<<

. 14
( 14)



lap[i]=0;
for (i=1;i<=lattice_size_x;i++)
{sol[1]=v[i];sol[2]=u[i];
odeint(sol,N,x1,x2,epssm,h1,hmin,&nok,&nbad,derivs,rkqs);
v[i]=sol[1];u[i]=sol[2];
if (fabs(u[i])>0.00001) {lap[i]=-2*u[i];lap[iup[i]]=u[i];lap[idown[i]]=u[i];}}
A6.3 1D MODEL OF SPIRAL TROUGHS ON MARS 273


for (i=1;i<=lattice_size_x;i++)
if (fabs(lap[i])>0) u[i]+=fac*lap[i];}
for (i=1;i<=lattice_size_x;i++)
fprintf(fp1,"%f %f %f\n",(i-lattice_size_x/2)/10.0,u[i],-v[i]);
fclose(fp1);
}
Appendix 7




Codes for modeling stochastic processes

A7.1 Fractional-noise generation with Fourier-¬ltering method

The following code generates a 1D fractional noise (i.e. time series) using the Fourier-¬ltering method.
The user is prompted for all of the information used to generate the noise. The code will produce
noises with Gaussian or log-normal distributions depending on directions from the user. The random
number seed idum generates a pseudo-random sequence of numbers. In order to generate distinct
output, different values of idum must be used.


main()
{ float *precyear,beta,sum,sddevcomp,mean,sddev;
int length,year,format;
int idum;
char outputfile[30];
FILE *fp;

printf("\nName of output file: ");
scanf("%s",outputfile);
printf("\nLength of desired noise: (factor of two, please) ");
scanf("%d",&length);
printf("\nGaussian or Log-normal dataset? (1 for gaussian 2 for l-n): ");
scanf("%d",&format);
printf("\nMean: (if log-normal this mean is that of the final,
log transformed data) ");
scanf("%f",&mean);
printf("\nStandard Dev: ");
scanf("%f",&sddev);
printf("\nBeta: ");
scanf("%f",&beta);
printf("\nRandom number seed: (any negative integer) ");
scanf("%d",&idum);
fp=fopen(outputfile,"w");
precyear=vector(1,2*length);
/*we contruct a vector of length two times the input length so that we
may cut off the ends to eliminate the periodicity introduced by filtering*/
A7.1 FRACTIONAL-NOISE GENERATION WITH FOURIER-FILTERING METHOD 275


for (year=1;year<=2*length;year++)
precyear[year]=gasdev(&idum);
realft(precyear,length,1);
precyear[1]=0.0;
precyear[2]=precyear[2]/pow(0.5,beta/2.0);
for (year=3;year<=2*length;year++)
precyear[year]=precyear[year]/pow((year/2)/(float)(2*length),beta/2.0);
realft(precyear,length,-1);
sum=0.0;
for (year=length/2;year<=length+length/2;year++)
{sum+=precyear[year];}
sum=sum/length;
sddevcomp=0.0;
for (year=length/2;year<=length+length/2;year++)
sddevcomp+=(precyear[year]-sum)*(precyear[year]-sum);
sddevcomp=sddevcomp/length;
/*below we rescale the amplitudes to restore the desired moments*/
for (year=length/2;year<=length+length/2;year++)
{precyear[year]=(precyear[year]-sum)/sqrt(sddevcomp);
precyear[year]=(precyear[year]*sddev)+mean;
if (format==2) if (mean!=0.0) precyear[year]=
sqrt(log(1+sddev*sddev/(mean*mean)))*precyear[year]+

log(mean/sqrt(1+sddev*sddev/(mean*mean)));}
if (format==2) for (year=length/2;year<=length+length/2;year++)
precyear[year]=exp(precyear[year]);
for (year=length/2;year<=length+length/2;year++)
fprintf(fp,"%d %f\n",year-length/2,precyear[year]+(float)(year-length/2)/(length));
fclose(fp);
}

The following code generates a 2D Gaussian fractional noise (i.e. raster dataset) using the Fourier-
¬ltering method. The user is prompted for all of the information used to generate the dataset.
main()
{ float fact,*precyear,betax,sum,mean,sddev,sddevcomp;
int lengthx,lengthy;
int *nn,i,j,idum,index;
char outputfile[30];
FILE *fp;

printf("\nName of output file: ");
scanf("%s",outputfile);
printf("\nLength of desired noise: (factor of two, please) ");
scanf("%d",&lengthx);
lengthx=lengthx*2;
nn=ivector(1,2);
nn[1]=lengthx;
nn[2]=lengthx;
lengthy=lengthx;
276 CODES FOR MODELING STOCHASTIC PROCESSES


printf("\nMean: ");
scanf("%f",&mean);
printf("\nStandard Dev: ");
scanf("%f",&sddev);
printf("\nBeta: ");
scanf("%f",&betax);
printf("\nRandom number seed: (any negative integer) ");
scanf("%d",&idum);
fp=fopen(outputfile,"w");
precyear=vector(1,2*lengthx*lengthy);
for (i=1;i<=lengthx;i++)
for (j=1;j<=lengthy;j++)
{precyear[2*(i-1)*lengthy+2*j-1]=gasdev(&idum);
precyear[2*(i-1)*lengthy+2*j]=0.0;}
fourn(precyear,nn,2,1);
for (j=1;j<=lengthy;j++)
{precyear[2*j-1]=0.0;
precyear[2*j]=0.0;
precyear[2*(j-1)*lengthy+1]=0.0;
precyear[2*(j-1)*lengthy+2]=0.0;}
for (i=1;i<=lengthx/2;i++)
for (j=1;j<=lengthy/2;j++)
{fact=pow(sqrt(i*i+j*j)/(2*lengthx),(betax+1)/2.0);
index=2*i*lengthy+2*j+1;
precyear[index]=precyear[index]/(lengthx*lengthy*fact);
precyear[index+1]=precyear[index+1]/(lengthx*lengthy*fact);
index=2*i*lengthy+2*lengthy-2*j+1;
precyear[index]=precyear[index]/(lengthx*lengthy*fact);
precyear[index+1]=precyear[index+1]/(lengthx*lengthy*fact);
index=2*lengthx*lengthy-2*(i-1)*lengthy-2*(lengthy-j)+1;
precyear[index]=precyear[index]/(lengthx*lengthy*fact);
precyear[index+1]=precyear[index+1]/(lengthx*lengthy*fact);
index=2*lengthx*lengthy-2*lengthy-2*(i-1)*lengthy+2*(lengthy-j)+1;
precyear[index]=precyear[index]/(lengthx*lengthy*fact);
precyear[index+1]=precyear[index+1]/(lengthx*lengthy*fact);}
fourn(precyear,nn,2,-1);
sum=0.0;
for (i=1;i<=lengthx/2;i++)
for (j=1;j<=lengthy/2;j++)
sum+=precyear[2*(i-1)*lengthy+2*j-1];
sum=sum/(lengthx*lengthy);
sddevcomp=0.0;
for (i=1;i<=lengthx/2;i++)
for (j=1;j<=lengthy/2;j++)
sddevcomp+=(precyear[2*(i-1)*lengthy+2*j-1]-sum)*
(precyear[2*(i-1)*lengthy+2*j-1]-sum);
sddevcomp=sqrt(sddevcomp/(lengthx*lengthy));
for (i=1;i<=lengthx/2;i++)
for (j=1;j<=lengthy/2;j++)
A7.2 STOCHASTIC MODEL OF PLEISTOCENE ICE AGES 277


{index=2*(i-1)*lengthy+2*j-1;
precyear[index]=(precyear[index]-mean)/sddevcomp;
precyear[index]=(precyear[index]*sddev)+mean;
fprintf(fp,"%f\n",precyear[index]);}
fclose(fp);
}


A7.2 Stochastic model of Pleistocene ice ages

The following code is the basis for the stochastic-resonance model of ice ages. The model outputs
four columns with the form: t (yr), T , v , and B h .
#define maxoutputlength 10000000

main()
{ FILE *fp1;
int n,t,t2,idum,duration,nsteps;
float tau,per,drift,eta,*T,*B,Bh,*v,deltaT,timestep;

fp1=fopen("iceagemodel","w");
T=vector(1,maxoutputlength);
B=vector(1,maxoutputlength);
v=vector(1,maxoutputlength);
eta=0.9;
tau=75;
drift=0.2;
T[1]=0;B[1]=0;v[1]=0;
idum=-7834;
timestep=100; /* yr */
duration=3000000; /* yr */
nsteps=(int)(duration/timstep);
for (t=1;t<=nsteps;t++)
{if (T[t]<-1) deltaT=-T[t]-3.2*sqrt(-1-T[t])+eta*gasdev(&idum)+drift;
else deltaT=-T[t]+eta*gasdev(&idum)+drift;
Bh=0;
for (t2=t-2*tau;t2<t;t2++)
if (t2>1) Bh+=-(T[t2]-1)*exp(-fabs(t-t2)/tau)/tau;
B[t+1]=Bh;
if (T[t]<-1) v[t+1]=fabs(B[t+1]-B[t]); else v[t+1]=0;
deltaT+=25*v[t+1];
T[t+1]=T[t]+deltaT;
fprintf(fp1,"%d %f %f %f\n",t*100.0,T[t],v[t+1],Bh);}
fclose(fp1);
}
References

Bamber, J. L., Layberry, L. P., and Gogenini, S. P., 2001,
Ahnert, F., 1970, Functional relationships between
A new ice thickness and bedrock dataset for the
denudation, relief, and uplift in large mid-latitude
Greenland ice sheet 1: measurement, data
drainage basins, American Journal of Science, 208,
reduction, and errors, Journal of Geophysical Research,
243--63.
106, 33773--80.
Allen, P. A. 1997, Earth Surface Processes, New York,
Bamber, J. L., Hardy, R. J., Huybrechts, P., and Joughin,
Oxford University Press.
I., 2000, A comparison of balance velocities,
Amar, J. G. and Family, F., 1989, Numerical solution of
a continuum equation for interface growth in 2 + 1 measured velocities and thermomechanically
modelled velocities for the Greenland ice sheet,
dimensions, Physical Review A, 41, 3399--402.
Annals of Glaciology, 30, 211--16.
Anderson, R. S. and Humphrey, N. F., 1990, Interaction
Barkley, D., 1991, A model for fast computer
of weathering and transport processes in the
simulation of waves in excitable media, Physica D,
evolution of arid landscapes, in Cross, T., ed.,
49, 61--70.
Quantitative Dynamic Stratigraphy, New York, Prentice
Hall, pp. 349--61. Begin, Z. B., 1981, Stream curvature and bank erosion:
Anderson, R. S. and Bunas, K. L., 1993, Grain size A model based upon the momentum equation,
segregation and stratigraphy in aeolian ripples Journal of Geology, 89, 497--504.
modelled with a cellular automaton, Nature, 365, Begin, Z. B., Meyer, D. F., and Schumm, S. A., 1981,
740--3. Development of longitudinal pro¬les of alluvial
Andrews, J. T., 1972, Glacier power, mass balances, channels in response to base-level lowering, Earth
velocities, and erosion potential, Zeitschrift f ur
¨ Surface Processes and Landforms, 6, 49--68.
Geomorphologie, 13, 1--17. Benjamin, M. T., Johnson, N. M., and Naeser, C. W.,
Andrews, D. J. and Bucknam, R. C., 1987, Fitting 1987, Recent rapid uplift in the Bolivian Andes:
degradation of shoreline scarps by a nonlinear Evidence from ¬ssion-track dating, Geology, 15,
diffusion model, Journal of Geophysical Research, 92, 680--3.
12857--67. Bercovici, D., 1994, A theoretical model of cooling
Andrews, D. J. and Hanks, T. C., 1985. Scarp degraded viscous gravity currents with temperature-
by linear diffusion: inverse solution for age, Journal dependent viscosity, Geophysical Research Letters, 21,
of Geophysical Research, 90, 10193--208. 1177--80.
Arrowsmith, J. R., Rhodes, D. D., and Pollard, D. D., Boone, S. J. and Eyles, N., 2001, Geotechnical model
1998, Morphologic dating of scarps formed by for great plains hummocky moraine formed by till
repeated slip events along the San Andreas Fault, deformation below stagnant ice, Geomorphology, 38,
Carrizo Plain, California, Journal of Geophysical 109--24.
Research, 103, 10141--60. Boulton, G. S., 1974, Processes and patterns of
Avouac, J.-P., 1993, Analysis of scarp pro¬les: subglacial erosion. In Coates, D. R., ed., Glacial
Evaluation of errors in morphologic dating, Journal Geomorphology, Binghamton, New York, State
of Geophysical Research, 98, 6745--54. University of New York, pp. 41--87.
Avouac, J.-P. and Peltzer, G., 1993, Active tectonics in Bowden, G. J., Barker, P. R., Shestopal, V. O., and
southern Xingiang, China: Analysis of terrace riser Twidell, J. W., 1983, The Weibull distribution and
and normal fault scarp degradation along the wind power statistics, Wind Energy, 7, 85--98.
Hotan-Qira fault system, Journal of Geophysical Braun, J., Zwartz, D., and Tomkin, J. H., 1999, A
Research, 98, 21773--807. new surface processes model combining glacial
Bagnold, R. A., 1941, The Physics of Blown Sand and and ¬‚uvial erosion, Annals of Glaciology, 28,
Desert Dunes, London, Chapman and Hall. 282--90.
Baldwin, J. A., Whipple, K. X., and Tucker, G. E., 2003, BSC (Bechtel SAIC Company), 2004a, Atmospheric
Implications of the stream-power river incision Dispersal and Deposition of Tephra from a Potential
model for the post-orogenic decay of topography, Volcanic Eruption at Yucca Mountain, Nevada, Report
Journal of Geophysical Research, 108, ANL-MGR-GS-000002 REV 02, Las Vegas, Nevada,
doi:10.1029/2001JB000550. Bechtel SAIC Company.
REFERENCES 279


BSC (Bechtel SAIC Company), 2004b, Characterize Clark, M. K., Maheo, G., Saleeby, J., and Farley, K. A.,
Eruptive Processes at Yucca Mountain, Nevada, Report 2005, The non-equilibrium landscape of the
ANL-MGR-GS-000002 REV 02, Las Vegas, Nevada, southern Sierra Nevada, California, GSA Today, 15,
Bechtel SAIC Company. 4--10.
Bucknam, R. C. and Anderson, R. E., 1979, Estimation Cook, J. P. and Pelletier, J. D., 2007, Relief threshold
of fault-scarp ages from a scarp-height-slope-angle for eolian transport across alluvial fans, Journal of
relationship, Geology, 7, 11--14. Geophysical Research, 112, doi:10.1029/2006JF000610.
Budd, W. F. and Warner, R. C., 1996, A computer Cooke, R. U. and Reeves, R. W., 1976, Arroyos and
scheme for rapid calculations of balance-¬‚ux Environmental Change in the American Southwest,
distributions, Annals of Glaciology, 23, 21--7. Oxford, Clarendon Press.
Bull, W. B., 1979, Threshold of critical power in Costa-Cabral, M. C. and Burges, S. J., 1994, Digital
streams, Geological Society of America Bulletin, 90, elevation model networks (DEMON): A model of
453--64. ¬‚ow over hillslopes for computation of contributing
Bull, W. B., 1991, Geomorphic Responses to Climatic and dispersal areas, Water Resources Research, 30,
Change, New York, Oxford University Press. 1681--92.
Bull, W. B., 1996, Global climate change and active Coudert, L., Frappa, M., Viguier, C., and Arias, R., 1995,
tectonics: Effective tools for teaching and research, Tectonic subsidence and crustal ¬‚exure in the
Geomorphology, 16, 217--32. Neogene Chaco basin of Bolivia, Tectonophysics, 243,
Bull, W. B., 1997, Discontinuous ephemeral streams, 277--92.
Geomorphology, 19, 227--76. Crowe, B. M. and Perry, F. V. 1990, Volcanic probability
Caine, N., 1980, The rainfall-intensity-duration control calculations for the Yucca Mountain Site:
of shallow landslides and debris ¬‚ows, Geografiska Estimation of volcanic rates, Proceedings of the Topical
Annaler, 62, 23--7. Meeting on Nuclear Waste Isolation in the Unsaturated
Callander, R. A., 1978, River meandering, Annual Zone, FOCUS í89, September 17--21, 1989, Las Vegas,
Review of Fluid Mechanics, 10, 129--58. Nevada. La Grange Park, Illinois, American Nuclear
Carslaw, H. S. and Jaeger, J. C., 1959, Conduction of Heat Society, pp. 326--34.
in Solids, Oxford, Clarendon Press. CRWMS M&O (Civilian Radioactive Waste
Carson, M. A. and Kirkby, M. J., 1972, Hillslope Form and Management System Management and Operating
Process, New York, Cambridge University Press. Contractor), 1996, Probabilistic Volcanic Hazard
Chadwick, O. A. and Davis, J. O., 1990, Soil-forming Analysis for Yucca Mountain, Nevada, Report No.
intervals caused by eolian sediment pulses in the BA0000000-01717-2200-00082, Rev 0, Las Vegas,
Lahontan basin, northwestern Nevada, Geology, 18, Nevada, CRWMS M&O.
243--6. Culling, W. E. H., 1960, Analytical theory of erosion,
Chepil, W. S., 1956, In¬‚uence of moisture on Journal of Geology, 68, 336--44.
erodibility of soil by wind, Proceedings of the Soil Culling, W. E. H., 1963, Soil creep and the
Science Society of America, 20, 288--92. development of hillside slopes, Journal of Geology, 71,
Chase, C. G. and Wallace, T. C., 1988, Flexural isostasy 127--61.
and uplift of the Sierra Nevada of California, Journal Czarnecki, J. B., 1997, Geohydrology and
of Geophysical Research, 93, 2795--802. Evapotranspiration at Franklin Lake playa, Inyo County,
Chorley, R. J., 1959, The shape of drumlins, Journal of California, US Geological Survey Water-Supply Paper
Glaciology, 3, 339--55. 2377.
Christensen, G. E. and Purcell, C., 1985, Correlation Dade, W. B. and Friend, P. F., 1998, Grain size,
and age of Quaternary alluvial-fan sequences, Basin sediment transport regime, and channel slope in
and Range province, southwestern United States. In alluvial rivers, Journal of Geology, 106, 661--75.
Weide, D. L., ed., Soils and Quaternary Geology of the DeCelles, P. G. and DeCelles, P. C., 2001, Rates of
Southwestern United States, Geological Society of shortening, propagation, underthrusting, and
America Special Paper 203, Boulder, Colorado, pp. ¬‚exural wave migration in continental orogenic
115--22. systems, Geology, 29, 135--8.
Clarke, C. D., Knight, J. K., and Gray, J. T., 2000, Denton, G. H. and Hughes, T. J., 1981, The Last Great Ice
Geomorphological reconstruction of the Labrador Sheets, New York, John Wiley & Sons.
Sector of the Laurentide Ice Sheet, Quaternary Science Dewers, T. and Ortoleva, P., 1994, Nonlinear
Reviews, 19, 1343--66. dynamical aspects of deep basin hydrology: ¬‚uid
280 REFERENCES


Fowler, A. C., 2001, An instability mechanism for
compartment formation and episodic ¬‚uid release,
drumlin formation. In Maltman, A. J., et al., eds.,
American Journal of Science, 294, 713--55.
Deformation of Glacial Materials, London, Geological
Dowdeswell, J. A., Unwin, B., Nuttall, A. M., and
Society of London, pp. 307--19.
Wingham, D. J., 1999, Velocity structure, ¬‚ow
instability and mass ¬‚ux on a large Arctic ice cap Freeman, G. T., 1999, Calculating catchment area with
from satellite radar interferometry, Earth and divergent ¬‚ow based on a rectangular grid,
Planetary Science Letters, 167, 131--40. Computers & Geosciences, 17, 413--22.
Dunne, T., 1978, Formation and controls of Freeze, R. A. and Cherry, J. A., 1979, Groundwater, New
channel networks, Progress in Physical Geography, 4, York, Prentice Hall.
211--39. French, R. H., 1985, Open-channel Hydraulics, New York,
Dyke, A. S., Andrews, J. T., Clark, P. U., et al., 2002, The McGraw-Hill.
Laurentide and Inuitian ice sheets during the Last French, R. H., 1987, Hydraulic Processes on Alluvial Fans,
Glacial Maximum, Quaternary Science Revews, 21, The Netherlands, Elsevier.
9--31. Furbish, D. J. and Fagherazzi, S., 2001, Stability of
Dyke, A. S. and Prest, V. K., 1987, Late Wisconsinan creeping soil and implications for hillslope
and Holocene history of the Laurentide ice sheet, evolution, Water Resources Research, 37, 2607--18.
Geographie Physique et Quaternaire, 41, 237--64. Gale, H. J., Humphreys, D. L. O., and Fisher, E. M. R.,
Entekhabi, D. and Rodriguez-Iturbe, I., 1994, 1964, Weathering of Cesium-137 in soil, Nature, 201,
Analytical framework for the characterization of 257--61.
the space-time variability of soil moisture, Advances Gardner, W. R., 1958, Some steady-state solutions of
in Water Resources, 17, 35--46. the unsaturated moisture ¬‚ow equations with
Erskine, R. H., Green, T. R., Ramirez, J. A., and application to evaporation from a water table, Soil
MacDonald, L. H., 2006, Comparison of grid-based Science, 85, 228--32.
algorithms for computing upslope contributing Gardner, W. R. and Fireman, M., 1958, Laboratory
area, Water Resources Research, 42, studies of evaporation from soil columns in the
doi:10.1029/2005WR004648. presence of a water table, Soil Science, 85, 244--9.
Evensen, E. B., 1971, The relationship of macro to Gasparini, N. M., Bras, R. L., and Whipple, K. X., 2006,
microfabrics of tills and the genesis of glacial Numerical modeling of non-steady-state river pro¬le
landforms in Jefferson County, Wisconsin. In evolution using a sediment-¬‚ux-dependent incision
Goldthwait, R. P., ed., Till, A Symposium, Columbus, model. In Willett, S., et al., eds., Tectonics, Climate,
Ohio, Ohio State University Press, pp. 345--64. and Landscape Evolution, Geological Society of
Fagherazzi, S., Howard, A. D., and Wiberg, P. L., 2002, America Special Publication, 398, pp. 127--41.
An implicit ¬nite difference method for drainage Gershenfeld, N., 1999, The Nature of Mathematical
basin evolution, Water Resources Research, 38, Modeling, New York, Cambridge University Press.
doi:10.1029/2001WR000721. Gile, L. H., Hawley, J. W., and Grossman, R. B., 1981,
Fair¬eld, J. and Laymarie, P., 1991, Drainage networks Soils and Geomorphology in the Basin and Range area of
from grid digital elevation models, Water Resources Southern New Mexico: Guidebook to the Desert Project,
Research, 27, 709--17. New Mexico Bureau of Mines and Mineral Resources
Fife, P. G., 1976, Pattern formation in reacting and Memoir 39.
diffusing systems, Journal of Chemical Physics, 64, Gillette, D. A., Adams, J. B., Endo, A., Smith, D., and
554--64. Kihl, R., 1980, Threshold velocities for input of soil
Fisher, D. A., 1993, If Martian ice caps ¬‚ow: Ablation particles into the air by desert soils, Journal of
mechanisms and appearance, Icarus, 105, 501--11. Geophysical Research, 85, 5621--30.
Flemings, P. B. and Jordan, T. E., 1989, A synthetic Gillette, D. A., Hardebeck, E., and Parker, J., 1997,
stratigraphic model of foreland basin development, Large-scale variability of wind erosion mass ¬‚ux
Journal of Geophysical Research, 94, 3851--66. rates at Owens Lake 2: Role of roughness change,
Flint, R., 1971, Glacial and Pleistocene Geology, New York, particle limitation, change of threshold friction
John Wiley & Sons. velocity, and the Owen effect, Journal of Geophysical
Folk, R. L., 1976, Rollers and ripples in sand, streams, Research, 102, 25989--98.
and sky: Rhythmic alteration of transverse and Gillette, D. A., Ono, D., and Richmond, K., 2003, A
longitudinal vortices in three orders, Sedimentology, combined modeling and measurement technique
23, 649--69. for estimating windblown dust emissions at Owens
REFERENCES 281


faulting-controlled landforms, Journal of Geophysical
(dry) Lake, California, Journal of Geophysical Research,
Research, 89, 5771--90.
109, doi:10.1029/2003JF000025.
Harbor, J., 1992, Numerical modeling of the
Gillis, R. J., Horton, B. K., and Grove, M., 2006,
development of U-shaped valleys by glacial erosion,
Thermochronology, geochronology, and upper
Geological Society of America Bulletin, 104, 1364--75.
crustal structure of the Cordillera Real: Implications
Harp, E. L. and Jibson, R. L., 1995, Inventory of
for Cenozoic exhumation of the central Andean
plateau, Tectonics, 25, doi:10.1029/200600TC6007. Landslides Triggered by the 1994 Northridge, California
Glen, J. W., 1955, The creep of polycrystalline ice, Earthquake, US Geological Survey Open File Report,
Proceedings of the Royal Society of London A, 228, 95-213.
519--38. Hart, J. K., 1997, The relationship between drumlins
Gong, Y. and Christini, D. J., 2003, Antispiral waves in and other forms of subglacial glaciotectonic
reaction-diffusion systems, Physical Review Letters, 90, deformation, Quaternary Science Reviews, 16, 93--107.
art. 088302. Hasselmann, K., 1971, Stochastic climate modeling,
Greeley, R. and Iversen, J. D., 1985, Wind as a Geological Part I: Theory, Tellus, 6, 473--85.
Process on Earth, Mars, Venus, and Titan, New York, Hawkes, H. E., 1976, The downstream dilution of
Cambridge University Press. stream sediment anomalies, Journal of Geochemical
Grove, J. M., 1972, The incidence of landslides, Exploration, 6, 345--58.
avalanches, and ¬‚oods in eastern Norway during Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and
the little ice age, Arctic and Alpine Research, 4, 131--8. Finkel, R. C., 1997, The soil production function and
Gubbels, T., Isacks, B. L., and Farrar, E., 1993, landscape equilibrium, Nature, 388, 358--61.
High-level surfaces, plateau uplift, and foreland He, Q. and Walling, D. E., 1997, The distribution of
fallout 137 Cs and 210 Pb in undisturbed and
development, Bolivian central Andes, Geology, 21,
695--8. cultivated soils, Applied Radio Isotopes, 48, 677--90.
Hack, J. T., 1957, Studies of Longitudinal Stream Profiles in Heizler, M. T., Perry, F. V., Crowe, B. M., Peters, L., and
Virginia and Maryland, US Geological Survey Appelt, R., 1999, The age of the Lathrop Wells
volcanic center: An 40 Ar/39 Ar dating investigation,
Professional Paper 294B, Washington, DC, pp. 42--97.
Hack, J. T., 1979, Rock Control and Tectonism: Their Journal of Geophysical Research, 104, 767--804.
Importance in Shaping the Appalachian Highlands, US Helgen, S. O. and Moore, J. N., 1996, Natural
Geological Survey Professional Paper 1126-B, background determination and impact
Washington, DC. quanti¬cation in trace metal-contaminated river
Hairsine, P. B. and Rose, C. W., 1992, Modelling water sediments, Environmental Science and Technology, 30,
erosion due to overland ¬‚ow using physical 129--35.
principles: 1. Uniform ¬‚ow, Water Resources Research, Hetenyi, M., 1979, Beams on Elastic Foundations, Ann
28, 237--43. Arbor, Michigan, University of Michigan Press.
Hallet, B., 1979, A theoretical model of glacial Hindmarsh, R. C. A., 1998, Drumlinization and
abrasion, Journal of Glaciology, 23, 39--50. drumlin-forming instabilities. Viscous till
Hallet, B., 1990. Spatial self-organization in mechanisms, Journal of Glaciology, 44, 293--314.
geomorphology: From periodic bedforms and Hoffmann, D. J. and Rosen, J. M., 1987, On the
patterned ground to scale-invariant topography, prolonged lifetime of the El Chichon sulfuric acid
Earth Science Reviews, 29, 57--75. aerosol cloud, Journal of Geophysical Research, 92,
Hallet, B., 1996, Glacial quarrying: A simple 9825--30.
theoretical model, Annals of Glaciology, 22, 1--8. Hooke, R. L., 1972, Geomorphic evidence for
Hanks, T. C., 2000, The age of scarplike landforms late-Wisconsin and Holocene tectonic deformation,
from diffusion equation analysis. In Noller, J. S., Death Valley, California, Geological Society of America
Sowers, J. M., and Lettis, W. R., eds., Quaternary Bulletin, 83, 2073--98.
Geochronology, Methods and Applications, Washington, Horton, B. K. and DeCelles, P. G., 1997, The modern
DC, American Geophysical Union, pp. 313--38. foreland basin adjacent to the central Andes,
Hanks, T. C. and Andrews, D. J., 1989, Effect of Geology, 25, 895--8.
far-¬eld slope on morphologic dating of scarplike Horton, R. E., 1945, Erosional development of streams
landforms, Journal of Geophysical Research, 94, 565--73. and their drainage basins: Hydrophysical approach
Hanks, T. C., Buckman, R. C., Lajoie, K. R., and to quantitative morphology, Geological Society of
Wallace, R. E., 1984, Modi¬cation of wave-cut and America Bulletin, 56, 275--370.
282 REFERENCES


microwave instrument: Algorithm and example,
House, P. K., Pearthree, P. A., and Vincent, K. R., 1991,
Journal of Hydrology, 184, 85--99.
Flow patterns, ¬‚ow hydraulics, and ¬‚ood-hazard
James, L. A., 1989, Sustained storage and transport of
implications of a recent extreme alluvial-fan ¬‚ood
hydraulic gold mining sediment in the Bear River,
in southern Arizona, Geological Society of America
California, Annals of the Association of American
Abstracts with Programs, 23 (5), 121.
Geographers, 79, 570--92.
House, M. A., Wernicke, B. P., and Farley, K. A., 1998,
Dating topography of the Sierra Nevada, California, Jarzemba, M. S., 1997, Stochastic radionuclide
using apatite (U-Th)/He ages, Nature, 396, 66--9. distributions after a basaltic eruption for
House, M. A., Wernicke, B. P., and Farley, K. A., 2001, performance assessments of Yucca mountain,
Paleo-geomorphology of the Sierra Nevada, Nuclear Technology, 118, 132--41.
California, from (U-Th)/He ages in apatite, American Jarzemba, M. S., La Plante, P. A., and Poor, K. J., 1997,
Journal of Science, 301, 77--102. ASHPLUME Version 1.0A Code for Contaminated Ash
Hovius, N., Stark, C. P., and Allen, P. A., 1997, Dispersal and Deposition, Technical Description and Users
Sediment ¬‚ux from a mountain belt derived by Guide, CNWRA Report 97-004, San Antonio, Texas,
landslide mapping, Geology, 25, 231--5. Rev. 1 Center for Nuclear Waste Regulatory Analyses.
Howard, A. D., 1978, Origin of the stepped topography Jibson, R. W., 1996, Use of landslides for paleoseismic
of the Martian poles, Icarus, 84, 2581--99. analysis, Engineering Geology, 43, 291--323.
Howard, A. D., 2000, The role of eolian processes in Johnson, A. M., 1984, Debris ¬‚ow. In Brunsden, D. and
forming the surface features of the Martian polar Prior, D. B., eds., Slope Instability, New York, John
layered deposits, Icarus, 144, 267--88. Wiley & Sons, pp. 257--361.
Howard, A. D., Cutts, J. A., and Blasius, K. R., 1982, Johnson, K. A. and Sitar, N., 1990, Hydrologic
Stratigraphic relationships within Martian polar conditions leading to debris-¬‚ow initiation,
cap deposits, Icarus, 50, 161--215. Canadian Geotechnical Journal, 27, 789--801.
Howard, A. D. and Kerby, G., 1983, Channel changes in Jones, C. H., 1987, Is extension in Death Valley
badlands, Geological Society of America Bulletin, 94, accommodated by thinning of the mantle
739--52. lithosphere beneath the Sierra Nevada, California?,
Howard, A. D. and Knutson, T. R., 1984, Tectonics, 6, 449--73.
Suf¬cient conditions for river meandering: A Kardar, M., Parisi, G., and Zhang, Y.-C., 1986, Dynamic
simulation approach, Water Resources Research, 20, scaling of growing interfaces, Physical Review Letters,
1659--67. 56, 889--92.
Hsu, L. and Pelletier, J. D., 2004, Correlation and Keefer, D. K., 1984, Landslides caused by earthquakes,
dating of Quaternary alluvial-fan surfaces using Geological Society of America Bulletin, 95, 406--21.
scarp diffusion, Geomorphology, 60, 319--35. Kenyon, P. M. and Turcotte, D. L., 1985, Morphology of
Huang, C. H., 1999, On solutions of the a delta prograding by bulk sediment transport,
diffusion-deposition equation for point sources in Geological Society of America Bulletin, 96, 1457--65.
turbulent shear ¬‚ow, Journal of Applied Meteorology, Kida, H., 1983, General circulation of air parcels and
38, 250--4. transport characteristics derived from a
Huang, J. and Turcotte, D. L., 1989, Fractal hemispheric GCM. Part 2: Very long-term motions
mapping of digitized images: Applications to the of air parcels in the troposphere and stratosphere,
topography of Arizona and comparisons with Journal of the Meteorological Society of Japan, 61,
synthetic images, Journal of Geophysical Research, 94, 510--22.
7491--5. Kirby, E. and Whipple, K. X., 2001, Quantifying
Hulme, G., 1973, Turbulent lava ¬‚ow and the differential rock-uplift rates via stream-pro¬le
formation of lunar sinuous rilles, Modern Geology, 4, analysis, Geology, 29, 415-18.
107--17. Kirchner, J. W., 1993, Statistical inevitability of
Hurst, H. E., Black, R. P., and Simaika, Y. M., 1965, Horton™s Laws and the apparent randomness of
Long-Term Storage: An Experimental Study, London, stream channel networks, Geology, 21, 591--4.
Constable. Kolb, E. J. and Tanaka, K. L., 2001, Geologic history of
Jackson, T. J., 1993, Washita ™92 Data Sets: digital data, the polar regions of Mars based on Mars Global
version 12/20. Surveyor data, Icarus, 154, 22--39.
Jackson, T. J. and Le Vine, D., 1996, Mapping surface Komatsu, G. and Baker, V. R., 1994, Meander
soil moisture using an aircraft-based passive properties of Venusian channels, Geology, 22, 67--70.
REFERENCES 283


Marticorena, B., Bergametti, G., Gillette, D., and
Komintz, M. and Pisias, N. G., 1979, Pleistocene
Belnap, J., 1997, Factors controlling threshold
climate: Deterministic or stochastic?, Science, 204,
friction velocity in semiarid and arid areas of the
171--2.
United States, Journal of Geophysical Research, 102,
Langbein, W. B. and Leopold, L. B., 1966, River
23277--87.
Meanders: Theory of Minimum Variance, US Geological
Masek, J. G. and Turcotte, D. L., 1993, A
Survey Professional Paper 422-H, Washington, DC.
Leopold, L. B., Wolman, M. G., and Miller, J. P., 1964, diffusion-limited aggregation model for the
Fluvial Processes in Geomorphology, San Francisco, evolution of drainage networks, Earth and Planetary
Freeman & Company. Science Letters, 119, 379--86.
Leopold, L. B., Emmett, W. W., and Myrick, R. M., 1966, Masoller, C., 2002, Noise-induced resonance in delayed
Channel and Hill Slope Processes in a Semi-arid Area, feedback systems, Physical Review Letters, 88, n.
New Mexico, US Geological Survey Professional 034102.
Paper 352-G, Reston, Virginia, pp. 193--253. Mattson, A. and Bruhn, R. L., 2001, Fault slip rates and
Livingstone, I., 1986, Geomorphological signi¬cance of initiation age based on diffusion equation
wind ¬‚ow patterns over a Namib linear dune. In modeling: Wasatch fault zone and eastern Great
Nickling, W. G., ed., Aeolian Geomorphology, Boston, Basin, Journal of Geophysical Research, 106, 13739--50.
Allen and Unwin, pp. 97--112. McFadden, L. D., Eppes, M. C., Gillespie, A. R., and
Lliboutry, L., 1979, Local friction laws for glaciers; a Hallet, B., 2005, Physical weathering in arid
critical review and new openings, Journal of landscapes due to diurnal variation in the direction
Glaciology, 23, 67--95. of solar heating, Geological Society of America Bulletin,
Loughridge, M. S., 1986, Relief map of the earth™s 117, 161--73.
surface, EOS, Transactions of the American Geophysical McFadden, L. D., Ritter, J. B., and Wells, S. G., 1989,
Union, 67, 121. Use of multi-parameter relative-age estimates for
Lowry, A. R., Ribe, N. M., and Smith, R. B., 2000, age estimation and correlation of alluvial fan
Dynamic elevation of the Cordillera, western surfaces on a desert piedmont, Eastern Mojave
United States, Journal of Geophysical Research, 105, Desert, California, Quaternary Research, 32, 276--90.
23371--90. McFadden, L. D., Wells, S. G., and Jercinovich, M. J.,
Ludwig, W. and Probst, J.-L., 1998, River sediment 1987, In¬‚uences of eolian and pedogenic processes
discharge to the oceans: Present-day controls and on the origin and evolution of desert pavements,
global budgets, American Journal of Science, 298, Geology, 15, 504--8.
265--95. McKenzie, D., 1984, The generation and compaction of
Luke, J. C., 1972, Mathematical models for landform partially molten rock, Journal of Petrology, 25, 713--65.
evolution, Journal of Geophysical Research, 77, 2460--4. Menzies, J., 1979, The mechanics of drumlin
Luke, J. C., 1974, Special solutions for nonlinear formation with particular reference to the change
erosion problems, Journal of Geophysical Research, 79, in pore-water content of the till, Journal of
4035--40. Glaciology, 22, 373--84.
MacGregor, K. R., Anderson, R. S., Anderson, S. P., and Miller, J. R., 1997, The role of ¬‚uvial geomorphic
Waddington, E. D., 2000, Numerical simulations of processes in the dispersal of heavy metals from
glacial-valley longitudinal pro¬le evolution, Geology, mine sites, Journal of Geochemical Exploration, 58,
28, 1031--4. 101--18.
Marcus, W. A., 1987, Copper dispersion in ephemeral Montgomery, D. R. and Brandon, M. T., 2002,
stream sediments, Earth Surface Processes and Topographic controls on erosion rates in
Landforms, 12, 217--28. tectonically active mountain ranges, Earth and
Marshall, S. J., Tarasov, L., Clarke, G. K. C., and Peltier, Planetary Science Letters, 201, 481--9.
W. R., 2000, Glaciological reconstruction of the Montgomery, D. R. and Dietrich, W. E., 1999, Where
Laurentide Ice Sheet: Physical processes and do channels begin?, Nature, 336, 232--4.
modeling challenges, Canadian Journal of Earth Mulch, A., Graham, S. A., and Chamberlain, C. P.,
Science, 37, 769--93. 2006, Hydrogen isotopes in Eocene river gravels and
Marticorena, B. and Bergametti, G., 1995, Modeling paleoelevation of the Sierra Nevada, Science, 313,
the atmospheric dust cycle: 1. Design of a 87--9.
soil-derived dust emission scheme, Journal of Mullins, H. T. and Hinchey, E. J., 1989, Erosion and
Geophysical Research, 100, 16415--30. in¬ll of New York State Finger Lakes: Implications
284 REFERENCES


for Laurentide ice sheet deglaciation, Geology, 17, Tucson, Arizona, Ph.D. thesis, University of Arizona,
622--5. Tucson, Arizona.
Murase, T. and McBirney, A. R., 1970, Viscosity of PAG (Pima Association of Governments), 2000, Digital
lunar lavas, Science, 167, 1491--3. DTM data, www.pagnet.org/RDC.
Murray, A. B. and Paola, C., 1994, A cellular model of Paola, C., Heller, P. L., and Angevine, C., 1992, The
braided rivers, Nature, 371, 54--6. large-scale dynamics of grain-size variation in
Murray, J. D., 1990, Mathematical Biology, New York, alluvial basins, 1: Theory, Basin Research, 4, 73--90.
Springer-Verlag. Parker, G., 1975, Meandering of supraglacial melt
Nagumo, J., Yoshizawa, S., and Arimoto, S., 1965, streams, Water Resources Research, 11, 551--2.
Bistable transmission lines, IEEE Transactions on Payne, A. J., Huybrechts, P., Abe-Ouchi, A., et al., 2000,
Circuit Theory, 12, 400--12. Results from the EISMINT model intercomparison:
Nanson, G. C. and Hickin, E. J., 1983, Channel The effects of thermomechanical coupling, Journal
migration and incision on the Beatton River, Journal of Glaciology, 46, 227--38.
of Hydraulic Engineering, 109, 327--37. Pearthree, P. A., Demsey, K. A., Onken, J., Vincent, K.
New York State Geological Survey, 1999, Surficial R., and House, P. K., 1992, Geomorphic Assessment of
Geology of the Finger Lakes Region, Digital data Flood-prone Areas on the Southern Piedmont of the
available at www.nysm.nysed.gov/gis.html#region. Tortolita Mountains, Pima County, Arizona, Arizona
Newman, W. A. and Mickelson, D. M., 1994, Genesis of Geological Survey Open-File Report 91-11, scale
Boston Harbor drumlins, Massachusetts, Sedimentary 1:12,000 and 1:24,000.
Geology, 91, 333--43. Peckham, S. D., 1995, New results for self-similar trees
Nicolis, C. and Nicolis, G., 1984, Is there a climatic with applications to river networks, Water Resources
attractor?, Nature, 311, 529--32. Research, 31, 1023--9.
North, G., Cahalan, R., and Moeng, R., 1981, Energy Pelletier, J. D., 1997, Analysis and modeling of the
balance climate models, Reviews of Geophysics, 19, natural variability of climate, Journal of Climate, 10,
90--121. 1331--42.
Nye, J. F., 1951, The ¬‚ow of glaciers and ice-sheets as a Pelletier, J. D., 2003, Coherence resonance and ice
problem in plasticity, Proceedings of the Royal Society ages, Journal of Geophysical Research, 108,
of London Series A, 207, 554--70. doi:10.1029/2002JD003120.
Nye, J. F., 1952, The mechanics of glacier ¬‚ow, Journal Pelletier, J. D., 2004a, Estimation of three-dimensional
of Glaciology, 2, 82--93. ¬‚exural-isostatic response to unloading: Rock uplift
O™Callaghan, J. F. and Mark, D. M., 1984, The due to Late Cenozoic glacial erosion in the western
extraction of drainage networks from digital US, Geology, 32, 161--4.
elevation data, Computer Vision Graphics and Image Pelletier, J. D., 2004b, How do spiral troughs form on
Processesing, 28, 323--44. Mars?, Geology, 32, 365--7.
Oerlemans, J., 1980a, Continental ice sheets and the Pelletier, J. D., 2004c, The in¬‚uence of piedmont
planetary radiation budget, Quaternary Research, 14, deposition on time scales of mountain-belt
349--59. denudation, Geophysical Research Letters, 31,
Oerlemans, J., 1980b, Model experiments on doi:10.1019/2004GL020052.
the 100,000 year glacial cycle, Nature, 287, Pelletier, J. D., 2004d, Persistent drainage migration in
430--2. a numerical landform evolution model, Geophysical
Ohmori, H. and Hirano, M., 1988, Magnitude, Research Letters, 31, doi:10.1029/2004GL020802.
frequency, and geomorphological signi¬cance of Pelletier, J. D., 2006, Sensitivity of playa
rocky mud ¬‚ows, landcreep, and the collapse of windblown-dust emissions to climatic and
steep slopes, Zeitschrift f¨r Geomorphologie N. F., 67,
u anthropogenic change, Journal of Arid Environments,
66, 62--75.
55--65.
Pelletier, J. D., 2007a, A Cantor set model of eolian
Ohmori, H. and Sugai, T., 1995, Toward
dust accumulation on desert alluvial fan terraces,
geomorphometric models for estimating landslide
Geology, 35, 439--42.
dynamics and forecasting landslide occurrence in
Japanese mountains, Zeitschrift f¨r Geomorphologie N.
u Pelletier, J. D., 2007b, Erosion-rate determination from
F., 101, 149--64. foreland basin geometry, Geology, 35, 5--8.
Packard, F., 1974, The hydraulic geometry of a Pelletier, J. D., 2007c, Numerical modeling of the
discontinuous ephemeral stream on a bajada near Cenozoic ¬‚uvial evolution of the southern Sierra
REFERENCES 285


Pinet, P. and Souriau, M., 1988, Continental erosion
Nevada, California, Earth and Planetary Science Letters,
and large-scale relief, Tectonics, 7, 563--82.
259, 85--96.
Poage, M. A. and Chamberlain, C. P., 2002, Stable
Pelletier, J. D., Cline, M. L., and DeLong, S. B., 2007,
isotope evidence for a Pre-Middle Miocene rain
Desert pavement dynamics: Numerical modeling
shadow in the western Basin and Range:
and ¬eld-based calibration, Earth Surface Processes
Implications for the paleotopography of the Sierra
and Landforms, 32, 1913--27.
Nevada, Tectonics, 21, 1601--18.
Pelletier, J. D., Cline, M. L., DeLong, S. B., Harrington,
C. D., and Keating, G. N., 2008, Dispersion of Pollard, D., 1983, A coupled climate-ice sheet model
channel-sediment contaminants in ¬‚uvial systems: applied to the Quaternary ice ages, Journal of
Application to tephra redistribution following a Geophysical Research, 88, 7705--18.
potential volcanic eruption at Yucca Mountain, Pope, G. L., Rigas, P. D., and Smith, C. F., 1998,
Geomorphology, 94, 226--46. Statistical summaries of stream¬‚ow data and
Pelletier, J. D. and Cook, J. P., 2005, Deposition of characteristics of drainage basins for selected
playa windblown dust over geologic time scales, stream¬‚ow-gaging stations in Arizona through
Geology, 33, 909--12. water year 1996, US Geological Survey Water
Pelletier, J. D. and DeLong, S., 2004, Oscillations in Resources Investigations Report 98-4225,
arid alluvial channels, Geology, 32, 713--16. Washington, DC.
Pelletier, J. D., DeLong, S., Al Suwaidi, A. H., et al., Porter, S. C., Pierce, K. L., and Hamilton, T. D., 1983,
2006, Evolution of the Bonneville shoreline scarp Late Wisconsin mountain glaciation in the western
in west-central Utah: Comparison of scarp-analysis United States. In Wright, H. E., Jr. and Porter, S. C.,
methods and implications for the diffusion eds., Late Quaternary Environments of the United States,
model of hillslope evolution, Geomorphology, 74, Vol. 1, Minneapolis, Minnesota, University of
257--70. Minnesota Press, pp. 71--115.
Pelletier, J. D., Harrington, C. D., Whitney, J. W., et al., Press, W. H., Flannery, B. P., Teukolsky, S. A., and
2005a, Geomorphic control of radionuclide Vetterling, W. T., 1992, Numerical Recipes in C: The Art
diffusion in desert soils. Geophysical Research Letters, of Scientific Computing, 2nd edition, New York,
32, doi:10:1029/2005GL024347. Cambridge University Press.
Pelletier, J. D., Malamud, B. D., Blodgett, T., and Press, W. H., Flannery, B. P., Teukolsky, S. A., and
Turcotte, D. L., 1997, Scale-invariance of soil Vetterling, W. T., 2007, Numerical Recipes in C: The Art
moisture variability and its implications for the of Scientific Computing, 3rd edition, New York,
frequency-size distribution of landslides, Engineering Cambridge University Press.
Geology, 48, 255--68. Pye, K., 1987, Aeolian Dust and Dust Deposits, London,
Pelletier, J. D., Mayer, L., Pearthree, P. A., et al., 2005b, Academic Press.
An integrated approach to alluvial-fan ¬‚ood hazard Raupach, M. R., Gillette, D. A., and Leys, J. F., 1993,
assessment with numerical modeling, ¬eld The effect of roughness elements on wind
mapping, and remote sensing, Geological Society of erosion threshold, Journal of Geophysical Research, 98,
America Bulletin, 117, 1167--80. 3023--9.
Pelletier, J. D. and Turcotte, D. L., 1997, Long-range Rawls, W. J., Ahuja, L. R., Brakensiek, D. L., and
persistence in climatological and hydrological time Sirmohammadi, A., 1992, In¬ltration and soil water
series: Analysis, modeling, and application to movement. In Maidment, D. R., ed., Handbook of
drought hazard assessment, Journal of Hydrology, Hydrology, New York, McGraw-Hill, pp. 5.1--5.62.
203, 198--208. Reeh, N., 1982, A plasticity-theory approach to the
Pelletier, J. D. and Turcotte, D. L., 1999, Self-af¬ne steady-state shape of a three-dimensional ice sheet,
time series: II. Applications and models, Advances in Journal of Glaciology, 28, 431--55.
Geophysics, 40, 91--166. Reeh, N., 1984, Reconstruction of the ice covers of
Peltier, W. R., 1994, Ice-age paleotopography, Science, Greenland and the Canadian Arctic Islands by
265, 198--201. 3-dimensional, perfectly plastic ice-sheet modeling,
Petit, J. R., Jouzel, J., Raynaud, D., et al., 1990, Annals of Glaciology, 5, 115--21.
Paleoclimatological implications of the Vostok core Reheis, M. C., Slate, J. L., Throckmorton, C. K., et al.,
dust record, Nature, 343, 56--8. 1996, Late-Quaternary sedimentation on the Leidy
Peixoto, J. P. and Oort, A. H., 1992, Physics of Climate, Creek fan, Nevada-California: Geomorphic responses
Washington, DC, American Institute of Physics. to climate change, Basin Research, 12, 279--99.
286 REFERENCES


Sadler, P. M., 1981, Sediment accumulation rates and
Reheis, M., 1999, Extent of Pleistocene Lakes in the Western
the completeness of stratigraphic sections, Journal of
Great Basin, US Geological Survey Miscellaneous
Geology, 89, 569--84.
Field Studies Map MF-2323, Denver, Colorado, US
Sadler, P. M. and Strauss, D. J., 1990, Estimation of
Geological Survey.
completeness of stratigraphic sections using
Reheis, M. C., 2006, A 16-year record of eolian dust in
Southern Nevada and California, USA: Controls on empirical data and theoretical models, Journal of the
dust generation and accumulation, Journal of Arid Geological Society of London, 147, 471--85.
Environments, 67, 487--520. Safran, E. B., Bierman, P. R., Aalto, R., et al., 2005,
Reheis, M. C., Goodmacher, J. C., Harden, J. W., et al., Erosion rates driven by channel network incision in
1995, Quaternary soils and dust deposition in the Bolivian Andes, Earth Surface Processes and
southern Nevada and California, Geological Society of Landforms, 30, 1007--24.
America Bulletin, 107, 1003--22. Samet, J. M., Dominici, F., Curriero, F. C., Cousac, I.,
Reneau, S. L., Drakos, P. G., Katzmann, D. L., et al., and Zeger, S. L., 2000, Fine particulate air pollution
2004, Geomorphic controls on contaminant and mortality in 20 US cities, 1987--1994, New
distribution along an ephemeral stream, Earth England Journal of Medicine, 343, 1742--9.
Surface Processes and Landforms, 29, 1209--23. Schoof, C., 2002, Mathematical models of glacier
Reynolds, R. L., Yount, J. C., Reheis, M., et al., 2007, sliding and drumlin formation, D. Phil. Thesis,
Dust emission from wet and dry playas in the Oxford University, Oxford.
Mojave Desert, USA, Earth Surface Processes and Schumm, S. A., 1977, The Fluvial System, New York, John
Landforms, 32, 1811--27. Wiley & Sons.
Rhoads, B. L. and Welford, M. R., 1991, Initiation of Schumm, S. A. and Hadley, R. F., 1957, Arroyos and
river meandering, Progress in Physical Geography, 15, the semiarid cycle of erosion, American Journal of
127--56. Science, 255, 161--74.
Richardson, W. R., 2002, Simpli¬ed model for Schumm, S. A. and Parker, R. S., 1973, Implications of
assessing meander bend migration rates, Journal of complex response of drainage systems for
Hydraulic Engineering, 128, 1094--7. Quaternary alluvial stratigraphy, Nature, 243,
Ridky, R. W. and Bindschadler, R. A., 1990, 99--100.
Reconstruction and dynamics of the Late Wisconsin Shao, Y. and Raupach, M. R., 1993, Effect of saltation
˜˜Ontario™™ ice dome in the Finger Lakes region, New bombardment on the entrainment of dust by wind,
York, Geological Society of America Bulletin, 102, Journal of Geophysical Research, 98, 12719--26.
1055--64. Sharp, R. P., 1963, Wind ripples, Journal of Geology, 71,
Riebe, C. S., Kirchner, J. W., Granger, D. E., and Finkel, 617--36.
R. C., 2000, Erosional equilibrium and Shepard, R. G., 1985, Regression analysis of river
disequilibrium in the Sierra Nevada, California, pro¬les, Journal of Geology, 93, 377--84.
Geology, 28, 803--6. Sinha, S. K. and Parker, G., 1996, Causes of concavity
Riebe, C. S., Kirchner, J. W., Granger, D. E., and Finkel, in longitudinal pro¬les of rivers, Water Resources
R. C., 2001, Minimal climatic control on erosion Research, 32, 1417--28.
rates in the Sierra Nevada, California, Geology, 29, Sklar, L. and Dietrich, W. E., 2001, Sediment and rock
447--50. strength controls on river incision into bedrock,
Rodriguez-Iturbe, I., Vogel, G. K., Rigon, R., Entekhabi, Geology, 29, 1087--90.
D., and Rinaldo, A., 1995, On the spatial Sklar, L. and Dietrich, W. E., 2004, A mechanistic
organization of soil moisture ¬elds, Geophysical model for river incision into bedrock by saltating
Research Letters, 22, 2757--60. bedload, Water Resources Research, 40,
Roering, J. J., Kirchner, J. W., and Dietrich, W. E., 1999, doi:10.1029/2003WR002496.
Evidence for nonlinear, diffusive sediment Slingerland, R. L. and Snow, R. S., 1987, Mathematical
transport and implications for landscape modeling of graded river pro¬les, Journal of Geology,
morphology, Water Resources Research, 35, 853--70. 95, 15--33.
Ruxton, B. P. and McDougall, I., 1967, Denudation Small, E. E., Anderson, R. S., Repka, J. L., and Finkel,
rates in northeast Papua New Guinea from R., 1997, Erosion rates of alpine bedrock summit
surfaces deduced from 10 Be and 26 Al, Earth and
Potassium-Argon dating of lavas, American Journal of
Science, 265, 545--61. Planetary Science Letters, 150, 413--25.
REFERENCES 287


California, revealed by cosmogenic dating of cave
Smalley, I. J. and Unwin, D. J., 1968, The formation
sediments, Geology, 32, 193--6.
and shape of drumlins and their distribution and
Stock, G. M., Anderson, R. S., and Finkel, R. C., 2005,
orientation in drumlin ¬elds, Journal of Glaciology, 7,
Rates of erosion and topographic evolution of the
377--90.
Sierra Nevada, California, inferred from cosmogenic
Smith, F. B., 1962, The problem of deposition in
26
Al and 10 Be concentrations, Earth Surface Processes
atmospheric diffusion of particulate matter, Journal
of Atmospheric Sciences, 19, 429--34. and Landforms, 30, 985--1006.
Smith, R. B., 2003, Advection, diffusion, and Stommel, H., 1965, The Gulf Stream, Berkeley,
deposition from distributed sources, Boundary-Layer California, University of California Press.
Meteorology, 107, 273--87. Strudley, M. W., Murray, A. B., and Haff, P. K., 2006,
Smolarkiewicz, P. K., 1983, A simple positive de¬nite Regolith-thickness instability and the formation of
advection scheme with small implicit diffusion, tors in arid environments, Journal of Geophysical
Monthly Weather Review, 111, 479--86. Research, 111, doi:10.1029/2005JF000405.
Snyder, N., Whipple, K. X., Tucker, G., and Merritts, D., Summer¬eld, M. A. and Hulton, N. J., 1994, Natural
2000, Landscape response to tectonic forcing: DEM controls on ¬‚uvial denudation rates in major world
analysis of stream pro¬les in the Mendocino triple drainage basins, Journal of Geophysical Research, 99,
junction region, northern California, Geological 13871--83.
Society of America Bulletin, 112, 1250--63. Takle, E. S. and Brown, J. M., 1978, Note on use of
Sonder, L. J. and Jones, C. H., 1999, Western United Weibull statistics to characterize wind-speed data,
States extention: How the West was widened, Annual Journal of Applied Meteorology, 17, 556--9.
Reviews of Earth and Planetary Sciences, 27, 417--62. Tarboton, D. G., 1997, A new method for the
Spaulding, W. G., 1990, Vegetation dynamics during determination of ¬‚ow directions and upslope areas
the last deglaciation, southeastern Great Basin, in grid digital elevation models, Water Resources
USA, Quatenary Research, 33, 188--203. Research, 33, 309--19.
Spiegelman, M., 1993, Flow in deformable porous Terzaghi, K., 1962, Stability of steep slopes on hard
media. Part 1: Simple analysis, Journal of Fluid unweathered rock, Geotechnique, 12, 251--70.
Mechanics, 247, 17--38. Tokunaga, E., 1984, Ordering of divide segments and
Spiegelman, M. and McKenzie, D., 1987, Simple 2-D law of divide segment numbers, Transactions of the
models for melt extraction at mid-ocean ridges and Japanese Geomorphological Union, 5, 71--7.
island arcs, Earth and Planetary Science Letters, 83, Tomkin, J. H. and Braun, J., 2002, The in¬‚uence of
137--52. alpine glaciation on the relief of tectonically active
Spiegelman, M., Keleman, P. B., and Aharonov, E., mountain belts, American Journal of Science, 302,
2001, Causes and consequences of ¬‚ow organization 169--90.
during melt transport: The reaction in¬ltration Tsimring, L. S. and Pikovsky, A., 2001, Noise-induced
instability, Journal of Geophysical Research, 106, dynamics in bistable systems with delay, Physical
2061--78. Review Letters, 87, n. 250602.
Squires, R. R. and Young, R. L. 1984, Flood Potential of Tucker, G. E. and Bras, R. L., 1998, Hillslope processes,
Fortymile Wash and its Principal Southwestern drainage density, and landscape morphology, Water
Tributaries, Nevada Test Site, Southern Nevada, US Resources Research, 34, 2751--64.
Geological Survey Water Resources Investigations Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F., 2000,
Report 83-4001, Carson City, Nevada, US Geological Basal mechanics of Ice Stream B, West Antarctica: 2,
Survey. Undrained plastic bed model, Journal of Geophysical
Stanford, S. D. and Mickelson, D. M., 1985, Till fabric Research, 105, 483--94.
and deformational structures in drumlins near Turcotte, D. L. and Schubert, G., 2002, Geodynamics:
Waukesha, Wisconsin, USA, Journal of Glaciology, 31, Applications of Continuum Physics to Geological Problems,
220--8. 2nd edition, New York, Cambridge University Press.
Stark, C. P. and Hovius, N., 2001, The characterization United States Geological Survey, 2005, Southwest
of landslide size distributions, Geophysical Research Climate Impact Meteorological Stations (CLIM-MET),
Letters, 28, 1091--4. Digital data available at
Stock, G. M., Anderson, R. S., and Finkel, R. C., 2004, http://esp.cr.usgs.gov/info/sw/clim-met/
Pace of landscape evolution in the Sierra Nevada, climetdata.html.
288 REFERENCES


along the San Andreas Fault, unpublished Ph.D.
Unruh, J. R., 1991, The uplift of the Sierra Nevada and
dissertation, California Institute of Technology,
implications for late Cenozoic epeirogeny in the
Pasadena, CA, pp. 99--190.
western Cordillera, Geological Society of America
Wells, S. G., McFadden, L. D., Poths, J., and Olinger, C.
Bulletin, 103, 1395--404.
T., 1995, Cosmogenic 3 He surface-exposure dating of
Ussami, N., Shiraiwa, S., and Dominguez, J. M., 1999,
Basement reactivation in a sub-Andean foreland stone pavements: Implications for landscape
¬‚exural bulge: The Pantanal wetland: SW Brazil, evolution in deserts, Geology, 23, 613--16.
Tectonics, 18, 25--39. Werner, B. T., 1995, Eolian dunes: Computer
Valentine, G. A., Krier, D., Perry, F. V., and Heiken, G., simulations and attractor interpretation, Geology,
2005, Scoria cone construction mechanisms, 23, 1107--10.
Geology, 33, 629--32. Western Regional Climate Center (Desert Research
Van Genuchten, M. Th., 1980, A closed-form equation Institute), 2005, Station Wind Rose: Amargosa Valley
for predicting the hydraulic conductivity of Nevada, Digital data available at www.wrcc.dri.edu/
unsaturated soils, Soil Science Society of America cgi-bin/wea windrose.pl?nvamar.
Journal, 44, 892--8. Whipple, K. X. and Tucker, G. E., 1999, Dynamics of
van Kampen, N. G., 2001, Stochastic Processes in Physics the stream-power river incision model: Implications
and Chemistry, Amsterdam, Elsevier. for height limits of mountain ranges, landscape
van Wees, J. D. and Cloetingh, S., 1994, A response timescales, and research needs, Journal of
¬nite-difference technique to incorporate spatial Geophysical Research, 104, 17661--74.
variations in rigidity and planar faults into 3-D Whipple, K. X., Hancock, G. S., and Anderson, R. S.,
models for lithospheric ¬‚exure, Geophysical Journal 2000, River incision into bedrock: Mechanics and
International, 117, 179--95. relative ef¬cacy of plucking, abrasion, and
Vialov, S. S., 1958, Regularities of glacial shields cavitation, Geological Society of America Bulletin, 112,
movement and the theory of plastic viscous ¬‚ow, 490--503.
International Association for Hydrological Sciences Whipple, K. X., Kirby, E., and Brocklehurst, S. H., 1999,
Publication, 47, 266--75. Geomorphic limits to climate-induced increases in
von Engeln, O. D., 1961, The Finger Lakes Region: Its topographic relief, Nature, 401, 39--43.
Origin and Nature, Ithaca, New York, Cornell Whitney, J. W., Taylor, E. M., and Wesling, J. R., 2004,
University Press. Quaternary stratigraphy and mapping in the Yucca
Voss, R. F. and Clarke, J., 1976, Flicker (1/ f ) noise: Mountain area. In Keefer, W. R., et al., eds.,
Equilibrium temperature and resistance Quaternary Paleoseismology and Stratigraphy of the Yucca
¬‚uctuations, Physical Review B, 13, 556--73. Mountain Area, Nevada, US Geological Survey
Wakabayashi, J. and Sawyer, T. L., 2001, Stream Professional Paper 1689, Washington, DC, pp. 11--23.
incision, tectonics, uplift, and evolution of Whitehouse, I. E. and Grif¬ths, G. A., 1983, Frequency
topography of the Sierra Nevada, California, Journal and hazard of large rock avalanches in the central
of Geology, 109, 539--62. Southern Alps, New Zealand, Geology, 11, 331--4.
Warrick, A. W., 1988, Additional solutions for Whittecar, G. R. and Mickelson, D. M., 1979,
steady-state evaporation from a shallow water table, Composition, internal structures, and a hypothesis
Soil Science, 146, 63--6. of formation for drumlins, Waukesha County,
Watts, A. B., 2001, Isostasy and Flexure of the Lithosphere, Wisconsin, USA, Journal of Glaciology, 22, 357--70.
New York, Cambridge University Press. Wieczoreck, G. F., 1987, Effect of rainfall intensity and
Watts, A. B., Lamb, S. H., Fairhead, J. D., and Dewey, J. duration on debris ¬‚ows in central Santa Cruz
F., 1995, Lithospheric ¬‚exure and bending of the Mountains, California. In Costa, J. E. and Wieczorek,
central Andes, Earth and Planetary Science Letters, 134, G. F., eds., Debris Flows/Avalanches: Process, Recognition,
9--21. and Mitigation: Reviews of Engineering Geology, 7, pp.
Webb, R. W., 1946, Geomorphology of the middle Kern 93--104.
River Basin, southern Sierra Nevada, California, Willett, S. D., Slingerland, R., and Hovius, N., 2001,
Geological Society of America Bulletin, 57, 355--82. Uplift, shortening, and steady-state topography in
Weldon, R. J., 1986, The cause and timing of terrace active mountain belts, American Journal of Science,
formation in Cajon Creek, southern California. In 301, 455--85.
Weldon, R. J., The late Cenozoic geology of Pajon Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I.,
Pass: Implications for tectonics and sedimentation 1991, A coupled channel network growth and
REFERENCES 289


hillslope evolution model: 1. Theory, Water Resources Young, M. H., McDonald, E. V., Caldwell, T. C., Benner,
Research, 27, 1671--84. S. G., and Meadows, D. G., 2004, Hydraulic
Wilson, I. G., 1972, Aeolian bedforms: Their properties of a desert soil chronosequence, Mojave
development and origins, Sedimentology, 19, Desert, California, Vadose Zone Journal, 3, 956--63.
173--210. Zelcs, V. and Driemanis, A., 1997, Morphology,
Winfree, A. T., 1987, When Time Breaks Down, Princeton, internal structure, and genesis of the Burtnieks
New Jersey, Princeton University Press. drumlin ¬eld, Northern Vidzeme, Latvia,
Wobus, C. W., Crosby, B. T., and Whipple, K. X., 2006, Sedimentary Geology, 111, 73--90.
Hanging valleys in ¬‚uvial systems: Controls on Zhang, P., Molnar, P., and Downs, W. R., 2001,
occurrence and implications for landscape Increased sedimentation rates and grain sizes 2--4
evolution, Journal of Geophysical Research, 111, Myr ago due to the in¬‚uence of climate change on
doi:10.1029/2005JF000406. erosion rates, Nature, 410, 891--7.
Index

avalanche, 244 Amargosa Valley coupled evolution with alluvial
calculatealongchannelslope, 239 example of dust emission from channels
computeflexure, 249 playas, 13, 53 models for, 101--103
fillinpitsandflats, 235 Lathrop Wells cone introduction to, 4
fourn, 258 age of, 79 plucking, 4
hillslopediffusioninit, 244 diffusive evolution of, 51 sediment ¬‚ux driven model
hillslopediffusion, 229 study site for contaminant behavior of in block-uplift
malloc.h, 222 dispersion model, 79--83 example, 94
math.h, 222 study site for ¬‚ood hazard code for 2D implementation,
nr.h, 222 assessment, 73 248
nrutil.h, 222 study site for potential ¬‚uvial introduction to, 6, 94
realft, 256 system contamination, 75 role in model of perisistent
setupgridneighborsperiodic, 224 study site for radionuclide mountain belt topography,
setupgridneighbors, 223 dispersion in soils, 46 105--107
setupmatrices, 249 Andes, 119 sediment ¬‚ux driven model
stdio.h, 222 best-¬t ¬‚exural parameter of, 113 application to the Sierra
stdlib.h, 222 Cordillera Real Nevada, 96--101
3DEM, 223 glacial erosion and exhumation stream power model
of, 28 application to the Sierra
advection equation example of 1D ¬‚exure solution, Nevada, 96--101
analytic methods for, 88--90 113 as a type of advection equation,
contrasting behavior to diffusion example of 2D ¬‚exure solution, 87
equation, 31, 87 115 behavior of in block-uplift
introduction to, 87 example of curvature effects in 2D example, 94
method of characteristics, 88 ¬‚exure, 116 code for 2D implementation,
numerical methods for, 90--93 example of foreland basin model, 243
Lax method, 91 119--120 introduction to, 5
stability criteria, 91 landslide distributions from, 209 role in model of persistent
Two-step Lax--Wendroff method, use as a paleo analog for western mountain belt topography,
91 US, 1 105--107
upwind differencing method, Antarctic ice sheet Bessel function
92 introduction to, 20 code for numerical integration,
alluvial channels model reconstruction of, 138 232
diffusion equation model of, Appalachian Mountains, 101 code for summing series solutions
8, 102 arid cycle of erosion, 169 for volcanic cones, 233
introduction to, 4 arroyos, 169 use of for modeling diffusive
alluvial fan ASHPLUME plume deposition model, evolution of cinder cones, 49
cut and ¬ll cycles on, 38 83 boundary condition
introduction to, 9 introduction to, 34
windblown sand transport across, balance velocity method, for ice boundary conditions
17 velocities, 136, 149 periodic vs. ¬xed, 223
Alternating Direction Implicit (ADI) basal sliding Brooks Range
method introduction to, 20 glacier model reconstruction of,
code for 2D implementation of Basin and Range, 1--2 146
diffusion equation, 229 Beartooth Mountains
code for 2D implementation to cirques of, 27 channel head
solve ¬‚exure equation, 259 bedload transport, 8, 171 de¬nition of, 4
introduction to, 63 bedrock channels channel meandering, 164
use of to solve the 2D ¬‚exure abrasion, 4 introduction to, 164
equation, 122 cavitation, 4 model of, 165--166
INDEX 291


channel oscillations introduction to, 15 application to Amargosa Valley,
code for implementation, 270 role in trapping windblown dust, 54--57
model for, 169--173 15, 194 introduction to, 14
observations of, 169, 173 role of parent-material texture in,
cinder cones 15 elasticity, see ¬‚exure
use of diffusion equation for, deterministic models entrainment
49--51 limitations of, 188 introduction to, 14
cirques, 27 diffusion equation eolian dunes
climate oscillations analytic methods for, 34--57 barchans
ice ages as one part of a more complex how they form, 19
model for, 210--220 model, 32 introduction to, 18
role in modulating sediment model for hillslope evolution longitudinal
production from drainage introduction to, 3 how they form, 19
basins, 11 requirements for applicability, relationship to ripples and
role of in controlling dust 30, 33 megadunes, 18
emission, 194 nondimensionalization of, 37 role of grain size in, 18
coherence resonance use in foreland basin modeling, role of sand supply and
introduction to, 211 116 wind-direction variability in,
model for ice ages with stochastic noise, 191--193 18
code implementing the model, Diffusion-Limited Aggregation (DLA) spacing of, 168
277 application to drainage network Werner™s model, 166--169
compaction, see deformable porous evolution, 198 code for implementation, 267
media diffusivity introduction to, 19
complementary error function typical values for western US, 33 equilibrium line altitude (ELA)
de¬nition of, 37 units of, 30 introduction to, 26
conservation of mass discretization late Miocene lowering of, 29
role in the diffusion model of introduction to, 57 localized erosion beneath, 27
landform evolution, 9, 30, 170 divides map of in the western US, 121
contaminant dispersion in ¬‚uvial no-¬‚ux boundary condition, 2, 34 role in model of cirque formation,
systems drainage density 27
introduction to, 74 de¬nition of, 4 erosion rates
previous work on, 75 role in producing sediment-¬‚ux determined by cosmogenic
role of bed scour in, 77 variations through time, 10 isotopes, see cosmogenic
cosmogenic isotopes role of in contaminant dispersion isotopes
erosion rates in Sierra Nevada, 93 model, 77 relationships with elevation and
role in dating fan terraces, 10 use of to distinguish channels relief, 101, 103
role in understanding hillslope from hillslopes in 2D error function
evolution, 3 drainage network evolution de¬nition of, 37
Crank--Nicholson method, 62 modeling, 96 use of for modeling radionuclide
droughts, 191 concentrations in soil, 48
D∞ ¬‚ow routing, 68 drumlins use of in solutions for scarp
debris ¬‚ow controls on geometry, 182 evolution, 43
rheology of, 22 introduction to, 23, 174 Eulerian vs. Lagrangian methods,
deformable porous media, 174 role of sediment deformation in 90
delivery ratio, sediment, 119 creating, 174 excitable media, 185
delta progradation stratigraphy of, 182 explicit vs. implicit numerical
diffusion equation model for, use of to reconstruct ice ¬‚ow methods, 58, 62
51--53 directions, 23 extension
dendrochronology dust cycle, 53, 194 role in Basin and Range
use of to infer channel bank importance of, 14 topography, 1
migration rates, 166 introduction to, 13
desert pavement open system nature of, 13 fault scarps
coevolution with dust deposition, dust transport and deposition application of the diffusion
15 model of equation to, 42--45
292 INDEX


Finger Lakes, 181 failure of for the advection Glen™s Flow Law
drumlin ¬eld, 182 equation, 90 1D pro¬le modeling of ice body
introduction to, 23 introduction to, 57 subject to, 128
model for formation of, stability criterion for, 59 introduction to, 22
157--158 why use it?, 59 Great Lakes
model of ice ¬‚ow over, 144 Fourier ¬ltering method as outliers in the frequency-size
observations of, 159 code for 1D generation of distribution of
¬rn, 20 fractional noises, 274 glacially-carved lakes, 25
¬‚exure code for 1D implementation to model for, 154
coherence method solve ¬‚exure equation, 256 role of ¬‚exure in controlling, 154
use of to map elastic thickness, code for 2D generation of Greenland ice sheet
111 fractional noises, 275 model reconstruction of, 137
elastic thickness code for 2D implementation to use in code implementing the
de¬nition of, 111 solve ¬‚exure equation, 258 sandpile model, 265
equation use of for solving the ¬‚exure Greenland ice sheet (LIS)
introduction to, 111 equation, 112--116 introduction to, 19
forebulge use of to generate fractional groundwater ¬‚ow
de¬nition of, 112 noises, 190 as a type example of an
integral method for, 113 Fourier series method advection-diffusion process,
introduction to, 109 for solving the diffusion equation, 32
series solutions, 112--116 35
solution methods in 1D, 111--113 use of for linear equations only, Hanaupah Canyon
solution methods in 2D, 113--116 36 application of ADI method to
wavelength fractal scaling modeling evolution of, 63
comparison of values for rock of drainage networks, 196 example of terrace evolution in,
vs. ice loading, 112 of dust accumulation, 195 38
role in controlling glacial of landslide distributions, 205--210 type example of a ¬‚uvial system,
erosion, 152 of soil moisture ¬elds, 207 1--12
typical range, 109 of topographic transects, 207 use of for illustrating
¬‚ood-envelope curve fractional noises multiple-direction
role of in contaminant dispersion geoscience applications of, 190 ¬‚ow-routing methods, 68
model, 78 how to construct, 190 hanging valleys, 26
¬‚ow routing methods introduction to, 190 hillslope processes
ρ8, 67 bioturbation, 33
D∞, 68 Gaussian plume creep, 33
D8, 66 de¬nition of, 15 mass movements, 33
DEMON, 68 glacial buzzsaw hypothesis, 28 model for hillslope evolution
introduction to, 66 glacial erosion with, 60, 61
multiple ¬‚ow direction (MFD) Hallet™s model for, 21, 151 models for, 205--210
routing method, see Multiple introduction to, 21 model for tephra transport at
Flow Direction (MFD) routing modeling ¬‚exural response to Yucca Mountain, 75
method unloading, 120--123 rain splash, 33
range of applications for, 66 glacially-carved lakes rilling, 33
what is best?, 69 frequency-size distribution of, 24 slope wash, 33
¬‚ux-conservative equations, 88 introduction to, 24 model for hillslope evolution
foreland basins model for, 153 with, 33, 59
modeling of, 116--120 near ice margins, 157 those that are diffusive, 33
Forward Time Centered Space (FTCS) glaciers Horton™s Laws
method 1D pro¬le modeling of introduction to, 196
code for 1D implementation of uniformly-sloping bed, 127 statistical inevitability of, 197
nonlinear diffusion model, wavy bed, 127 hummocky moraine, 178
227 difference from ice sheets, 25 Hurst phenomenon, 189
code for 2D implementation of introduction to, 20 hydrologically-corrected DEM
diffusion equation, 225 role in sediment production, 12 code for implementation, 235
INDEX 293


ice sheets lava ¬‚ow moraines
basal shear stress 2D radially-symmetric model application of the diffusion
observations of, 132 code for implementation, equation to, 40--42
cold vs. warm-based, 21 263 mortality
ice-albedo feedback, 214 modeling of role of particulate matter in
role of in controlling bistability of temperature-dependent causing, 14
the climate system, 215 viscous behavior of, 130-- Multiple Flow Direction (MFD)
implicit method 132 routing method
computational advantage of, rheology of, 22, 125 code for implementation, 236
62 LIDAR, 67, 71 code for implementation in ¬‚ood
introduction to, 62 linear stability analysis, 165 hazard analysis, 239
stability of, 62 application to channel introduction to, 67
isostasy meandering, 164 mathematical de¬nition of, 67
Airy limit, 113 introduction to, 161 use of for improving USGS DEMs,
in the evolution of the Sierra of oscillating alluvial channels, 71
Nevada, 97 171 use of in contaminant dispersal
introduction to, 109 lithology model, 78
role in ice sheets role in controlling bedrock use of in estimating ¬‚ood hazards,
introduction to, 23 channel erosion, 5, 103 72--74
model of, 127, 139 load-accumulation feedback, 216, 218
role in prolonging the mountain load-advance feedback, 217 New York State drumlin ¬eld, 181
belt denudation, 109 longitudinal pro¬le Newton iteration, 130
role in relief production, 28 analytic model for coupled non-Newtonian ¬‚uids
role in shaping Basin and Range bedrock-alluvial channels, analytic solutions for, 126--129
topography, 1 103 introduction to, 22
role in the formation of Great code implementing 1D coupled numerical solutions for, 129--132
Lakes, 25 bedrock-alluvial model, 242 rheology of, 22
role of in 2D bedrock drainage in¬‚uence on glacial erosion, 21 nonlinear advection equations, 90
network modeling, 94 model for steady-state bedrock nonlinear transport on hillslopes
time-dependent response of, channel, 5 introduction to, 3
111 Lorentzian spectrum, 212 Numerical Recipes
use with codes in this book,
Kardar--Parisi--Zhang (KPZ) equation, Mars 222
207 application of ¬‚ow routing
kei(r) methods to, 69 palimpsests, 25
series expansions for, 257 eolian dunes on, 168 perfectly plastic model
use as a basis function for series ¬‚uvial activity on, 12 application to climate modeling,
solutions to the ¬‚exure spiral troughs 216
equation, 114 code for 1D model application to ice sheets and
Kelvin functions, see kei(r) implementation, 271 glaciers, 22
knickpoints model of, 183--187 application to thrust sheet
introduction to, 6 method of characteristics, see mechanics, 147
modeling of using advection advection equations generalization of to
equation, 90 Microsoft threshold-sliding behavior,
Excel, 223 127
Langevin equations, 191 Visual C++, 222 introduction to, 22
Lathrop Wells cone, see Amargosa Mohr--Coulomb criterion, 207 limitations of, 22
Valley moisture use of in modeling 1D ice sheet
Laurentide ice sheet (LIS) role in controlling particle pro¬les, 125
impact on global climate, 215 entrainment persistent mountain belt paradox
introduction to, 23 introduction to, 14 introduction to, 101
model of, 138 role of in triggering mass role of piedmont deposition in,
lava channels movements, 205 101--103
meandering of, 164 Monte Carlo methods, 188 piedmont, see alluvial fan
294 INDEX


playa Rogen moraine, 179 Taylor expansion
introduction to, 12 root-¬nding techniques, 50 use of in discretization, 57
role of hydrology in dust terraces
production salt domes dust deposition on
introduction to, 13 as an example of the introduction to, 13
sand-dominated, 17 Raleigh--Taylor instability, implementation of 2D diffusion
Pleistocene--Holocene transition 162 model, 226
role in triggering terrace saltation introduction to, 9
formation, 10 characteristic distance of, 167 mechanisms for formation, 10
pluvial shorelines introduction to, 13 morphological age dating of, 39
application of the diffusion sandpile method on Mars, 12
equation to, 42--45 code for implementation, 264 relative age indicators of, 10
introduction to, 12 use of in 2D perfectly plastic role in controlling ¬‚ood risk,
polar coordinates model, 135 10
use of for solving diffusive secondary ¬‚ow, 164 transient response to base level fall
evolution of cinder cones, Shreve magnitude, 197 use of diffusion equation to
49 Sierra Nevada model, 38--40, 61--62
positive feedback knickpoint propagation thermal erosion, 166
between channel width and slope introduction to, 6 thermochronology, 29
in alluvial channels, 161 modeling of, 93--101 threshold of critical power, 171
between glaciers, climate, and non-equilibrium landscape of, Tibet
topography, 28 93 archeological ruins of, 45
elevation-accumulation feedback similarity method till fabric, 182
in ice sheets, 20 application to solving diffusion time series analysis
ice-albedo feedback, 213 equations autocorrelation function, 189
in hillslope evolution, 4 introduction to, 36 introduction to, 188
role of in geomorphic instabilities, use in modeling deltaic power spectrum, 189
161 sedimentation, 53 of Pleistocene climate, 212
precision, single vs. double, 222 use of in modeling terrace pro¬le Tokunaga side branching, 197
evolution, 40 topographic inversion, 131
radiation balance sine function topographic steady state
role of in climate models, 213 as functional form of late-stage convergence of stream-power and
radionuclides terraces following base level sediment ¬‚ux driven models
atmospheric nuclear testing as a fall, 40 in, 8
man-made source, 46 sine-generated curve, 166 in hillslopes, 3
dispersion in soils soil moisture in ice sheet modeling, 129
diffusion equation model for, variations in space and time model for hillslope pro¬le during
45--49 modeling of, 206 transient approach to, 37
processes of, 48 observations of, 206 model for hillslope pro¬le in,
random walk solitary waves, 173 34
application to dust accumulation spring sapping slope vs. area curve, 5
on alluvial fan terraces, role of in drainage network use of in foreland basin modeling,
194--196 evolution, 198 117
bounded, 195 Stefan--Boltzmann Law, 212 topologically distinct channel
introduction to, 193 Stokes™ Law, 175 networks (TDCNs), 197
Rayleigh--Taylor instability, 162--164 Strahler ordering, 196 transport capacity
analogy to drumlin formation, stratigraphic completeness, 196 role in controlling bedrock vs.
178 stream function alluvial channel types, 4, 8
recirculation zones use of in ¬‚uid mechanics tridiagonal matrix
role in controlling eolian problems, 162, 175 use of in implicit numerical
deposition, 18, 167 sublimation methods, 62
relief production in glaciated terrain role of in forming spiral troughs, Tule Valley
introduction to, 28 184 shoreline scarps in, 42
RiverTools, 223 sur¬cial geologic mapping, 10 two-step Lax--Wendroff, 173
INDEX 295


U-shaped valleys, 26 fossil record of in packrat power spectrum of, 220
US Geological Survey middens, 11
DEMs in¬‚uence on weathering, 3, weathering front
problems with, 70 10 role in hillslope evolution, 3
Uinta Mountains Vialov solution, 128 Wind River Range
glacial erosion in, 27 visualization, 223 glacial erosion in, 26
UNIX cc compiler, 222 Vostok ice core, 214, 219 Wisconsin drumlin ¬eld, 180
Ural Mountains, 101 comparison with coherence
resonance model of ice ages, Yucca Mountain
V-shaped valley, 26 220 volcanic hazard associated with,
vegetation histogram of, 220 75

<<

. 14
( 14)