]
Da E := j=1 D , space of operational
“ topology, 434
tangent vectors of order ¤ d, 278
compatible vector bundle charts, 287
(D(k) ) M , operational cotangent bundle, 337
completant set, bounded, 580
Index 613

Da E, space of operational tangent vectors of Dunford-Pettis property, 200
homogeneous order d, 278
De Rham cohomology algebra, 354
E , space of bounded linear functionals, 8
de¬nite integral, 16
E — , dual space of continuous linear
density of subset of N, 22
functionals, 8
“ number densX of a topological space, 152
EB , linear space generated by B ⊆ E, 11, 576
dentable subset, 135
Der(C ∞ (M, R)), space of operational vector Eborn , bornologi¬cation of E, 35
¬elds, 322 E, completion of E, 16
derivation over eva , continuous, 276 embedding of manifolds, 269
“, algebraic, 358 “, bornological, 48
“, order of a, 277 equicontinuous sets, 15
“, graded, 358 equidistant di¬erence quotient, 119
derivative of a curve, 8 equivalent atlas, 264
“, covariant, 397 evolution, right, 410
“, covariant exterior, 392, 399 exact contact structure, 467
“, covariant Lie, 399 “ di¬erential forms, 353
“, directional, 128 expansion at x, 311


. 26
( 27)