стр. 1
(всего 4)

СОДЕРЖАНИЕ

>>

Сканирование: Янко Слава
yanko_slava@yahoo.com || http://yanko.lib.ru/ | http://www.chat.ru/˜yankos/ya.html | Icq# 75088656
update 5/4/01
Можно сразу проверить наличие шрифта для символов логики Symbol
" $ O I E C E I " ? U U ' I a u O ® ˜
А.А.Ивин, А.Л.Никифоров
Словарь по логике


Гуманитарный издательский центр Владос


МОСКВА 1998


ББК 87.4я2 И70


© «Гуманитарный издательский центр ВЛАДОС», 1997
© Ивин А. А.,
Никифоров А. Л., 1997 Все права защищены
Рецензенты: докт. филос. наук, проф. В. Н. Перевезенцев; докт. филос. наук, проф. В.В. Петров
Ивин А. А., Никифоров А. Л.
И 70 Словарь по логике - М.: Туманит, изд. центр ВЛАДОС, 1997. - 384 с.
ISBN 5-691-00099-3.
Словарь представляет собой справочник, излагающий основ­ные понятия, операции и законы логики. Его задача — познакомить читателя с логикой как одной из теоретических основ информатики. Словарь будет полезен учителям, учащимся старших классов, сту­дентам педагогических институтов, а также всем, интересующимся проблемами логики.
ББК 87.4я2
4306010000-112 И———————— Без объявл. 14К(03)-97
ISBN 5-691-00099-3
ОТ РЕДАКЦИИ.. 9
A.. 10
АБСОЛЮТИЗАЦИЯ.. 10
АБСОЛЮТНЫЕ И СРАВНИТЕЛЬНЫЕ МОДАЛЬНОСТИ 10
АБСТРАКТНЫЙ ПРЕДМЕТ (англ. - abstract entity) 11
АБСТРАКЦИЯ (от лат. abstractio — отвлечение) 12
АБСУРД (от лат. absurdus — нелепый, глупый) 12
АВТОМАТ (от греч. automatos — самодействующий) 13
АВТОНИМНОЕ УПОТРЕБЛЕНИЕ ВЫРАЖЕНИЙ (от греч. autos-сам, опота — имя) 13
АКСИОЛОГИЧЕСКАЯ МОДАЛЬНОСТЬ (от греч. axios - ценный, logos — понятие, учение), или: Оценочная модальность,. 14
АКСИОМА (от греч. axioma — значимое, принятое положение) 14
АКСИОМАТИЧЕСКИЙ МЕТОД.. 15
АКСИОМАТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ.. 16
АЛГЕБРА БУЛЯ.. 16
АЛГОРИТМ (АЛГОРИФМ). 17
АЛОГИЗМ (от греч. а — не, logos — разум). 17
АМФИБОЛИЯ (от греч. amphibolia — двусмысленность, двойственность) 17
АНАЛИЗ И СИНТЕЗ. А. (от греч. analysis - разложение) 18
АНАЛИТИЧЕСКИЕ И СИНТЕТИЧЕСКИЕ СУЖДЕНИЯ (в логике). 18
АНАЛОГИЯ (от греч. analogia — соответствие) 19
Метафора,. 21
АНТЕЦЕДЕНТ И КОНСЕКВЕНТ (от лат. antecedent - предшествующий, предыдущий и consequens — следствие). 22
АНТИНОМИЯ (от греч. antinomia - противоречие в законе) 22
АНТИНОМИЯ РАССЕЛА.. 23
АНТИТЕЗИС (от греч. antithesis — противоположение) 25
АПОДИКТИЧЕСКИЙ (от греч. apodeiktikos — доказательный, убедительный) 25
АПОРИЯ (от греч. aporia — затруднение, недоумение) 25
АРГУМЕНТ (лат. argumentum). 26
АРГУМЕНТАЦИИ ТЕОРИЯ.. 29
АРГУМЕНТАЦИЯ (от лат. argumentatio - приведение аргументов) 33
АРГУМЕНТАЦИЯ КОНТЕКСТУАЛЬНАЯ.. 34
АРГУМЕНТАЦИЯ ТЕОРЕТИЧЕСКАЯ.. 38
АРГУМЕНТАЦИЯ ЭМПИРИЧЕСКАЯ.. 41
АРГУМЕНТ К АВТОРИТЕТУ (от лат. i pse dixit - сам сказал) 44
АРГУМЕНТ К АУДИТОРИИ.. 46
АРГУМЕНТ К ЖАЛОСТИ.. 46
АРГУМЕНТ К НЕЗНАНИЮ, или невежеству,. 46
АРГУМЕНТ К СИЛЕ («палочный» довод). 47
АРГУМЕНТ К СКРОМНОСТИ.. 47
АРГУМЕНТ К ТЩЕСЛАВИЮ... 47
АССЕРТОРИЧЕСКИЙ (от лат. asserto - утверждаю) 48
Б.. 48
БЕССМЫСЛЕННОЕ.. 48
«БРИТВА ОККАМА».. 50
В.. 52
ВЕРА.. 52
ВЕРБАЛЬНОЕ ОПРЕДЕЛЕНИЕ.. 52
ВЕРИФИКАЦИЯ (от лат. verificatio — доказательство, подтверждение) 52
ВЕРОЯТНОСТНАЯ ЛОГИКА.. 53
ВЕРОЯТНОСТЬ.. 53
ВОЗМОЖНОСТЬ ЛОГИЧЕСКАЯ.. 54
ВОЗРАЖЕНИЕ.. 55
ВОПРОС.. 55
ВОПРОСОВ ЛОГИКА, или: Эротетическая, интеррогативная логика, 57
ВЫВОД ЛОГИЧЕСКИЙ.. 58
ВЫСКАЗЫВАНИЕ.. 59
ВЫСКАЗЫВАНИЕ ДЕСКРИПТИВНОЕ (от англ. description - описание), или: Высказывание описательное, 61
ВЫСКАЗЫВАНИЕ КАТЕГОРИЧЕСКОЕ.. 63
ВЫСКАЗЫВАНИЕ (ПРЕДЛОЖЕНИЕ) КОНТРФАКТИЧЕСКОЕ (от лат. contra — против, factum — событие) 63
Г. 65
ГЕРМЕНЕВТИКА (от греч. hermeneuo - разъясняю, истолковываю) 65
ГЁДЕЛЯ ТЕОРЕМА.. 65
ГИПОСТАЗИРОВАНИЕ (от греч. hypostasis - сущность, субстанция) 65
ГИПОТЕЗА (от греч. hipothesis - основание, предположение) 66
ГИПОТЕТИКО-ДЕДУКТИВНЫЙ МЕТОД.. 69
ГИПОТЕТИЧЕСКОЕ УТВЕРЖДЕНИЕ.. 71
ГОМОМОРФИЗМ, ИЗОМОРФИЗМ... 71
Д.. 72
ДВОЙНОГО ОТРИЦАНИЯ ЗАКОН, см.: Закон двойного отрицания. 72
ДВУЗНАЧНАЯ ЛОГИКА.. 72
ДВУЗНАЧНОСТИ ПРИНЦИП.. 72
ДЕДУКЦИЯ (от лат. deductio — выведение). 73
ДЕЛЕНИЕ ЛОГИЧЕСКОЕ.. 77
ДЕНОТАТ (от лат. denoto — обозначаю), или: Десигнат, предметное значение, 78
ДЕОНТИЧЕСКАЯ ЛОГИКА (от греч. deon — долг, правильность), 79
ДЕОНТИЧЕСКАЯ МОДАЛЬНОСТЬ (от греч. deon - долг, правильность), 81
ДЕСКРИПЦИЯ ОПРЕДЕЛЕННАЯ (от лат. descriptio - описание) 84
ДИАГРАММЫ ВЕННА.. 84
ДИАЛЕКТИЧЕСКАЯ ЛОГИКА.. 85
ДИЗЪЮНКТИВНЫЙ СИЛЛОГИЗМ, см.: Модус понендо толленс. Модус толлендо поненс. 89
ДИЗЪЮНКЦИЯ (от лат. disjunctio — разобщение, различение) 89
ДИЛЕММА (от греч. di(s) - дважды и lemma - предположение) 90
ДИСКУРСИВНЫЙ (от лат. discursus — рассуждение, довод, аргумент) 91
ДИСКУССИЯ (от лат. discussio — рассмотрение, исследование) 92
ДИСТРИБУТИВНЫЕ И КОЛЛЕКТИВНЫЕ СВОЙСТВА. Д. с. 93
ДИХОТОМИЯ (от греч, dicha и tome - рассечение на две части) 94
ДОКАЗАТЕЛЬСТВО.. 95
ДОКАЗАТЕЛЬСТВО КОНСТРУКТИВНОЕ, см.: Конструктивная логика. 97
ДОКАЗАТЕЛЬСТВО ОТ ПРОТИВНОГО, см.: Косвенное доказательство. 97
ДОКАЗАТЕЛЬСТВО ПО СЛУЧАЯМ, или: Доказательство разбором случаев, 97
ДОКАЗУЕМОСТЬ, см.: Доказательство.. 98
ДОПОЛНЕНИЕ К МНОЖЕСТВУ.. 98
ДОСТАТОЧНОГО ОСНОВАНИЯ ПРИНЦИП.. 98
ДОСТАТОЧНОЕ УСЛОВИЕ, см.: Условное высказывание. 100
ДОСТОВЕРНОСТЬ.. 100
З.. 101
ЗАБЛУЖДЕНИЕ.. 101
ЗАКОН АССОЦИАТИВНОСТИ (от лат. associatio — соединение) 102
ЗАКОН ГИПОТЕТИЧЕСКОГО СИЛЛОГИЗМА.. 103
ЗАКОН ДВОЙНОГО ОТРИЦАНИЯ.. 103
ЗАКОН ДЕ МОРГАНА.. 104
ЗАКОН ДИСТРИБУТИВНОСТИ (от англ. distribution - распределение, размещение) 104
ЗАКОН ДУНСА СКОТА.. 105
ЗАКОН ИМПОРТАЦИИ, см.: Закон экспортации — импортации. 106
ЗАКОН ИСКЛЮЧЕННОГО ТРЕТЬЕГО.. 106
ЗАКОН КЛАВИЯ.. 108
ЗАКОН КОММУТАТИВНОСТИ (от лат. commutatio - изменение, перемена) 109
ЗАКОН КОММУТАЦИИ (от лат. commutatio - изменение, перемена) 110
ЗАКОН КОМПОЗИЦИИ (от лат. compositio — сочинение, составление) 110
ЗАКОН КОСВЕННОГО ДОКАЗАТЕЛЬСТВА.. 111
ЗАКОН ЛОГИКИ, см.: Логический закон.. 111
ЗАКОН МЫШЛЕНИЯ - термин традиционной логики, 111
ЗАКОН ПРОТИВОРЕЧИЯ, см.: Непротиворечия закон. 112
ЗАКОН ЭКСПОРТАЦИИ - ИМПОРТАЦИИ (от лат. exportare -вывозить, importare — ввозить) 112
ЗНАК.. 113
ЗНАНИЕ.. 114
ЗНАЧЕНИЕ.. 115
И.. 116
ИДЕАЛИЗАЦИЯ.. 116
ИДЕМПОТЕНТНОСТИ ЗАКОН (от лат. idempotens - сохраняющий ту же степень) 116
ИЛЛЮСТРАЦИЯ (от лат. illustratio - прояснять) 117
ИМПЛИКАЦИЯ (от лат. implicatio - сплетение, от implico — тесно связываю) 118
ИМПЛИКАЦИЯ МАТЕРИАЛЬНАЯ - импликация в трактовке логики классической. 119
ИМЯ.. 120
ИНДИВИД (от лат. individuum - неделимое). 122
ИНДУКТИВНАЯ ЛОГИКА.. 123
ИНДУКТИВНОЕ ОПРЕДЕЛЕНИЕ.. 123
ИНДУКЦИИ КАНОНЫ (от греч. canon — правило, предписание) 124
Метод единственного сходства:. 124
Метод сопутствующих изменений:. 124
Метод остатков.. 125
ИНДУКЦИЯ (от лат. inductio - наведение). 125
И.. 128
ИНДУКЦИЯ МАТЕМАТИЧЕСКАЯ, ПОЛНАЯ МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ 128
ИНДУКЦИЯ НЕПОЛНАЯ.. 129
ИНДУКЦИЯ ПОЛНАЯ.. 129
ИНДУКЦИЯ ПОПУЛЯРНАЯ.. 129
ИНТЕНСИОНАЛ И ЭКСТЕНСИОНАЛ.. 129
ИНТЕРПРЕТАЦИЯ (от лат. interpretatio - разъяснение, истолкование) 131
ИНТЕРСУБЪЕКТИВНЫЙ (от лат. inter - между) 133
ИНТУИТИВНАЯ ЛОГИКА.. 133
ИНТУИЦИОНИЗМ... 135
ИНТУИЦИОНИСТСКАЯ ЛОГИКА.. 136
ИНТУИЦИЯ (от лат. intuitio — пристальное, внимательное всматривание, созерцание) 137
ИРРАЦИОНАЛЬНОЕ (от лат. irrationalis - неразумный, бессознательный) 140
ИСКЛЮЧЕННОГО ТРЕТЬЕГО ЗАКОН, см.: Закон исключенного третьего. 140
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ.. 140
ИСТИНА.. 141
ИСТИННОСТНОЕ ЗНАЧЕНИЕ.. 141
ИСЧИСЛЕНИЕ.. 142
К.. 142
КАВЫЧКИ.. 142
КАТЕГОРИЧЕСКОЕ СУЖДЕНИЕ.. 142
КАТЕГОРИЯ (от греч. kategoria - высказывание, обвинение, признак) 142
КАУЗАЛЬНАЯ МОДАЛЬНОСТЬ, см.: Онтологическая модальность. 143
КЛАСС, МНОЖЕСТВО (В ЛОГИКЕ И МАТЕМАТИКЕ) 143
КЛАССИФИКАЦИЯ.. 143
КЛАССИЧЕСКАЯ ЛОГИКА, см.: Логика классическая. 144
КОНВЕНЦИЯ (от лат. conventio - соглашение) 144
КОННОТАЦИЯ (от лат. connotatio — добавочное значение) 144
КОНСТРУКТИВНАЯ ЛОГИКА.. 144
КОНТЕКСТ (от лат. contextus — сцепление, соединение, связь) 145
КОНТЕКСТУАЛЬНОЕ ОПРЕДЕЛЕНИЕ, см.: Определение контекстуальное. 145
КОНТРАДИКТОРНАЯ ПРОТИВОПОЛОЖНОСТЬ (от лат. contradictorius — противоречащий) 145
КОНТРАПОЗИЦИИ ЗАКОН.. 146
КОНТРАРНАЯ ПРОТИВОПОЛОЖНОСТЬ (от лат. contrarius - противоположный) 147
КОНЦЕПТ (от лат. conceptus— понятие). 147
КОНЪЮНКЦИЯ (от лат. conjunctio - союз, связь) 147
КОСВЕННОЕ ДОКАЗАТЕЛЬСТВО.. 148
КРУГ В ДОКАЗАТЕЛЬСТВЕ (лат. — circulus in demonstrando) 148
КРУГ В ОПРЕДЕЛЕНИИ.. 149
Л.. 149
ЛЕММА (от греч. lemma — предположение) 149
«ЛЖЕЦА» ПАРАДОКС.. 149
ЛОГИКА (от греч. logos — слово, понятие, рассуждение, разум), или: Формальная логика, 150
ЛОГИКА ВРЕМЕНИ, или: Временная логика,. 155
ЛОГИКА ВЫСКАЗЫВАНИЙ, или: Пропозициональная логика, 157
ЛОГИКА ДЕДУКТИВНАЯ, см.: Дедукция.. 159
ЛОГИКА ИЗМЕНЕНИЯ.. 159
ЛОГИКА КВАНТОВОЙ МЕХАНИКИ.. 161
ЛОГИКА КЛАССИЧЕСКАЯ.. 161
ЛОГИКА КЛАССОВ.. 162
ЛОГИКА КОМБИНАТОРНАЯ (от лат. combinare — соединять, сочетать) 162
ЛОГИКА МНОГОЗНАЧНАЯ, см.: Многозначная логика. 162
ЛОГИКА НАУЧНОГО ПОЗНАНИЯ, или: Логика науки, 162
ЛОГИКА НЕКЛАССИЧЕСКАЯ.. 167
ЛОГИКА НОРМ, см.: Деонтическая логика. 168
ЛОГИКА ОТНОШЕНИЙ.. 168
ЛОГИКА ПРЕДИКАТОВ, или: Функциональная логика, теория квантификации, кванторная логика, 169
ЛОГИКА ТРАДИЦИОННАЯ, см.: Традиционная логика. 170
ЛОГИКА ЭПИСТЕМИЧЕСКАЯ (от греч. episteme - знание) 170
М... 223
МАТЕМАТИЧЕСКАЯ ЛОГИКА.. 223
МАТЕРИАЛЬНАЯ СУППОЗИЦИЯ, см.: Суппозиция. 223
МЕТАМАТЕМАТИКА.. 223
МЕТАТЕОРИЯ (от греч. meta - после, за, позади) 225
МЕТАФОРА (от греч, metaphora - перенос, образ) 225
МЕТАЯЗЫК (от греч. meta - после, за, позади) 225
МЕТОД (от греч. methodos — путь, способ исследования, обучения, изложения) 226
МЕТОДОЛОГИЧЕСКАЯ АРГУМЕНТАЦИЯ.. 227
МЕТОДОЛОГИЯ НАУКИ.. 229
МНОГОЗНАЧНАЯ ЛОГИКА.. 231
МНОГОЗНАЧНОСТИ ПРИНЦИП, см.: Принцип многозначности. 233
МНОГОЗНАЧНОСТЬ. 233
МНОЖЕСТВ ТЕОРИЯ.. 234
МОДАЛЬНАЯ ЛОГИКА.. 236
МОДАЛЬНОСТЬ (от лат., modus — мера, способ) 247
МОДЕЛЬ (от лат. modulus — мера, образец, норма) 264
МОДЕЛЬ СЕМАНТИЧЕСКАЯ.. 270
МОДУС (лат. modus - мера, способ, образ, вид) 272
МОДУС ПОНЕНДО ТОЛЛЕНС (лат. modus ponendo tollens) 275
МОДУС ПОНЕНС (лат. modus ponens) 294
МОДУС ТОЛЛЕНДО ПОНЕНС (лат. modus tollendo ponens) 325
МОДУС ТОЛЛЕНС (лат. modus tollens) 353
МЫШЛЕНИЕ. 366
Н.. 374
НАУКА.. 375
«НЕ ВЫТЕКАЕТ», «НЕ СЛЕДУЕТ» (лат. поп sequitur) 388
«НЕДОКАЗАННОЕ ОСНОВАНИЕ» ДОКАЗАТЕЛЬСТВА 392
НЕЗАВИСИМОСТЬ (в логике и математике) 394
НЕКЛАССИЧЕСКАЯ ЛОГИКА, см.: Логика неклассическая. 404
НЕОБХОДИМОСТЬ (логическая) 405
НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ (в логике и математике) 415
НЕПОСРЕДСТВЕННОЕ УМОЗАКЛЮЧЕНИЕ (в традиционной логике) 421
НЕПРАВИЛЬНОЕ УМОЗАКЛЮЧЕНИЕ, см.: Умозаключение. 424
НЕПРЕДИКАТИВНОЕ ОПРЕДЕЛЕНИЕ. 427
НЕПРОТИВОРЕЧИВОСТЬ. 430
НЕПРОТИВОРЕЧИЯ ЗАКОН.. 437
НЕСОБСТВЕННЫЕ СИМВОЛЫ, см.: Символы собственные и несобственные. 450
НЕЧЕТКОЕ МНОЖЕСТВО.. 461
НЕЯСНОСТЬ. 469
НОМОЛОГИЧЕСКОЕ ВЫСКАЗЫВАНИЕ (от греч. nomos - закон, logos — учение, понятие) 479
НОРМА, см.: Нормативное высказывание. 482
НОРМАЛЬНОЕ МНОЖЕСТВО, см.: Противоречие в явном определении. 483
НОРМАТИВНАЯ ЛОГИКА, см.: Деонтическая логика. 484
НОРМАТИВНАЯ МОДАЛЬНОСТЬ, см.: Деонтическая модальность. 485
НОРМАТИВНОЕ ВЫСКАЗЫВАНИЕ, или: Деонтическое высказывание, 486
О.. 505
ОБОБЩЕНИЕ (лат. generalisatio). 506
ОБОЗНАЧЕНИЯ ОТНОШЕНИЕ. 514
ОБОСНОВАНИЕ. 521
ОБОСНОВАНИЕ ОЦЕНОК.. 542
ОБРАЗЕЦ.. 580
ОБРАЩЕНИЕ (лат. conversio) 590
ОБЩЕЕ ПОНЯТИЕ, см.: Понятие. 598
ОБЩЕЕ СУЖДЕНИЕ, см.: Суждение. 599
ОБЪЕДИНЕНИЕ (СЛОЖЕНИЕ) КЛАССОВ (МНОЖЕСТВ) 600
ОБЪЕКТИВНОСТЬ. 604
ОБЪЕКТНЫЙ (ПРЕДМЕТНЫЙ) ЯЗЫК.. 611
ОБЪЯСНЕНИЕ. 613
ОГРАНИЧЕНИЕ ПОНЯТИЯ.. 640
ОМОНИМИЯ (от греч. homos — одинаковый, опута — имя) 642
ОПЕРАТОР (от лат. operator — действующий) 644
ОПИСАНИЕ, см.: Высказывание дескриптивное. 652
ОПИСАНИЕ СОСТОЯНИЯ (англ. state description) 653
ОПИСАТЕЛЬНОЕ ВЫСКАЗЫВАНИЕ, см.: Высказывание дескриптивное. 656
ОПИСАТЕЛЬНО-ОЦЕНОЧНОЕ ВЫСКАЗЫВАНИЕ, см.: Высказывание дескриптивное, Оценочное высказывание. 657
ОПРЕДЕЛЕНИЕ (лат. definitio) 658
ОПРЕДЕЛЕНИЕ АКСИОМАТИЧЕСКОЕ. 669
ОПРЕДЕЛЕНИЕ ГЕНЕТИЧЕСКОЕ (от греч. genesis - происхождение, источник) 676
ОПРЕДЕЛЕНИЕ КЛАССИЧЕСКОЕ, или: Определение через род и видовое отличие, 678
ОПРЕДЕЛЕНИЕ НЕЯВНОЕ. 683
ОПРЕДЕЛЕНИЕ НОМИНАЛЬНОЕ. 685
ОПРЕДЕЛЕНИЕ ОПЕРАЦИОНАЛЬНОЕ. 691
ОПРЕДЕЛЕНИЕ ОСТЕНСИВНОЕ (от лат. ostentus - показывание, выставление напоказ) 693
ОПРЕДЕЛЕНИЕ РЕАЛЬНОЕ. 701
ОПРЕДЕЛЕНИЕ ЯВНОЕ. 707
ОПРОВЕРЖЕНИЕ. 715
ОСМЫСЛЕННОСТЬ. 720
ОСНОВАНИЕ И СЛЕДСТВИЕ. 723
ОТНОШЕНИЕ (в логике) отождествляется с многоместным предикатом. 729
ОТНОШЕНИЕ ВКЛЮЧЕНИЯ КЛАССА В КЛАСС, см.: Множеств теория. 734
ОТНОШЕНИЕ НЕРЕФЛЕКСИВНОЕ (иррефлексивное) 735
ОТНОШЕНИЕ ПРИНАДЛЕЖНОСТИ ЭЛЕМЕНТА КЛАССУ (МНОЖЕСТВУ), см.: Множеств теория. 737
ОТНОШЕНИЕ РЕФЛЕКСИВНОЕ. 738
ОТНОШЕНИЕ СИММЕТРИЧНОЕ. 740
ОТНОШЕНИЕ ТИПА РАВЕНСТВА.. 742
ОТНОШЕНИЕ ТРАНЗИТИВНОЕ. 748
ОТНОШЕНИЕ ФУНКЦИОНАЛЬНОЕ (ОДНОЗНАЧНОЕ) 750
ОТРИЦАНИЕ. 755
ОТРИЦАТЕЛЬНОЕ ВЫСКАЗЫВАНИЕ, см.: Отрицание. 758
ОЦЕНКА, см.: Оценочное высказывание. 759
ОЦЕНОК ЛОГИКА.. 760
ОЦЕНОЧНАЯ МОДАЛЬНОСТЬ, см.: Аксиологическая модальность. 779
ОЦЕНОЧНОЕ ВЫСКАЗЫВАНИЕ. 780
ОШИБКА ЛОГИЧЕСКАЯ.. 795
П.. 800
ПАРАДИГМА (от греч. paradeigma — пример, образец) 801
ПАРАДОКС (греч. paradoxos) 803
ПАРАДОКСЫ ИМПЛИКАЦИИ.. 822
ПАРАЛОГИЗМ (от греч. paralogismos — неправильное, ложное рассуждение) 837
ПАРАНЕПРОТИВОРЕЧИВАЯ ЛОГИКА.. 839
ПЕРЕМЕННАЯ.. 844
ПЕРЕСЕЧЕНИЕ КЛАССОВ (МНОЖЕСТВ) 848
ПОДМЕНА ТЕЗИСА (лат. ignoratio elenchi) 849
ПОДТВЕРЖДЕНИЕ. 855
ПОЗНАНИЕ. 865
ПОЛЕМИКА.. 868
ПОЛНОТА (в логике и дедуктивных науках) 876
ПОНИМАНИЕ. 880
ПОНЯТИЕ. 894
ПОРОЧНЫЙ КРУГ.. 898
«ПОСЛЕ ЭТОГО ЗНАЧИТ ПО ПРИЧИНЕ ЭТОГО» (лат. post hoc ergo propter hoc) 903
ПОСПЕШНОЕ ОБОБЩЕНИЕ. 905
ПРАВИЛО ВЫВОДА.. 907
ПРАВИЛО ЛОККА.. 909
ПРАГМАТИКА.. 916
ПРАВИЛО ОТДЕЛЕНИЯ, см.: Модус поненс. 918
ПРЕВРАЩЕНИЕ (лат. obversio) в традиционной логике 919
«ПРЕДВОСХИЩЕНИЕ ОСНОВАНИЯ» (лат. petitio principii) 921
ПРЕДИКАТ (от лат. praedicatum - сказанное) 926
ПРЕДЛОЖЕНИЕ.. 930
ПРЕДМЕТНАЯ ОБЛАСТЬ, или: Универсум рассуждения, область теории, 938
ПРЕДПОЧТЕНИЙ ЛОГИКА.. 941
ПРЕДСКАЗАНИЕ. 961
ПРЕСКРИПТИВНОЕ ВЫСКАЗЫВАНИЕ, см.: Нормативное высказывание. 964
ПРИВЕДЕНИЕ К АБСУРДУ, или: Редукция к абсурду, приведение к нелепости (лат. reductio ad absurdum), 965
Частный закон приведения к абсурду. 973
ПРИМЕР. 977
ПРИНЦИП ВЗАИМОЗАМЕНИМОСТИ.. 992
ПРИНЦИП МНОГОЗНАЧНОСТИ.. 995
ПРИНЦИП ОБЪЕМНОСТИ (экстенсиональности) (от лат. extentio — протяжение) 1010
ПРИНЦИП ОДНОЗНАЧНОСТИ.. 1015
ПРИНЦИП ПРЕДМЕТНОСТИ.. 1017
ПРИЧИННАЯ СВЯЗЬ. 1019
ПРИЧИННОСТИ ЛОГИКА.. 1031
ПРОБЛЕМА (от греч. problema — преграда, трудность, задача) 1049
ПРОПОЗИЦИОНАЛЬНАЯ СВЯЗКА.. 1059
ПРОПОЗИЦИОНАЛЬНАЯ ФУНКЦИЯ.. 1066
ПРОТИВОПОЛОЖНОСТЬ ЛОГИЧЕСКАЯ.. 1076
ПРОТИВОПОСТАВЛЕНИЕ ПРЕДИКАТУ.. 1082
ПРОТИВОРЕЧИЕ. 1087
Р.. 1095
РАВЕНСТВО.. 1096
РАВНОЗНАЧНОСТЬ (равносильность, эквивалентность) 1099
РАВНООБЪЕМНОСТЬ. 1101
РАЗДЕЛИТЕЛЬНОЕ СУЖДЕНИЕ. 1106
РАЗДЕЛИТЕЛЬНО-КАТЕГОРИЧЕСКОЕ УМОЗАКЛЮЧЕНИЕ 1109
РАЗДЕЛИТЕЛЬНО-УСЛОВНОЕ УМОЗАКЛЮЧЕНИЕ, см.: Дилемма. 1118
РАЗРЕШАЮЩАЯ ПРОЦЕДУРА, см.: Разрешения проблема. 1119
РАЗРЕШЕНИЯ ПРОБЛЕМА, или: Разрешимости проблема, 1120
РАЗРЕШИМАЯ ТЕОРИЯ.. 1125
РАЦИОНАЛЬНОСТЬ (от лат. ratio - разум) 1128
РЕКУРСИВНОЕ ОПРЕДЕЛЕНИЕ (от лат. recurso - возвращаюсь) 1135
РЕЛЕВАНТНАЯ ИМПЛИКАЦИЯ, см.: Релевантная логика. 1145
РЕЛЕВАНТНАЯ ЛОГИКА.. 1146
РЕФЕРЕНТ (от лат. refero — называть, обозначать) 1152
РЕФЕРЕНЦИЯ.. 1154
C.. 1156
СВОЙСТВО.. 1157
СВЯЗКА.. 1160
СЕМАНТИКА ЛОГИЧЕСКАЯ.. 1165
СЕМАНТИЧЕСКАЯ КАТЕГОРИЯ.. 1168
СЕМАНТИЧЕСКИЕ ПАРАДОКСЫ, см.: Антиномия. 1178
СЕМАНТИЧЕСКОЕ ПОНЯТИЕ ИСТИНЫ... 1179
СЕМИОТИКА.. 1188
СИЛЛОГИЗМ (от греч. sillogismos) категорический. 1191
СИМВОЛ (от греч. symbolon — знак, опознавательная примета) 1234
СИМВОЛИКА ЛОГИЧЕСКАЯ.. 1258
СИМВОЛИЧЕСКАЯ ЛОГИКА.. 1281
СИМВОЛЫ СОБСТВЕННЫЕ И НЕСОБСТВЕННЫЕ. 1284
СИНКАТЕГОРЕМАТИЧЕСКОЕ ВЫРАЖЕНИЕ, см.: Символы собственные и несобственные. 1295
СИНОНИМИЯ.. 1296
СИНТАКСИС (греч. syntaxis — построение, порядок) 1299
СИНТАКСИЧЕСКАЯ КАТЕГОРИЯ.. 1304
СЛЕДОВАНИЕ, см.: Логическое следование. 1307
СЛЕДСТВИЕ, см.: Логическое следование. 1308
СЛОЖНОЕ ВЫСКАЗЫВАНИЕ. 1309
СЛУЧАЙНОСТЬ ЛОГИЧЕСКАЯ.. 1312
СМЫСЛ.. 1323
СОВМЕСТИМОСТИ УСЛОВИЕ. 1325
СОБИРАТЕЛЬНОЕ ПОНЯТИЕ, см.: Понятие. 1341
СОВМЕСТИМОСТЬ. 1342
СОВРЕМЕННАЯ ЛОГИКА.. 1349
1. Методология дедуктивных наук. 1362
2. Применение логического анализа к опытному знанию. 1364
3. Применение логического анализа к оценочно-нормативному знанию. 1366
4. Применение логического анализа в исследовании приемов и операций, постоянно используемых во всех сферах научной деятельности. 1368
СОДЕРЖАНИЕ И ФОРМА, см.: Логическая форма. 1377
СОДЕРЖАНИЕ ПОНЯТИЯ, см.: Понятие. 1378
СОРИТ (от греч. soros - куча) 1379
СОФИЗМ... 1407
СПОР. 1424
Дискуссия. 1430
Полемика. 1432
Эклектика. 1434
Софистика. 1436
СРАВНИТЕЛЬНЫЕ МОДАЛЬНОСТИ, см.: Абсолютные и сравнительные модальности. 1444
СТРОГАЯ ИМПЛИКАЦИЯ, см.: Импликация, Парадоксы импликации, Логика. 1445
СТРОГОСТЬ. 1446
СУЖДЕНИЕ. 1456
СУППОЗИЦИЯ (от лат. suppositio — подкладывание, подмена) 1464
СУЩЕСТВЕННЫЙ ПРИЗНАК, см.: Определение понятия. 1474
СХОДСТВО.. 1475
Т.. 1479
ТАБЛИЦА ИСТИННОСТИ.. 1480
ТАВТОЛОГИЯ.. 1498
ТЕЗИС.. 1506
ТЕОРЕТИЧЕСКОЕ И ЭМПИРИЧЕСКОЕ. 1513
ТЕОРЕТИЧЕСКОЕ МЫШЛЕНИЕ. 1521
ТЕОРИЯ (от греч. theoria — наблюдение, рассмотрение, исследование) 1528
1. Исходные основания Т. 1531
2. Идеализированный объект Т. 1533
3. Логика Т. 1535
4. Совокупность законов и утверждений, 1537
ТЕОРИЯ ПОЗНАНИЯ.. 1544
ТЕРМИН (от лат. terminus — граница, предел, конец ч.-л.) 1570
ТЕРМИН ТЕОРЕТИЧЕСКИЙ.. 1575
ТЕРМИН ЭМПИРИЧЕСКИЙ.. 1577
ТЕРМИНЫ СИЛЛОГИЗМА - элементы суждений, входящих в состав силлогизма (см.: Силлогизм). 1583
ТИПОВ ТЕОРИЯ.. 1584
ТИПОЛОГИЯ (от греч. tipos — отпечаток, форма) 1586
ТОЖДЕСТВА ЗАКОН.. 1591
ТОЖДЕСТВО.. 1605
ТРАДИЦИОННАЯ ЛОГИКА.. 1611
ТРАНЗИТИВНОСТИ ЗАКОН.. 1614
У.. 1628
УМОЗАКЛЮЧЕНИЯ ИЗ СУЖДЕНИЙ С ОТНОШЕНИЯМИ 1629
УМОЗАКЛЮЧЕНИЕ. 1634
УМОЗАКЛЮЧЕНИЕ СТАТИСТИЧЕСКОЕ. 1648
УНИВЕРСУМ РАССУЖДЕНИЯ, см.: Предметная область. 1659
УСЛОВНОЕ ВЫСКАЗЫВАНИЕ. 1660
УСЛОВНОЕ УМОЗАКЛЮЧЕНИЕ. 1672
УЧЕТВЕРЕНИЕ ТЕРМИНОВ (лат. quaternio terminorum) 1721
Ф... 1729
ФАКТ (от лат. factum — сделанное, совершившееся) 1730
ФАЛЬСИФИКАЦИЯ (от лат. falsus — ложный, facio - делаю) 1741
ФИГУРА СИЛЛОГИЧЕСКАЯ, см.: Силлогизм. 1750
ФИЗИЧЕСКАЯ МОДАЛЬНОСТЬ, см.: Онтологическая модальность. 1751
«ФИЛОСОФСКАЯ ЛОГИКА». 1752
ФОРМАЛИЗАЦИЯ (от лат. forma — вид, образ) 1757
ФОРМАЛЬНАЯ ЛОГИКА, или: Л о г и к а, 1767
ФОРМАЛЬНАЯ СУППОЗИЦИЯ, см.: Суппозиция. 1769
ФОРМАЛЬНАЯ ТЕОРИЯ.. 1770
ФОРМЫ МЫСЛИ, или: Формы мышления, 1778
ФУНКТОР. 1780
ФУНКЦИЯ (от лат. functio — осуществление, выполнение) 1783
Ц.. 1787
ЦЕЛЕВОЕ ОБОСНОВАНИЕ.. 1788
ЦЕЛЬ-СРЕДСТВО.. 1821
Ч.. 1842
ЧАСТНОЕ СУЖДЕНИЕ.. 1843
Э.. 1847
ЭВРИСТИКА (от греч. heurisko - отыскиваю, открываю) 1848
ЭЙЛЕРА КРУГИ.. 1850
ЭКВИВАЛЕНТНОСТЬ, или: Равнозначность,. 1851
ЭКВИВОКАЦИЯ — логическая ошибка, 1856
ЭКЗИСТЕНЦИАЛЬНОЕ ВЫСКАЗЫВАНИЕ (от лат. existentia - существование) 1858
ЭКЛЕКТИКА.. 1860
ЭКСПЛИКАЦИЯ (от лат. explicatio - разъяснение) 1868
ЭКСТЕНСИОНАЛЬНОСТЬ. 1874
Экстенсиональный контекст. 1876
ЭЛЛИПТИЧЕСКОЕ ВЫСКАЗЫВАНИЕ.. 1881
ЭМПИРИЧЕСКОЕ И ТЕОРЕТИЧЕСКОЕ, см.: Теоретическое и эмпирическое. 1883
ЭНТИМЕМА (от греч. in thymos — в уме). 1884
ЭПИХЕЙРЕМА (от греч. epiheirema — умозаключение) 1892
ЭРИСТИКА (от греч. eristika — искусство спора) — искусство ведения спора. 1897
Ю... 1923
«ЮМА ПРИНЦИП».. 1924
Я.. 1933
ЯЗЫК.. 1934
ЯЗЫКА ФУНКЦИИ, или Употребление языка, 1948
ЯЗЫК ЛОГИКИ.. 1962
ЯЗЫК НАУКИ.. 1972
ЯЗЫК СЕМАНТИЧЕСКИ ЗАМКНУТЫЙ.. 1978
ЯСНОСТЬ.. 1980

ОТ РЕДАКЦИИ
Цель издания словаря — дать широкому читателю доходчивый, удобный в пользовании справочник, разъясняющий основные, наи­более употребительные понятия и термины современной логики. Словарь рассчитан прежде всего на преподавателей средней шко­лы, но будет полезен студентам, школьникам и всем тем, кто стре­мится самостоятельно овладеть основами логики.
Специфика словаря наложила определенные ограничения на полноту словника. В результате многие узкоспециальные понятия либо не вошли в словарь, либо включены в статьи более общего характера. Главное внимание уделено раскрытию фундаменталь­ных понятий, операций и законов логики, описанию основных раз­делов современной логики, совершенствованию практических на­выков последовательного и доказательного мышления.
Статьи словаря позволяют читателю получить относительно полный объем сведений, относящихся к интересующему его пред­мету. В состав словаря включен ряд терминов, используемых как в логической литературе, так и в философии, педагогике, методоло­гии научного познания и т. д.
В словаре применяются обычные для справочных изданий со­кращения (их список приводится ниже). Вместо полного названия статьи в ее тексте приводятся лишь первые буквы составляющих это название слов. Ссылки на другие статьи даются курсивом.
Редакция будет благодарна читателям за отзывы и пожелания, которые помогут ей в дальнейшей работе над словарем.


СПИСОК СОКРАЩЕНИЙ, ПРИНЯТЫХ В СЛОВАРЕ


н. э. — нашей эры
ок. — около
р.— родился
рис. — рисунок
рус. — русский
см. — смотри
совр. — современный
ср. — сравни
ср. века — средние века
т. е. — то есть
т. к. — так как
т.наз. — так называемый
т. о. — таким образом
ч.-л. — что-либо
ум. — умер
амер. — американский англ. — английский антич. — античный в. (вв.) — век (века) г. (гг.) - год (годы) гл. обр. — главным образом греч. — древнегреческий язык и др. — и другие и т. д. — и так далее и т. п. — и тому подобное к.-л. — какой-либо лат. — латинский язык наз. — называется, называемый напр. — например
A
АБСОЛЮТИЗАЦИЯ
— мыслительный прием, суть которого зак­лючается в том, что в качестве точного принимается такой пре­дел приближения к действительности, который обусловлен по­требностями практики. В процессе А. относительно точное в рамках решаемой задачи рассматривается как точное в некотором абсо­лютном смысле. Напр., требуется купить скатерть на стол. Для это­го следует измерить площадь стола. Однако ясно, что измерять пло­щадь стола с точностью до микрона не имеет смысла. Приближенные, огрубленные результаты измерения рассматриваются как истинные в некотором абсолютном смысле.
АБСОЛЮТНЫЕ И СРАВНИТЕЛЬНЫЕ МОДАЛЬНОСТИ
- мо­дальные характеристики, приложимые к отдельным объектам и, соответственно, к парам объектов. А. м. выступают как свойства объектов. С. м. — как отношения между объектами. Напр., с точ­ки зрения какой-то системы ценностей невыполнение обещания можно охарактеризовать как негативно ценное («плохое»), сказав: «Плохо, что данное обещание не выполнено». Но можно также установить ценностное отношение между невыполнением обеща­ния и, допустим, воздержанием от обещания, сказав: «Лучше не давать обещание, чем не выполнять его».
В логике времени к А. м. относятся понятия: «было» («всегда было»), «есть» и «будет» («всегда будет»); С. м. — «раньше», «одновременно» и «позже».
В оценок логике наряду с абсолютными оценочными понятиями «хорошо», «(оценочно) безразлично» и «плохо» исследуются так­же сравнительные оценочные понятия «лучше», «равноценно» и «хуже» (см.: Аксиологическая модальность).




[6]
В причинности логике изучаются отношения «...есть причина...» и «...есть следствие...», которые можно рассматривать как срав­нительные каузальные модальности. Им соответствует абсолютная каузальная модальность «детермини­ровано (предопределено)». Выражение «Событие А является причиной события В» устанавливает определенное отношение меж­ду двумя событиями; выражение «Детерминировано наступление события А» приписывает этому событию свойство предопреде­ленности.
В логике истины к А. м. относятся понятия «истинно», «нео­пределенно» и «ложно». Этим понятиям можно поставить в соответ­ствие сравнительное модальное понятие вероятности: «...более вероятно, чем...». Выражение «Истинно высказывание А» устанав­ливает определенное свойство высказывания; выражение «Выска­зывание А более вероятно, чем высказывание В» указывает отноше­ние двух высказываний с точки зрения их вероятности.
В логике изменения наряду с абсолютным понятием «возникает» исследуется также сравнительное понятие «... переходит в ...» («Воз­никает объект А» и «Состояние А переходит в состояние В»).
Абсолютные модальные понятия иногда называются А-понятиями, сравнительные — В-понятиями, А- и В-понятия не сводимы друг к другу, они представляют собой как бы два разных видения мира, два взаимодополнительных способа описания одних и тех же вещей и событий. «Хорошо» не определимо через «лучше», «было» не определимо через «раньше» и т. д. Логики абсолютных модаль­ных понятий несводимы к логикам сравнительных понятий, и наоборот.
В модальной логике основное внимание уделяется А. м. Из срав­нительных модальных понятий относительно подробно исследо­ваны пока только аксиологические модальности «лучше», «равно­ценно», «хуже» (см.: Предпочтений логика) и каузальные модальности.
АБСТРАКТНЫЙ ПРЕДМЕТ (англ. - abstract entity)
- предмет, не существующий в действительности, созданный нашим вообра­жением. В процессе познания окружающей реальности мы выде­ляем отдельные свойства, стороны, отношения реальных предме­тов и делаем их объектом изучения. Напр., всякий товар имеет свойство обладать некоторой ценой. Мы можем отделить это свой­ство от тех вещей, которым оно присуще, и сделать его самостоя­тельным предметом рассмотрения, исследуя, скажем, колебания цены от величины спроса. В этом случае цена выступает как абстракт­ный предмет. Точно такими же абстрактными предметами явля-


[7]
ются величина, форма, цвет, масса, скорость и т. п. Оперирование абстрактными предметами облегчает нам процессы рассуждения, позволяя сосредоточить внимание именно на том, что нас интере­сует, и дает возможность сделать их более точными. Однако всегда следует помнить о том, что абстрактные предметы существуют лишь в нашем воображении. Попытка приписать им реальное существова­ние приводит к ошибке гипостазирования.
АБСТРАКЦИЯ (от лат. abstractio — отвлечение)
— 1) процесс отвлечения от некоторых характеристик (свойств, отношений) изучаемых предметов и явлений, от реальных носителей интере­сующих нас характеристик; 2) результат этого отвлечения, пред­ставляющий собой некоторый абстрактный предмет. Отвлека­ясь от некоторых характеристик исследуемых объектов, мы одновременно выделяем те характеристики, которые нас в дан­ном случае интересуют, и делаем их предметом своего рассмот­рения. Когда вы ищете себе книгу для приятного чтения, вас не интересует ее обложка, качество бумаги, на которой она напе­чатана, ее формат и т. п., вам важно лишь одно: чтобы книга была интересной. Но если вы ищете книгу для подарка, ее со­держание интересует вас уже гораздо меньше и вы большее вни­мание обращаете на ее внешний вид. В зависимости от того, что именно интересует нас в данном случае, мы будем абстрагиро­ваться от разных характеристик и благодаря этому получать раз­ные абстрактные предметы.
АБСУРД (от лат. absurdus — нелепый, глупый)
— в логике под А. обычно понимается противоречивое выражение. В таком выраже­нии что-то утверждается и отрицается одновременно, как, напр., в высказывании «Тщеславие существует и тщеславия нет». Абсур­дным считается также выражение, которое внешне не является противоречивым, но из которого все-таки может быть выведено противоречие. Скажем, в высказывании «Александр Македонский был сыном бездетных родителей» есть только утверждение, но нет отрицания и, соответственно, нет явного противоречия. Но ясно, что из этого высказывания вытекает очевидное противоре­чие: «Некоторые родители имеют детей и вместе с тем не имеют их». А. отличается от бессмысленного: бессмысленное не истинно и не ложно, его не с чем сопоставить в действительности, чтобы решить, соответствует оно ей или нет. Абсурдное высказывание осмысленно и в силу своей противоречивости является ложным. Напр., высказывание «Если идет дождь, то трамвай» бессмыслен­но, а высказывание «Яблоко было разрезано на три неравные половины» не бессмысленно, а абсурдно.


[8]
Логический закон непротиворечия говорит о недопустимости од­новременно утверждения и отрицания. Абсурдное высказывание пред­ставляет собой прямое нарушение этого закона.
В логике рассматриваются доказательства путем «приведения к А.»: если из некоторого положения выводится противоречие, то это положение является ложным (см.: Косвенное доказательство).
В обычном языке однозначности в понимания слова «А.» нет. Абсурдным называется и внутренне противоречивое выражение, и бессмысленное, а иногда и все нелепо преувеличенное.
АВТОМАТ (от греч. automatos — самодействующий)
— устрой­ство (или совокупность устройств), выполняющее по заданной программе и без участия человека все операции в процессах полу­чения, преобразования и использования различных видов энер­гии, материалов или информации. Программа А. задается его кон­струкцией или вводится в него извне — с помощью перфокарт, магнитных лент и т. п. А. используются как средство облегчения тру­да человека, повышения его производительности, как средство ос­вобождения человека от утомительной, однообразной, нетворческой деятельности. В настоящее время А. широко проникли в производство, жизнь и быт современного человека. Всем знакомы такие А., как часы, холодильники, проигрыватели и магнитофоны и т. п. Жители многоэтажных домов пользуются лифтом — это тоже А., в метро стоят А. для размена монет, в магазинах — торговые А. В процессе производства используются автоматические станки с числовым про­граммным управлением, электронно-вычислительные машины, ав­томатические линии, объединяющие в единое целое несколько раз­личных станков и механизмов. В настоящее время уже созданы и работают заводы-автоматы, где весь производственный процесс осу­ществляется без вмешательства человека.
АВТОНИМНОЕ УПОТРЕБЛЕНИЕ ВЫРАЖЕНИЙ (от греч. autos-сам, опота — имя)
— употребление выражений в качестве обозначе­ний самих себя. Обычно языковые выражения используются для того, чтобы говорить о вещах и явлениях окружающего мира. По­этому слова, входящие в предложения, относятся к внеязыковым предметам. Напр., предложение «В средней полосе России часто встречаются березы» говорит о России и о березах. Слово «березы» здесь относится к реально существующим деревьям, обозначает их. Это обычное словоупотребление. Однако иногда приходится гово­рить о самих выражениях языка. Напр., в предложении «"Береза" состоит из трех слогов» речь идет о слове, а не о том предмете, к которому это слово относится. В таких случаях слова употребля­ются автонимно, т. е. как обозначающие сами себя. Для указания


[9]
на А. у. в. используется курсив или кавычки: «Слово "береза" состо­ит из трех слогов». Смешение обычного и А.у. языковых выражений способно приводить к логическим ошибкам в рассуждениях. Приме­ром такой ошибки может служить следующее рассуждение: «Мышь грызет книгу. Мышь — имя существительное. Следовательно, имя существительное грызет книгу».
АКСИОЛОГИЧЕСКАЯ МОДАЛЬНОСТЬ (от греч. axios - ценный, logos — понятие, учение), или: Оценочная модальность,
— характеристика объекта с точки зрения определенной системы ценностей. Аксиологический статус отдельного объекта обычно выражается абсолютными оценочными понятиями «хорошо», «пло­хо» и «(оценочно) безразлично», используемыми в оценочном высказывании. Относительный аксиологический статус выража­ется сравнительными оценочными понятиями «лучше», «хуже» и «равноценно». Напр.: «Хорошо, что пошел дождь», «Плохо, что су­ществуют болезни», «Дождливая погода лучше сухой» и т. п. Вместо слов «хорошо» и «плохо» нередко используются слова «позитивно ценно», «является добром», «негативно ценно», «есть зло» и т. п. Вместо «лучше» используется «предпочитается».
Аксиологические модальные понятия являются необходимы­ми структурными компонентами оценочных высказываний. Логи­ческое исследование этих понятий осуществляется оценок логикой, слагающейся из логики абсолютных оценок и логи­ки сравнительных оценок (предпочтений логики). По сво­им логическим свойствам А. м. аналогичны модальностям других групп: логическим («необходимо», «возможно», «невозможно»), эпистемическим («убежден», «сомневается», «отвергает») и др.
Понятия «хорошо» и «плохо» взаимно определимы: объект яв­ляется позитивно ценным, когда его отсутствие негативно ценно. Безразличное определяется как не являющееся ни хорошим, ни плохим. Понятия «лучше» и «хуже» также взаимно определимы: первое лучше второго, когда второе хуже первого. Равноценное определяется как не являющееся ни лучшим, ни худшим.
Нормативные понятия «обязательно», «разрешено» и «запреще­но» определимы через оценочные понятия. Это означает, что деон­тическая модальная характеристика сводима к аксиологической мо­дальной характеристике (см.: Деонтическая логика).
АКСИОМА (от греч. axioma — значимое, принятое положение)
— исходное, принимаемое без доказательства положение к.-л. теории, лежащее в основе доказательств других ее положений.
Долгое время термин «А.» понимался не просто как отправной пункт доказательств, но и как истинное положение, не нуждающе-


[10]
еся в особом доказательстве в силу его самоочевидности, нагляд­ности, ясности и т. п. Так, Аристотель (384—322 до н. э.) считал, что А. (начала) не требуют доказательства по причине своей яс­ности и простоты. Древнегреческий математик Евклид (III в. до н. э.) рассматривал принятые им геометрические А. как самооче­видные истины, достаточные для выведения всех других истин геометрии. Нередко А. трактовались как вечные и непреложные истины, известные до всякого опыта и не зависящие от него, попытка обоснования которых могла только подорвать их оче­видность.
Переосмысление проблемы обоснования А. изменило и содер­жание самого термина «А.». А. являются не исходным началом познания, а скорее его промежуточным результатом. Они обосно­вываются не сами по себе, а в качестве необходимых составных элементов теории: подтверждение последней есть одновременно и подтверждение ее А. Критерии выбора А. меняются от теории к теории и являются во многом прагматическими, учитывающими соображения краткости, удобства манипулирования, минимиза­ции числа исходных понятий и т. п. В частности, в формальном исчислении, класс теорем которого уже известен, А. — это просто одна из тех формул, из которых выводятся остальные доказуе­мые формулы. Если, однако, теория еще не определена однознач­но, выбор ее А. может диктоваться и содержательными соображе­ниями.
АКСИОМАТИЧЕСКИЙ МЕТОД
- способ построения научной те­ории, при котором какие-то положения теории избираются в каче­стве исходных, а все остальные ее положения выводятся из них чисто логическим путем, посредством доказательств. Положения, доказываемые на основе аксиом, называются теоремами.
А. м. — особый способ определения объектов и отношений меж­ду ними (см.: Аксиоматическое определение). А. м. используется в математике, логике, а также в отдельных разделах физики, биологии и др.
А. м. зародился еще в античности и приобрел большую извес­тность благодаря «Началам» Евклида, появившимся около 330 — 320 гг. до н. э. Евклиду не удалось, однако, описать в его «аксио­мах и постулатах» все свойства геометрических объектов, исполь­зуемые им в действительности; его доказательства сопровожда­лись многочисленными чертежами. «Скрытые» допущения гео­метрии Евклида были выявлены только в новейшее время Д. Гиль­бертом (1862-1943), рассматривавшим аксиоматическую теорию как формальную теорию, устанавливающую соотношения между


[11]
ее элементами (знаками) и описывающую любые множества объек­тов, удовлетворяющих ей. Сейчас аксиоматические теории нередко формулируются как формализованные системы, содержа­щие точное описание логических средств вывода теорем из акси­ом. Доказательство в такой теории представляет собой последова­тельность формул, каждая из которых либо является аксиомой, либо получается из предыдущих формул последовательности по одному из принятых правил вывода.
К аксиоматической формальной системе предъявляются тре­бования непротиворечивости, полноты, независимости системы ак­сиом и т. д.
a.m. является лишь одним из методов построения научного зна­ния. Он имеет ограниченное применение, поскольку требует высо­кого уровня развития аксиоматизируемой содержательной теории.
Как показал известный математик и логик К. Гёдель, достаточ­но богатые научные теории (напр., арифметика натуральных чи­сел) не допускают полной аксиоматизации. Это свидетельствует об ограниченности a.m. и невозможности полной формализации научного знания (см.: Гёделя теорема).
АКСИОМАТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ
- определение термина через множество аксиом (постулатов), в которые он входит и кото­рые последовательно ограничивают область его возможных истол­кований.
Напр., можно попытаться дать прямое определение понятия «равенство». Но можно привести систему истинных утверждений, включающих это понятие и неявно задающих его значение: «Каж­дый объект равен самому себе»; «В случае любых объектов, если первый равен второму, то второй равен первому»; «Для всех объек­тов верно, что если первый равен второму, а второй третьему, то первый равен третьему».
А. о. является частным случаем определения контекстуального. Всякий отрывок текста, всякий контекст, в котором встречается интересующее нас понятие, является в некотором смысле неяв­ным определением последнего. Контекст ставит понятие в связь с другими понятиями и тем самым косвенно раскрывает его содер­жание. Встретив в тексте на иностранном языке одно-два неизве­стных слова, мы, понимая текст в целом, можем составить при­мерное представление и о значениях неизвестных слов. Аналогично дело обстоит и с А. о. Совокупность аксиом к.-л. теории является одновременно и свернутой формулировкой этой теории, и тем контекстом, который неявно определяет все входящие в аксиомы понятия.
[12]
Чтобы узнать, к примеру, что значат слова «масса», «сила», «ус­корение» и т. п., можно обратиться к аксиомам классической меха­ники Ньютона. «Сила равна массе, умноженной на ускорение», «Сила действия равна силе противодействия» и т. д. — эти положения, указывая связи понятия «сила» с другими понятиями механики, раскрывают его сущность.
Принципиальное отличие А. о. от иных контекстуальных опре­делений в том, что аксиоматический контекст строго ограничен и фиксирован. Он содержит все, что необходимо для понимания вхо­дящих в него понятий. Он ограничен по размеру и по составу.
А. о. — одна из высших форм научного определения. Не всякая теория способна определить свои исходные термины аксиомати­чески, для этого требуется относительно высокий уровень разви­тия знаний об исследуемой области. Изучаемые объекты и их от­ношения должны быть также сравнительно просты.
АЛГЕБРА БУЛЯ
— исторически первый раздел математической логики, разработанный ирландским логиком и математиком Дж. Булем в середине XIX в. Буль применил алгебраические мето­ды для решения логических задач и сформулировал на языке ал­гебры некоторые фундаментальные законы мышления.
Буль представляет логику как алгебру классов (будем обозначать их символами А, В, С,...). Основными операциями в А. Б. являются: сложение классов AE.B; умножение классов АCВ; дополнение класса А'. Свойства этих операций описываются следующими ак­сиомами:
la. AE(BEC)=(AEB) EC — ассоциативность сложения;
16. AC(BCC)= (ACВ) EC — ассоциативность умножения;
2a.AEB= BEA — коммуникативность сложения;
2б.АCВ =ВCА — коммуникативность умножения;
3a.AE(ВCС)= =(AEB) C(AEC) — дистрибутивность сложения относительно умножения;
36.AC(BEC)==(ACB) E(ACC) — дистрибутивность умножения относительно сложения.
В А. Б. существуют два элемента 0 и 1, операции с которыми
подчиняются следующим соотношениям:
AE0=A;
AC1=A;
AEA'=1;
ACA'=0.
Характерная особенность А.Б. заключается в том, что в ней от­сутствуют коэффициенты и показатели степеней. Сумма двух А



[13]
равна А: АEА=А, а не 2А, как в обычной алгебре. Точно так же и произведение двух A равно A: АCА=А, а не A2.
Важным законом А. Б. является принцип двойственно­сти, согласно которому если в некотором справедливом равен­стве мы заменим все вхождения E на C и C на E, 1 на 0 и 0 на 1, то получим равенство, двойственное первому и также справедли­вое. Примерами двойственных равенств являются приведенные выше аксиомы.
А.Б. широко применяется при проектировании и проверке элек­трических схем, в которых используются реле, работающие по прин­ципу «да - нет», при программировании и проектировании ЭВМ, в операциях с переключателями, сигналами, схемами. В современ­ной математической логике этот раздел значительно усовершен­ствован и разрабатывается как теория булевых алгебр, в том числе как алгебра множеств, алгебра высказы­ваний и т. п. В области традиционной логики соотношения А. Б. часто используются для иллюстрации и прояснения отношений между объемами понятий.
АЛГОРИТМ (АЛГОРИФМ)
(от Algorithmi - латинизированная форма имени выдающегося среднеазиатского ученого Аль-Хорез­ми) — конечный набор правил, позволяющих чисто механически решать любую конкретную задачу из некоторого класса однотип­ных задач. Примерами простейших А. могут служить А. вычитания, сложения, умножения и деления целых чисел в арифметике с десятичной системой счисления.
Осуществление алгоритмического процесса может быть пере­дано машине, которая благодаря своему быстродействию спо­собна решать задачи, недоступные человеку. Возможность пере­дать машине осуществление алгоритмических процедур стимулировала создание математической теории алго­ритмов, в которой понятие А. было уточнено с помощью таких понятий, как «рекурсивная функция», «машина Тьюринга», «нор­мальный А.» и т. п.
АЛОГИЗМ (от греч. а — не, logos — разум)
— ход мысли, нару­шающий какие-то законы и правила логики и поэтому всегда со­держащий в себе логическую ошибку. Если ошибка допущена не­преднамеренно, то перед нами паралогизм; если же ошибка допущена с определенной целью, то мы столкнулись с софизмом.
АМФИБОЛИЯ (от греч. amphibolia — двусмысленность, двойствен­ность)
— логическая ошибка, в основе которой лежит двусмыс­ленность языковых выражений. Напр.: «Шуба - русское слово, но шуба греет, следовательно, некоторые русские слова греют». Здесь



[14]
слово «шуба» употреблено в разных смыслах, поэтому и получился абсурдный вывод.
АНАЛИЗ И СИНТЕЗ. А. (от греч. analysis - разложение)
- разде­ление объекта на составные части, стороны, свойства. С. (от греч. synthesis — соединение) — объединение полученных в результате А. частей объектов, их сторон или свойств в единое целое. А. и С. используются как в мыслительной, так и в практической, напр. экспериментальной, деятельности. Уже на ступени чувственного познания мы разлагаем явления на отдельные стороны и свой­ства, выделяя их форму, цвет, величину, составные части и т. п. Процедуры А. и С. являются необходимым элементом всякого на­учного познания и обычно образуют его начальный этап, на ко­тором происходит переход от общего, нерасчлененного описания изучаемых объектов к выявлению их строения, состава и отдель­ных свойств. В различных науках используются специфические спо­собы А. и С.
АНАЛИТИЧЕСКИЕ И СИНТЕТИЧЕСКИЕ СУЖДЕНИЯ (в логике).
А. с. — суждения, истинность которых устанавливается без обраще­ния к действительности посредством логико-семантического ана­лиза их компонентов. С. с. — суждения, истинность которых уста­навливается только в процессе их сопоставления с той реальностью, о которой они говорят.
Впервые в ясной форме разделение суждений на А. и С. было осуществлено немецким философом И. Кантом (1724—1804). А. с. Кант называл такое суждение, предикат которого уже входит в содержание субъекта и, таким образом, ничего не добавляет к тому, что мы знали о субъекте. Напр., суждение «Всякий холостяк неженат» является аналитическим, т. к. признак «быть неженатым» уже мыслится в содержании понятия «холостяк». «Всякое тело про­тяженно», «Москвичи живут в Москве» — все это А. с. Синтетиче­ским же, согласно Канту, является такое суждение, предикат кото­рого добавляет что-то новое к содержанию субъекта, напр. «Алмаз горюч», «Тихий океан — самый большой из океанов Земли» и т. п. Считается, что только С. с. выражают новое знание, А. с. представля­ют собой тавтологии, не содержащие никакой информации.
Современная логика расширила понятие а.с., включив в число таких суждений и сложные суждения, истинность которых можно установить лишь на основе логических правил, не обращаясь к ре­альности. Напр., если нам дано суждение «а --> а», то нам не нуж­но обращаться к действительности, чтобы узнать, истинно или ложно суждение «а», — в любом случае данная импликация будет истинной. Следовательно, это А. с.


[15]
Различие между А. и С. с. не является строгим и четким, ибо наши понятия в процессе развития познания изменяют свое со­держание, включают в него новые признаки, а это приводит к тому, что какие-то С. с. становятся А.с. Напр., когда-то суждение «Все тигры полосаты» было С. с. и несло в себе новую информа­цию о тиграх. Но сейчас понятие «тигр», кажется, уже включило в свое содержание признак полосатости. Скорее всего мы зат­руднимся назвать тигром животное, во всем похожее на тигра, но лишенное характерных полос на шкуре. Следовательно, это сужде­ние стало А. с.
АНАЛОГИЯ (от греч. analogia — соответствие)
— сходство между предметами, явлениями и т. д. Умозаключение по А. (или просто А.) — индуктивное умозаключение, когда на основе сходства двух объектов по каким-то одним параметрам делается вывод об их сходстве по другим параметрам. Напр., планеты Марс и Земля во многом сходны: они расположены рядом в Солнечной системе, на обеих есть вода и атмосфера и т. д.; на Земле есть жизнь; поскольку Марс похож на Землю с точки зрения условий, необходимых для существования живого, можно сделать вывод, что на Марсе также имеется жизнь. Это заключение является, очевидно, только правдо­подобным.
А. — понятие, известное со времен античной науки. Уже тогда было замечено, что уподобляться друг другу, соответствовать и быть сходными по своим свойствам могут не только предметы, но и отношения между ними. Помимо А. свойств существует также А. отношений. Напр., в известной планетарной модели атома его строение уподобляется строению Солнечной системы: вок­руг массивного ядра на разных расстояниях от него движутся по замкнутым орбитам легкие электроны, подобно тому как вокруг Солнца обращаются планеты. Атомное ядро не похоже на Солн­це, а электроны — на планеты; но отношение между ядром и электронами во многом подобно отношению между Солнцем и планетами. Продолжая это сходство, можно предположить, что электроны, как и планеты, движутся не по круговым, а по эл­липтическим орбитам.
Сходство сопряжено с различием и без различия не существу­ет. А. всегда является попыткой продолжить «сходство несходно­го», причем продолжить его в новом, неизвестном направлении. Она не дает достоверного знания: если посылки рассуждения по А. истинны, это еще не означает, что и его заключение будет ис­тинным. А., дающую высоковероятное знание, принято называть строгой или точной. Научные А. обычно являются строгими. Умо-



[16]
заключения по А., нередкие в повседневной жизни, как правило, не особенно строги, а то и просто поверхностны. От А., встречаю­щихся в художественной литературе, точность вообще не требуется, у них иная задача, и оцениваются они по другим критериям, преж­де всего по силе художественного воздействия.
Для повышения вероятности выводов по А. необходимо стре­миться к тому, чтобы было схвачено и выражено действительное, а не кажущееся сходство сопоставляемых объектов. Желательно, чтобы эти объекты были подобны в важных и существенных призна­ках, а не в случайных и второстепенных деталях. Полезно также, чтобы круг совпадающих признаков был как можно шире. Но наиболее важен для строгости А. характер связи сходных призна­ков предметов с переносимым признаком. Информация о сход­стве должна быть того же типа, что и информация, распростра­няемая на другой предмет. Если исходное знание внутренне связано с переносимым признаком, вероятность вывода заметно возраста­ет. И наконец, при построении А. следует учитывать не только сходные черты сопоставляемых объектов, но и их различия. Если последние внутренне связаны с признаком, который предполага­ется перенести с одного объекта на другой, А. окажется маловеро­ятной.
Обращение к А. может диктоваться разными задачами. Она мо­жет привлекаться для получения нового знания, для того, чтобы менее понятное сделать более понятным, представить абстрактное в более доступной форме, конкретизировать отвлеченные идеи и проблемы и т. д. По А. можно также рассуждать о том, что недо­ступно прямому наблюдению. А. может служить средством выдви­жения новых гипотез, являться своеобразным методом решения задач путем сведения их к ранее решенным задачам и т. п.
Рассуждение по А. дало науке многие блестящие результаты, нередко совершенно неожиданные. Так, в XVII в. движение крови в организме сравнивали с морскими приливами и отливами; А. с насосом привела к идее непрерывной циркуляции крови. Д. Мен­делеев, построив таблицу химических элементов, нашел, что три места в ней остались незаполненными; на основе известных эле­ментов, занимающих аналогичные места в таблице, он указал ко­личественные и качественные характеристики трех недостающих элементов, и вскоре они были открыты. А. между живыми организ­мами и техническими устройствами лежит в основе бионики, ис­пользующей открытые закономерности структуры и жизнедеятель­ности организмов при решении инженерных задач и построении технических систем.



[17]
А. является, таким образом, мощным генератором новых идей и гипотез. Аналоговые переносы представляют собой достаточно твер­дую почву для контролируемого риска. С их помощью мобилизуют­ся решения, уже доказавшие свою работоспособность, хотя и в другом контексте, и устанавливаются связи между новыми идеями и тем, что уже считается достоверным знанием.
Вместе с тем А., и в особенности А. отношений, могут быть чисто внешними, подменяющими действительные взаимосвязи ве­щей, надуманными. Подобного рода уподобления были обычны в средневековом мышлении, на них опираются магия и всякого рода гадания и прорицания.
А. обладает слабой доказательной силой. Продолжение сходства может оказаться поверхностным или даже ошибочным. Однако доказательность и убедительность далеко не всегда совпадают. Не­редко строгое, проводимое шаг за шагом доказательство оказыва­ется неуместным и убеждает меньше, чем мимолетная, но образная и яркая А. Доказательство — сильнодействующее средство исправ­ления и углубления убеждений, в то время как А. подобна гомеопа­тическому лекарству, принимаемому ничтожными дозами, но ока­зывающему тем не менее заметный лечебный эффект.
А. — излюбленное средство убеждения в художественной лите­ратуре, которой по самой ее сути противопоказаны сильные, прямолинейные приемы убеждения. А. широко используется так­же в обычной жизни, в моральном рассуждении, в идеологии, утопии и т. п.
Метафора,
являющаяся ярким выражением художественного творчества, представляет собой, по сути дела, своего рода сгу­щенную, свернутую А. Едва ли не всякая А., за исключением тех, что представлены в застывших формах, подобно притче или аллегории, спонтанно может стать метафорой. Примером метафо­ры с прозрачным аналогическим соотношением может служить следующее сопоставление Аристотеля: «...старость так относится к жизни, как вечер к дню, поэтому можно назвать вечер "старо­стью дня"... а старость — "вечером жизни"» (Поэтика. Гл. 21, 1457в.). В традиционном понимании метафора представляет собой троп, удач­ное изменение значения слова или выражения. С помощью метафо­ры собственное значение имени переносится на некоторое другое значение, которое подходит этому имени лишь ввиду того сравне­ния, которое держится в уме. Уже это истолкование метафоры связывает ее с А. Метафора возникает в результате слияния членов А. и выполняет почти те же функции, что и последняя. С точки зрения воздействия на эмоции и убеждения метафора даже лучше



[18]
справляется с этими функциями, поскольку она усиливает А., вводя ее в сжатом виде.
АНТЕЦЕДЕНТ И КОНСЕКВЕНТ (от лат. antecedent - предшеству­ющий, предыдущий и consequens — следствие)
— два высказыва­ния, из которых с помощью логической операции импликации («если..., то ...») образуется сложное импликативное выс­казывание. А. — высказывание, которому предпослано слово «если», К. — высказывание, идущее после слова «то». Два выска­зывания, составляющие условное высказывание, именуются также основанием и следствием.
АНТИНОМИЯ (от греч. antinomia - противоречие в законе)
-рассуждение, доказывающее, что два высказывания, являющие­ся отрицанием друг друга, вытекают одно из другого.
Характерным примером логической А. является «лжеца» парадокс.
Наибольшую известность из открытых уже в XX в. А. получила A. Рассела.
Примером достаточно простой и оригинальной А. может быть следующее: некоторые слова, обозначающие свойства, обладают тем самым свойством, которое они называют. Так, прилагательное «русский» само является русским, «многосложное» — многосложно, а «пятислоговое» — имеет пять слогов. Такие слова, относящиеся к самим себе, называют аутологическими; слова, не имеющие свойства, обозначаемого ими, — гетерологическими. После­дних в языке подавляющее большинство: «сладкое» не является сладким, «холодное» — холодным, «однослоговое» — однослоговым и т. д. Разделение прилагательных на две группы представляется яс­ным и не вызывающим возражений. Оно может быть распространено и на существительные: «слово» само является словом, «существи­тельное» — существительным, но «стол» — это не стол, а «глагол» — не глагол, а существительное. А. обнаруживается, как только зада­ется вопрос: к какой из двух групп относится само прилагательное «гетерологическое». Если оно аутологическое, то обладает обознача­емым им свойством и должно быть гетерологическим. Если же оно гетерологическое, то не имеет называемого им свойства и должно быть поэтому аутологическим.
Необходимым признаком логической А. обычно считается ло­гический словарь, в терминах которого она формулируется. Одна­ко в логике нет четких критериев деления терминов на логичес­кие и внелогические. Кроме того, в логических терминах можно сформулировать и внелогические утверждения.
На первых порах изучения А. казалось, что их можно выделить по нарушению какого-то еще не исследованного положения или правила логики. Особенно активно претендовал на роль такого


[19]
правила введенный Б. Расселом «принцип порочного круга», со­гласно которому в совокупность не должны входить объекты, оп­ределимые только посредством этой же совокупности. Все А. име­ют общее свойство — самоприменимость, или циркулярность. В каждой А. объект, о котором идет речь, характеризуется посред­ством совокупности объектов, к которой он сам принадлежит. Если мы, к примеру, говорим: «Это высказывание ложно», мы харак­теризуем данное высказывание путем ссылки на совокупность всех ложных высказываний, включающих и данное высказывание. Од­нако циркулярность — свойство и многих непарадоксальных рас­суждений. Такие примеры, как «самый большой из всех городов», «наименьшее из всех натуральных чисел», «один из электронов атома меди» и т. п., показывают, что далеко не всегда циркуляр­ность ведет к противоречию. Однако провести различие между «вредной» и «безвредной» циркулярностью не удается.
А. свидетельствуют о несовершенстве обычных методов образо­вания понятий и методов рассуждения. Они играют роль контро­лирующего фактора, ставящего ограничения на пути конструиро­вания систем логики.
Один из предлагавшихся путей устранения А. — выделение наря­ду с истинными и ложными бессмысленных высказываний. Этот путь был предложен Б. Расселом, объявившим А. бессмысленными на том основании, что в них нарушаются требования особой «логической грамматики». В качестве последней Б. Рассел предложил теорию ти­пов, вводящую своеобразную иерархию рассматриваемых объектов: предметов, свойств предметов, свойств свойств предметов и т. д. Свой­ства можно приписывать предметам, свойства свойств — свойствам и т. д., но нельзя осмысленно утверждать, что свойства свойств имеются у предметов. Напр., высказывания «Это дерево — зеле­ное», «Зеленое — это цвет» и «Цвет — это оптическое явление» осмысленны, а, скажем, высказывания «Этот дом есть цвет» и «Этот дом есть оптическое явление» — бессмысленны.
Исключение А. достигается также путем отказа от «чрезмерно больших множеств», подобных множеству всех множеств. Этот путь был предложен немецким математиком Е. Цермело, связавшим появление А. с неограниченным конструированием множеств. До­пустимые множества были определены им некоторым списком ак­сиом, сформулированным так. чтобы не выводились известные А.
Были предложены и другие способы устранения А. Ни один из них не лишен, однако, возражений.
АНТИНОМИЯ РАССЕЛА
- одна из наиболее известных логи­ческих антиномий, обнаруженная в начале этого века англ. фило­софом и логиком Б. Расселом (1872—1970).


[20]
А. Р. связана с понятием множества. Относительно каждого мно­жества представляется осмысленным задать вопрос, является оно своим собственным элементом или нет. Напр., множество всех лю­дей не является человеком, так же как множество стульев — это не стул. Но множество, объединяющее все множества, представля­ет собой множество и, значит, содержит самое себя в качестве элемента. Назовем множества, не содержащие себя в качестве эле­мента, обычными,а содержащие себя — необычными и рас­смотрим множество, составленное из всех обычных множеств. Поскольку это множество, о нем можно спрашивать, обычное оно или нет. Ответ, однако, оказывается обескураживающим. Если оно обычное, то, согласно своему определению, не должно со­держать самое себя в качестве элемента, поскольку содержит все обычные множества. Но это означает, что оно является необычным множеством. Допущение, что рассматриваемое множество представ­ляет собой обычное множество, приводит, таким образом, к проти­воречию. Значит, оно не может быть обычным. С другой стороны, оно не может быть также необычным: необычное множество содержит самое себя в качестве элемента, а элементами рассматриваемого множества являются только обычные множества. В итоге множе­ство всех множеств, не являющихся собственными элементами, есть свой элемент в том и только том случае, когда оно не являет­ся таким элементом. Полученное противоречие говорит о том, что такого множества не существует. Но если столь просто и ясно за­данное множество не может существовать, то в чем различие меж­ду возможными и невозможными множествами? Наивное, или интуитивное, представление о множестве как сколь угодно об­ширном соединении в чем-то однородных объектов способно вес­ти, таким образом, к противоречию и нуждается в прояснении и уточнении.
А. Р. не имеет специфически математического характера, ее можно переформулировать в чисто логических терминах. Б.Рассел предложил следующий популярный вариант открытой им анти­номии. Представим, что совет какой-то деревни так определил обязанности парикмахера: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя? Если да, то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, он будет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Таким образом, этот парикмахер бреет себя в том и только том случае, когда он не бреет себя. Это, разумеется, невозможно.


[21]
Для избежания этой и других антиномий Б. Рассел построил теорию логических типов (см.: Антиномия).
Другим способом устранения А. Р. является отказ от использова­ния «слишком больших множеств». Ни первый, ни второй из этих способов не являются общепризнанными.
АНТИТЕЗИС (от греч. antithesis — противоположение)
— сужде­ние, противоречащее тезису некоторого построенного доказатель­ства. А. используется в косвенном доказательстве тезиса: мы обо­сновываем ложность А. и, опираясь на закон исключенного третьего, гласящий, что из двух противоположных суждений одно обязатель­но истинно, тем самым доказываем истинность противоречащего ему суждения — тезиса.
АПОДИКТИЧЕСКИЙ (от греч. apodeiktikos — доказательный, убе­дительный)
- безусловно достоверный, основанный на необходи­мости, неопровержимый. В традиционной логике принято разде­лять суждения по модальности, т. е. по характеру связи между субъектом и предикатом, на три вида: вероятностные — «5, веро­ятно, есть Р», ассерторические - «S есть Р» и А. — «S необходимо есть Р». В суждениях первого вида отражаются возможные связи между субъектом и предикатом, напр.: «Илиада» есть, вероятно, продукт коллективного творчества»; ассерторическое суждение ут­верждает наличие действительно существующей связи между субъектом и предикатом, напр.: «Киев расположен на берегу Днеп­ра»; А. суждение выражает необходимую связь субъекта и предика­та: «Вокруг проводника, по которому проходит электрический ток, возникает магнитное поле».
Если ассерторические суждения используются для конста­тации фактов, то в А. суждениях выражаются законы приро­ды. Различие между первыми и вторыми не может быть усмотрено из самой формы суждений и является не вполне определенным. Необходимость А. суждения должна быть обоснована с помощью теоретического доказательства.
АПОРИЯ (от греч. aporia — затруднение, недоумение)
- труд­норазрешимая проблема, связанная с противоречием между дан­ными опыта и их мысленным анализом. Наиболее известны А., сформулированные древнегреч. философом Зеноном Элейским (ок. 490 - ок. 430 до н. э.). В А. «Ахилл» говорится о том, что быстроно­гий Ахилл не способен догнать медлительную черепаху, так как, пока он пробежит разделяющее их расстояние, она проползет не­много, пока он будет пробегать этот отрезок, она еще немного отползет и т. д. А. «Дихотомия» говорит, что, прежде чем пройти весь путь, движущееся тело должно пройти его половину, а до


[22]
этого — половину половины и т. д.; процесс такого деления беско­нечен, поэтому тело вообще не может начать двигаться или, если оно уже движется, движение не может окончиться.
Эти и подобные им А. теперь признаются подлинными пара­доксами, связанными, в частности, с описанием движения. А. близ­ка к антиномии, но отличается от последней. Антиномия пред­ставляет собой обоснование двух несовместимых утверждений, одно из которых отрицает другое. А. же выдвигает и обосновывает положение, явно противоречащее опыту.
А. обычны и в современном мышлении. Всякий раз, когда при­нятая и хорошо апробированная теория вдруг резко расходится с достаточно твердо установленными фактами, можно говорить о возникновении затруднения, называвшегося в древности А. Напр., устойчивость мира является очевидным фактом. Одни и те же ве­щества постоянно выступают с одними и теми же свойствами, образуются одни и те же кристаллы, возникают одни и те же соединения и т. п.
Вместе с тем с точки зрения классической механики Ньютона такая устойчивость является в принципе недостижимой. Н. Бор указывал, что именно размышление над данным затруднением заставило его отказаться от классической механики при объясне­нии внутреннего строения атома. Это противоречие между тем, что дано в наблюдении, и тем, что предписывает ньютоновская механика, является типичной А.
АРГУМЕНТ (лат. argumentum)
— суждение (или совокупность взаимосвязанных суждений), посредством которого обосновыва­ется истинность к.-л. другого суждения (или теории). При доказа­тельстве некоторого суждения А. являются основаниями, или посылками, из которых логически следует доказываемое суж­дение. Напр., для доказательства суждения «Железо плавко» мы можем воспользоваться двумя А.: «Все металлы плавки» и «Желе­зо есть металл». Приняв эти два суждения в качестве посылок, мы можем логически вывести из них доказываемое суждение и тем самым обосновать его истинность.
А., используемые в процессе доказательства некоторого суж­дения, должны удовлетворять следующим правилам:
1. А. должны быть истинными суждениями.
2. А. должны быть суждениями, истинность которых устанавли­вается независимо от тезиса.
3. А. должны быть достаточным основанием для доказываемого тезиса.
Нарушение указанных правил приводит к различным логиче­ским ошибкам, делающим доказательство некорректным.


[23]
А., используемые в дискуссии, споре, могут быть разделены на два вида: A. ad rem (к существу дела) и A. ad hominem (к чело­веку). А. первого вида имеют отношение к обсуждаемому вопросу и направлены на обоснование истинности доказываемого поло­жения. В качестве таких А. могут использоваться основоположе­ния или принципы некоторой теории; определения понятий, принятые в науке; суждения, описывающие установленные фак­ты; ранее доказанные положения и т. п. Если А. данного вида удовлетворяют перечисленным выше правилам, то опирающе­еся на них доказательство будет корректным с логической точ­ки зрения.
А. второго вида не относятся к существу дела и используются лишь для того, чтобы одержать победу в полемике, в споре. Они затрагивают личность оппонента, его убеждения, апеллируют к мнениям аудитории и т. п. С точки зрения логики эти А. некоррек­тны и не могут быть использованы в дискуссии, участники кото­рой стремятся к выяснению и обоснованию истины. Наиболее рас­пространенными разновидностями их являются следующие:
А. кавторитету — ссылка на высказывания или мнения ве­ликих ученых, общественных деятелей, писателей и т. д. в поддер­жку своего тезиса. Такая ссылка может показаться вполне допусти­мой, однако она некорректна. Дело в том, что человек, получивший признание благодаря своей успешной деятельности в некоторой одной области, не может быть столь же авторитетен во всех других • областях. Поэтому его мнение, выходящее за пределы той облас­ти, в которой он работал, вполне может оказаться ошибочным. Кроме того, даже в той области, в которой творил великий чело­век, далеко не все его высказывания или мнения безусловно вер­ны. Поэтому ссылка на то, что такой-то человек придерживался такого-то мнения, ничего не говорит об истинности этого мне­ния. А. к авторитету имеет множество разнообразных форм. Апел­лируют к авторитету общественного мнения, к авторитету ауди­тории, к авторитету противника и даже к собственному авторитету. Иногда изобретают вымышленные авторитеты или приписывают реальным авторитетам такие суждения, которых они никогда не высказывали.
А. кпублике — ссылка на мнения, настроения, чувства слу­шателей. Человек, пользующийся таким А., обращается уже не к своему оппоненту, а к присутствующим, иногда даже случайным слушателям, стремясь привлечь их на свою сторону и с их помо­щью оказать психологическое давление на противника.
Напр., на одной из дискуссий по поводу теории происхожде­ния видов Ч. Дарвина епископ Вильберфорс обратился к слушате-



[24]
лям с вопросом, были ли их предки обезьянами. Защищавший данную теорию биолог Т. Хаксли ответил на это, что ему стыдно не за своих обезьяньих предков, а за людей, которым не хватает ума и которые не способны отнестись всерьез к доводам Дарвина. Довод епископа — типичный аргумент к публике. Тем, кто при­сутствовал на этой происходившей в конце прошлого века дис­куссии, казалось не совсем приличным иметь своими, пусть даже отдаленными, предками — обезьян.
Одна из наиболее эффективных разновидностей А. к публике — ссылка на материальные интересы присутствующих. Если одному из противников удается показать, что отстаиваемый его оппонентом тезис затрагивает материальное положение, доходы и т. п. присут­ствующих, то их сочувствие будет, скорее всего, на стороне первого.
А. кличности — ссылка на личностные особенности оппо­нента, его вкусы, внешность, достоинства или недостатки. Ис­пользование этого А. ведет к тому, что предмет спора остается в стороне, а предметом обсуждения оказывается личность оппонен­та, причем обычно в негативном освещении.
Напр., когда преподаватель, оценивая ответ ученика, ставит ему явно заниженную оценку, ссылаясь на то, что раньше этот ученик не учил уроки, что и по другим предметам он успевает плохо, что когда-то он прогулял уроки, что он неряшливо одет и т. п., то он использует А. к личности.
Встречается А. к личности и с противоположной направленно­стью, т. е. ссылка не на недостатки, а на достоинства человека. Та­кой А. часто используется в суде защитниками обвиняемых.
А. ктщеславию — расточение неумеренных похвал против­нику в надежде, что, тронутый комплиментами, он станет мягче и покладистей. Как только в дискуссии начинают встречаться обо­роты типа «не подлежит сомнению глубокая эрудиция оппонен­та», «как человек выдающихся достоинств, оппонент...» и т. п., здесь можно предполагать завуалированный А. к тщеславию.
А. к силе - угроза неприятными последствиями, в частности угроза применения насилия или прямое применение к.-л. средств принуждения. У человека, наделенного властью, физической силой или вооруженного, порой возникает искушение прибегнуть в спо­ре к угрозе, особенно с интеллектуально превосходящим его про­тивником. Однако следует помнить о том, что согласие, вырванное под угрозой насилия, ничего не стоит и ни к чему не обязывает согласившегося.
А. кжалости - возбуждение в другой стороне жалости и со­чувствия. Напр., студент, плохо подготовленный к сдаче экзаме-


[25]
на, просит профессора поставить ему положительную оценку, ина­че его лишат стипендии и т. п. Этот А. бессознательно используется многими людьми, которые усвоили манеру постоянно жаловаться на тяготы жизни, на трудности, болезни, на неудачи и т. п. в надежде пробудить в слушателях сочувствие и желание уступить, помочь в чем-то.
А. кневежеству — использование фактов и положений, не­известных оппоненту, ссылка на сочинения, которые он заведо­мо не читал. Люди часто не хотят признаваться в том, что они чего-то не знают, им представляется, что этим они роняют свое достоинство. В споре с такими людьми А. к невежеству иногда дей­ствует безотказно. Однако если не бояться показаться невежествен­ным и попросить оппонента рассказать подробнее о том, на что он ссылается, может выясниться, что его ссылка не имеет ника­кого отношения к предмету спора.
Все перечисленные А. являются некорректными и не должны использоваться в споре. Однако спор — это не только столкнове­ние умов, но и столкновение характеров и чувств, поэтому пере­численные А. все-таки встречаются и в повседневных, и в научных спорах. Заметив А. подобного рода, следует указать противнику на то, что он прибегает к некорректным способам ведения спора, сле­довательно, не уверен в прочности своих позиций (см.: Спор).
АРГУМЕНТАЦИИ ТЕОРИЯ
- теория, изучающая те многооб­разные дискуссионные приемы, которые используются в процес­се аргументации.
А. т., начавшая складываться еще в античности, прошла долгую историю, богатую взлетами и падениями. Сейчас можно говорить о становлении «новой теории» аргументации, складывающейся на стыке логики, лингвистики, психологии, социологии, философии, герменевтики, риторики, эристики. Актуальной является задача построения общей А. т., отвечающей на такие вопросы, как: при­рода аргументации и ее границы; способы аргументации, своеоб­разие аргументации в разных областях познания и деятельности, начиная с естественных и гуманитарных наук и кончая философи­ей, идеологией и пропагандой; изменение стиля аргументации от одной исторической эпохи к другой в связи с изменением культу­ры эпохи и характерного для нее стиля мышления и др.
Центральными понятиями общей А. т. являются: способ аргу­ментации и ее основание, стиль аргументации, контекст аргу­ментации, позиция участника аргументации, диссонанс и консо­нанс позиций, спор (полемика и дискуссия) и диалог, истина и ценность в аргументации, аргументация и доказательство и др.



[26]
Для А.т. существенны оппозиции: абсолютная — сравнитель­ная аргументация, общезначимая - контекстуальная, истинно­стная — ценностная, естественнонаучная — гуманитарная аргу­ментация и др.
В процессе абсолютной аргументации приводятся те убеди­тельные, или достаточные, аргументы в поддержку тезиса, в силу которых он должен быть принят. Сравнительная аргумента­ция имеет своей задачей показать, что лучше принять данный тезис, чем какое-то иное положение. Общая схема абсолютной аргументации: «A приемлемо, поскольку С»; схема сравнитель­ной аргументации: «А более приемлемо, чем В, поскольку С». Здесь А — тезис, В — его альтернатива, С — основание аргументации. Абсолютная аргументация может быть истолкована как частный случай сравнительной: «A приемлемо, поскольку С» означает «A более приемлемо, чем не-А, поскольку С». Абсолютную аргумен­тацию принято называть также обоснованием, сравнительную — ра­ционализацией (рациональность в этом случае означает умение выб­рать лучшую из имеющихся альтернатив). Обоснование является абсолютной оценкой знания, рациональность — сравнительной оцен­кой («Должно быть принято А, поскольку С» и «Лучше принять A, чем В, поскольку С»).
В зависимости от характера основания аргументации все спосо­бы аргументации можно разделить на общезначимые и кон­текстуальные. К общезначимым (теоретическим и эмпириче­ским) способам относятся прямое и косвенное (индуктивное) подтверждение; дедукция тезиса из принятых общих положений; проверка тезиса на его совместимость с другими законами и прин­ципами, в частности с регулятивными принципами простоты, привычности и т. п.; анализ тезиса с точки зрения принципиаль­ной возможности его эмпирического подтверждения и опровер­жения; проверка его на приложимость к более широкому классу объектов; включение тезиса в некоторую теорию; совершенство­вание содержащей его теории, усиление ее эмпирического ба­зиса и прояснение общих принципов, выявление логических связей ее утверждений, минимизация ее исходных допущений и, если возможно, ее аксиоматизация и формализация; форму­лировка объяснений и предсказаний на основе теории и т. п.; ссылка на эффективность метода, с помощью которого полу­чен тезис, и т. д. Контекстуальные способы обоснования и ра­ционализации включают ссылку на интуицию, веру, авторите­ты, традицию, использование разного рода «аргументов к личности» и иных риторических приемов.


[27]
Общие контуры новой А. т. наметились в последние два-три деся­тилетия. Она восстанавливает то позитивное, что было в античной риторике и иногда называется на этом основании новой рито­рикой. Стало очевидным, что А. т. не сводится к логической тео­рии доказательства, которая опирается на понятие истины и для которой понятия убеждения и аудитории совершенно инородны. А. т. не сводима также к методологии науки или теории познания. Аргу­ментация — это определенная человеческая деятельность, протека­ющая в конкретном социальном контексте и имеющая своей ко­нечной целью не знание само по себе, а убеждение в приемлемости каких-то положений. В числе последних могут быть не только опи­сания реальности, но и оценки, нормы, советы, декларации, клят­вы, обещания и т. п. А. т. не сводится и к эристике — теории спора, ибо спор — это только одна из многих возможных ситуаций аргу­ментации.
В формировании главных идей новой А. т. важную роль сыгра­ли работы X. Перельмана, Г. Джонстона, Ф. ван Еемерена, Р. Гроотендорста и др. Однако и в настоящее время А. т. лишена единой парадигмы или немногих, конкурирующих между со­бой парадигм и представляет собой едва ли обозримое поле раз­личных мнений на предмет этой теории, ее основные пробле­мы и перспективы развития.
В А. т. аргументация рассматривается с трех разных позиций, дополняющих друг друга: с точки зрения мышления, с точки зрения человека и общества и, наконец, с точки зрения истории. Каждый из этих аспектов рассмотрения имеет свои специфиче­ские особенности и распадается на ряд подразделений.
Анализ аргументации с первой, логико-эпистемологической точки зрения включает три основных направления:
о Описание способов обоснования и рационализации описа­тельных и оценочных утверждений. В число данных способов вклю­чаются не только такие традиционные общезначимые (универсаль­ные) приемы, как, скажем, дедуктивный вывод и индуктивное подтверждение следствий, но и контекстуальные способы обосно­вания, подобные ссылкам на интуицию и традицию.
о Анализ зависимости аргументации от той проблемной ситуа­ции, в общих рамках которой она протекает.
о Выявление тех особенностей аргументации, которые связа­ны с приложением ее в разных областях мышления. Существуют три такие области и, соответственно, три разновидности аргу­ментации: теоретическая, практическая и художественная аргу­ментация. Теоретическая аргументация в свою очередь распадает-



[28]
ся на естественнонаучную и гуманитарную, практическая — на идеологическую (включающую, в частности, пропаганду) и уто­пическую.
Анализ аргументации как человеческой деятельности, имею­щей социальный характер, предполагает исследование аудито­рий , в которых разворачивается аргументация. Самая узкая ауди­тория включает только того, кто выдвигает определенное положение или мнение, и тех, чьи убеждения он стремится укрепить или из­менить. Узкой аудиторией могут быть, напр., два спорящих челове­ка или ученый, выдвигающий новую концепцию, и научное сооб­щество, призванное ее оценить. Более широкой аудиторией в этих случаях будут все те, кто присутствует при споре, или все те, кто вовлечен в обсуждение новой научной концепции, включая и не­специалистов, завербованных на какую-то сторону благодаря про­паганде. Изучение социального измерения аргументации предпола­гает также анализ зависимости манеры аргументации от общих характеристик того конкретного целостного общества или сообще­ства, в рамках которого она протекает. Характерным примером мо­гут служить особенности аргументации в т.наз. «коллективистичес­ких (закрытых) обществах» (тоталитарное общество, средневековое феодальное общество и др.) или «коллективистических сообществах» («нормальная наука», армия, церковь, тоталитарная политическая партия и др.).
Изучение исторического измерения аргументации включает три временных среза:
о Учет того исторически конкретного времени, в котором имеет место аргументация и которое оставляет на ней свой мимолетный след.
о Исследование стиля мышления исторической эпохи и тех особенностей ее культуры, которые налагают свой неизгладимый отпечаток на всякую аргументацию, относящуюся к данной эпохе. Такое исследование позволяет выделить пять принципиально раз­ных, сменявших друг друга типов, или стилей, аргументации: арха­ическую (или первобытную) аргументацию, античную аргумента­цию, средневековую (или схоластическую) аргументацию, «классическую» аргументацию Нового времени и современную ар­гументацию.
о Анализ тех изменений, которые претерпевает аргументация на протяжении всей человеческой истории. Именно в этом кон­тексте становится возможным сопоставление стилей аргумента­ции разных исторических эпох и постановка вопросов о сравни­мости (или несравнимости) этих стилей, возможном превосходстве


[29]
одних из них над другими и, наконец, о реальности историческо­го прогресса в сфере аргументации.
А. т. трактует аргументацию не только как особую технику убеж­дения и обоснования выдвигаемых положений, но и как практи­ческое искусство, предполагающее умение выбрать из множества возможных приемов аргументации ту их совокупность и ту их кон­фигурацию, которые требуются особенностями аудитории и об­суждаемой проблемы.
АРГУМЕНТАЦИЯ (от лат. argumentatio - приведение аргумен­тов)
— приведение доводов, или аргументов, с намерением выз­вать или усилить сочувствие другой стороны к выдвинутому поло­жению; совокупность таких доводов. Цель А. — принятие выдвигаемых положений аудиторией. Истина и добро могут быть промежуточны­ми целями А., но конечной ее целью всегда является убеждение аудитории в справедливости предлагаемого ее вниманию положения, склонение ее к принятию данного положения и, возможно, к дей­ствию, предполагаемому им. Это означает, что оппозиции «истина — ложь» и «добро — зло» не являются центральными ни в А., ни, соответственно, в ее теории. Аргументы могут приводиться не только в поддержку тезисов, представляющихся истинными, но и в поддер­жку заведомо ложных или неопределенных тезисов. Аргументированно отстаиваться могут не только добро и справедливость, но и то, что кажется или впоследствии окажется злом. Теория А., исходящая не из отвлеченных философских идей, а из реальной практики А. и представления о реальной аудитории, должна, не отбрасывая поня­тий истины и добра, ставить в центр своего внимания понятия «убеж­дение» и «принятие».
В А. различаются тезис — утверждение (или система утвержде­ний), которое аргументирующая сторона считает нужным вну­шить аудитории, и довод, или аргумент, — одно или несколько связанных между собою утверждений, предназначенных для под­держки тезиса.
Теория А. исследует многообразные способы убеждения ауди­тории с помощью речевого воздействия. Влиять на убеждения слу­шателей или зрителей можно не только с помощью речи и сло­весно выраженных доводов, но и многими другими способами: жестом, мимикой, наглядными образами и т. п. Даже молчание в определенных случаях оказывается достаточно веским аргумен­том. Эти способы воздействия изучаются психологией, теорией искусства, но не затрагиваются теорией А. На убеждения можно, далее, воздействовать насилием, гипнозом, внушением, подсоз­нательной стимуляцией, лекарственными средствами, наркоти-



[30]
ками и т. п. Этими методами воздействия занимается психология, но они ясно выходят за рамки даже широко трактуемой теории А.
А. представляет собой речевое действие, включающее систему утверждений, предназначенных для оправдания или опроверже­ния какого-то мнения. Она обращена в первую очередь к разуму человека, который способен, рассудив, принять или опровергнуть это мнение. Для А. характерны, таким образом, следующие черты:
>> А. всегда выражена в языке, имеет форму произне­сенных или написанных утверждений; теория А. исследует взаи­мосвязи этих утверждений, а не те мысли, идеи и мотивы, кото­рые стоят за ними;
>> А. является целенаправленной деятельностью: она имеет своей задачей усиление или ослабление чьих-то убеждений;
>> А. — это социальная деятельность, поскольку она направлена на другого человека или других людей, предполагает диалог и активную реакцию другой стороны на приводимые доводы;
>> А. предполагает разумность тех, кто ее воспринимает, их способность рационально взвешивать аргументы, принимать их или оспаривать.
АРГУМЕНТАЦИЯ КОНТЕКСТУАЛЬНАЯ
- аргументация, эффек­тивность которой ограничена лишь некоторыми аудиториями. Контекстуальные способы аргументации включают аргумен­ты к традиции и авторитету, к интуиции и вере, к здравому смыслу и вкусу и др. А. к. противопоставляется универсальной аргу­ментации, применимой в любой аудитории. К универсальной ар­гументации относятся прямая и косвенная эмпирическая аргу­ментация, дедуктивная аргументация, системная аргументация, методологическая аргументация и др. Граница между А. к. и уни­версальной аргументацией относительна. Способы аргументации, являющиеся по идее универсально приложимыми, напр. доказа­тельство, могут оказаться неэффективными в конкретной аудито­рии. И наоборот, некоторые контекстуальные аргументы, подоб­ные аргументам к традиции или интуиции, могут казаться убедительными едва ли не в любой аудитории. Ошибкой было бы характеризовать А. к. как нерациональную или даже как ирраци­ональную. Различение «рационального» и «нерационального» по способам аргументации не является оправданным. Оно резко су­жает сферу рационального, исключая из нее большую часть гу­манитарных и практических рассуждений, немыслимых без ис­пользования «классики» (авторитетов), продолжения традиции, апелляции к здравому смыслу и вкусу, и т. п. Понимание той конеч­ности, которая господствует над человеческим бытием и истори-


[31]
ческим сознанием, предполагает принятие А.к. как необходимого составного элемента рациональной аргументации.
Из А. к. наиболее употребительным и наиболее значимым явля­ется аргумент к традици и . В сущности, все иные контек­стуальные аргументы содержат в свернутом виде ссылку на тради­цию; чувствительность аудитории к приводимым аргументам также в значительной мере определяется теми традициями, которые она разделяет. Влияние традиции на эффективность аргументации свя­зано с тем, что традиция закрепляет те наиболее общие допуще­ния, в которые нужно верить, чтобы аргумент казался правдопо­добным, создает ту предварительную установку, без которой он утрачивает свою силу.
Традиция представляет собой анонимную, стихийно сложив­шуюся систему образцов, норм, правил и т. п., которой руковод­ствуется в своем поведении достаточно обширная и устойчивая группа людей. Наиболее широкие традиции, охватывающие все общество в определенный период е'го развития, как правило, не осознаются как таковые теми, кто следует им. Особенно наглядно это проявляется в т.наз. «традиционном обществе», где традиция­ми определяются все сколь-нибудь существенные стороны соци­альной жизни. Традиции носят отчетливо выраженный двойствен­ный, описательно-оценочный характер. В них аккумулируется предшествующий опыт успешной деятельности, и они оказыва­ются своеобразным его выражением. С другой стороны, они пред­ставляют собой проект и предписание будущего поведения. Тра­диция является тем, что делает человека звеном в цепи поколений, что выражает пребывание его в историческом времени, присут­ствие в «настоящем» как звене, соединяющем прошлое и будущее. Традиция завоевывает свое признание, опираясь прежде всего на познание, и не требует слепого повиновения. Она не является также чем-то подобным природной данности, ограничивающей свободу действия и не допускающей критического обсуждения; традиция — это точка пересечения человеческой свободы и чело­веческой истории^Противопоставление традиции и разума долж­но учитывать, что разум не является неким изначальным факто­ром, призванным играть роль беспристрастного и безошибочного судьи. Разум складывается исторически, и рациональность может рассматриваться как одна из традиций.
Аргумент к традиции неизбежен во всех тех рассуждениях, вклю­чая и научные, в которые входит «настоящее» как тема обсужде­ния или как один из факторов, определяющих позицию исследо­вателя.



[32]
Аргументу к традиции близок аргумент к авторитету — ссыл­ка на мнение или действие лица, хорошо зарекомендовавшего себя в данной области своими суждениями или поступками.
Интуитивная аргументация представляет собой ссылку на непосредственную, интуитивную очевидность выдвигаемого по­ложения. Очень велика роль интуиции и, соответственно, интуи­тивной аргументации в математике и логике. Существенное значе­ние имеет интуиция в моральной жизни, в историческом и вообще в гуманитарном познании. Художественное мышление вообще не мыслимо без интуиции. Интуитивная аргументация в чистом виде является тем не менее редкостью. Обычно для найденного интуи­тивного результата подыскиваются задним числом основания, ка­жущиеся более убедительными, чем ссылка на его интуитивную очевидность. Интуиция никогда не является окончательной, и ее результат подлежит критическому анализу. Даже в математике ин­туиция не всегда является ясной: высшую степень очевидности имеют утверждения типа 2 + 2 = 4, но уже 1002+ 2 = 1004 имеет бо­лее низкую степень и доказывается не фактическим подсчетом, а с помощью рассуждения. Интуиция может просто обманывать. На протяжении большей части XIX в. математики были интуитивно убеждены, что любая непрерывная функция имеет производную, но Вейерштрасс доказал существование непрерывной функции, ни в одной точке не имеющей производной. Математическое рас­суждение исправило интуицию и дополнило ее. Интуиция меняет­ся со временем и в значительной мере является продуктом куль­турного развития и успехов в дискурсивном мышлении. Интуиция Эйнштейна, касающаяся пространства и времени, явно отлича­лась от соответствующей интуиции Ньютона или Канта. Интуиция специалиста, как правило, превосходит интуицию дилетанта.
Интуиции близка вера — глубоко искреннее, эмоционально насыщенное убеждение в справедливости какого-то положения или концепции. Если интуиция — это непосредственное усмотре­ние истины и добра, то вера — непосредственное тяготение к тому, что представляется истиной или добром. Как и интуиция, вера субъективна и меняется от человека к человеку. В разные эпохи предметом искренней веры были диаметрально противоположные воззрения. То, во что когда-то свято веровали все, спустя время большинству уже представлялось наивным предрассудком. В зави­симости от способа, каким оправдывается вера, различают ра­циональную и нерациональную веру. Последняя служит оправданием самой себе. Сам факт веры считается достаточным для ее оправдания. Ссылка на твердую веру, решительную убеж-


[33]
денность в правильности к.-л. положения может использоваться в качестве аргумента в пользу принятия этого положения. Однако аргумент к вере кажется убедительным и веским, как пра­вило, лишь тем, кто разделяет эту веру или склоняется к ее при­нятию. Другим аргумент к вере может казаться субъективным и почти что пустым: верить можно и в самые нелепые утверждения. Тем не менее встречаются ситуации, когда аргумент к вере ока­зывается едва ли не единственным, — ситуации радикального ина­комыслия, непримиримого «разноверия». Обратить инакомысля­щего разумными доводами невозможно. В таком случае остается только крепко держаться за свою веру и объявить противополож­ные взгляды еретическими, безумными и.т. п. Там, где рассужде­ния и доводы бессильны, выражение твердой, неотступной убеж­денности может сыграть со временем какую-то роль. Аргумент к вере только в редких случаях выступает в явном виде. Обычно он подразумевается, и только слабость или неотчетливость приводи­мых прямо аргументов косвенно показывает, что за ними стоит неявная апелляция к вере.
Здравый смысл можно охарактеризовать как общее, при­сущее каждому человеку чувство истины и справедливости, дава­емое опытом жизни. В своей основе здравый смысл не является знанием. Скорее, это способ отбора знания, то общее освещение, благодаря которому в знании различаются главное и второстепен­ное и обрисовываются крайности. Аргумент к здравому смыслу является одним из наиболее употребительных в А. к. Су­щественное значение этому аргументу придает современная фи­лософская герменевтика, выступающая против его интеллектуа­лизации и сведения его до уровня простой поправки: то, что в чувствах, суждениях и выводах противоречит здравому смыслу, не может быть правильным. Здравый смысл приложим прежде всего в общественных, практических делах. Он судит, опираясь не на общие предписания разума, а скорее на убедительные примеры. Решающее значение для него имеют история и опыт жизни. Здра­вому смыслу нельзя выучить, в нем можно только упражняться. Апелляция к здравому смыслу неизбежна в гуманитарных науках, вплетенных в историческую традицию и являющихся не только ее пониманием, но и ее продолжением. Обращение к здравому смыслу довольно редко и ненадежно в естественных науках, стремящихся абстрагироваться от своей истории и вынести ее за скобки.
Аргумент к вкусу представляет собой обращение к ч у в с т в у вкуса, имеющемуся у аудитории и способному склонить ее к принятию выдвинутого положения. Вкус касается только совер-


[34]
шенства каких-то вещей и опирается на непосредственное чув­ство, а не на рассуждение. Кант характеризовал вкус как «чув­ственное определение совершенства». Понятие вкуса первоначально было моральным и лишь впоследствии его употребление сузилось до эстетической сферы «прекрасной духовности». Хороший вкус не является полностью субъективным, он предполагает способ­ность к дистанции относительно себя самого и групповых при­страстий. Можно отдавать чему-то предпочтение, несмотря на то, что это одновременно не принимается собственным вкусом. Прин­цип «О вкусах не спорят» не является верным в своей общей фор­мулировке. Споры о вкусах достаточно обычны, эстетика и худо­жественная критика состоят по преимуществу из таких споров. О вкусах можно спорить, но лишь с намерением добиться не исти­ны, а победы, т. е. утверждения своей системы оценок, причем спорить не только некорректно, софистически, но и вполне кор­ректно. Аргумент к моде является частным случаем аргу­мента к вкусу. Вкус несет на себе отпечаток общности социальной жизни и изменяется вместе с ее изменением. Суждения вкуса, относящиеся к разным эпохам или к разным обществам, обычно оказываются несовместимыми друг с другом.
АРГУМЕНТАЦИЯ ТЕОРЕТИЧЕСКАЯ
- аргументация, опира­ющаяся на рассуждение и не пользующаяся непосредственно ссыл­ками на опыт. А. т. противопоставляется аргументации эмпирической, прямо апеллирующей-к тому, что дано в опыте. Способы А. т., в отличие от способов эмпирической аргументации, чрезвычайно многообразны и внутренне разнородны. Они включают дедуктив­ное обоснование, системную аргументацию, методологическую аргументацию и др. Никакой единой, проведенной последовательно классификации способов А. т. не существует.
Дедуктивная (логическая) аргументация представляет со­бой выведение обосновываемого положения из иных, ранее при­нятых положений. Она не делает такое положение абсолютно дос­товерным и неопровержимым, но она в полной мере переносит на него ту степень достоверности, которая присуща посылкам дедук­ции. Дедуктивная аргументация является универсальной: она применима во всех областях рассуждения и в любой аудитории.
Значение дедуктивной аргументации долгое время переоцени­валось. Античные математики, а вслед за ними и античные фило­софы настаивали на исключительном использовании дедуктив­ных рассуждений, т. к. именно дедукция ведет к абсолютным истинам и вечным ценностям. Средневековые философы и теоло­ги также преувеличивали роль дедуктивной аргументации. Их ин-


[35]
тересовали лишь самые общие истины, касающиеся Бога, чело­века и мира. Но чтобы установить, что Бог есть в своей сущности доброта, что человек — только его подобие и что в мире царит божественный порядок, дедуктивное рассуждение, отправляюще­еся от немногих общих принципов, подходит гораздо больше, чем индукция и эмпирическая аргументация. Характерно, что все пред­лагавшиеся доказательства существования Бога замышлялись их авторами как дедукции из самоочевидных посылок. Дедуктивная аргументация переоценивалась до тех пор, пока исследование мира носило умозрительный характер и ему были чужды опыт, наблю­дение и эксперимент.
Системная аргументация представляет собой обоснование утверждения путем включения его в качестве составного элемента в кажущуюся хорошо обоснованной систему утверждений или те­орию. Подтверждение следствий, вытекающих из теории, являет­ся одновременно и подкреплением самой теории. С другой сторо­ны, теория сообщает выдвинутым на ее основе положениям определенные импульсы и силу и тем самым способствует их обо­снованию. Утверждение, ставшее элементом теории, опирается уже не только на отдельные факты, но во многом также на широ­кий круг явлений, объясняемых теорией, на предсказание ею новых, ранее неизвестных эффектов, на связи ее с другими тео­риями и т. д. Включение утверждения в теорию распространяет на него ту эмпирическую и теоретическую поддержку, какой обла­дает теория в целом. Связь обосновываемого утверждения с той системой утверждений, элементом которой оно является, суще­ственным образом влияет на эмпирическую проверяемость этого утверждения и, соответственно, на ту аргументацию, которая может быть выдвинута в его поддержку. В контексте своей системы («практики») утверждение может приниматься в качестве несом­ненного, не подлежащего критике и не требующего обоснования по меньшей мере в двух случаях. Во-первых, если отбрасывание этого утверждения означает отказ от определенной практики, от той целостной системы утверждений, неотъемлемым составным элементом которой оно является. Таково, к примеру, утвержде­ние «Небо голубое»: оно не требует проверки и не допускает со­мнения, иначе будет разрушена вся практика визуального вос­приятия и различения цветов. Отбрасывая утверждение «Солнце завтра взойдет», мы подвергаем сомнению всю естественную на­уку. Сомнение в достоверности утверждения «Если человеку отру­бить голову, то обратно она не прирастет» ставит под вопрос всю физиологию и т. д. Эти и подобные им утверждения обосновыва-



[36]




ются не эмпирически, а ссылкой на ту устоявшуюся и хорошо апробированную систему утверждений, составными элементами которой они являются и от которой пришлось бы отказаться, если бы они оказались отброшенными. Англ, философ Дж. Мур в свое время задавался вопросом: как можно было бы обосновать утвер­ждение «У меня есть рука»? Ответ на этот вопрос является про­стым: данное утверждение очевидно и не требует никакого обо­снования в рамках человеческой практики восприятия; сомневаться в нем значило бы поставить под сомнение всю эту практику. Во-вторых, утверждение должно приниматься в качестве несомнен­ного, если оно сделалось в рамках соответствующей системы ут­верждений стандартом оценки иных ее утверждений и в силу этого утратило свою эмпирическую проверяемость. Такое утверждение переходит из разряда описаний в разряд оценок, связь его с дру­гими нашими убеждениями становится всеобъемлющей. К таким непроверяемым утверждениям, в частности, относятся: «Суще­ствуют физические объекты», «Объекты продолжают существо­вать, даже когда они никому не даны в восприятии», «Земля су­ществовала задолго до моего рождения» и т. п. Они настолько тесно связаны со всеми другими нашими утверждениями, что практи­чески не допускают исключения из нашей системы знания. Сис­темный характер обоснования не означает, однако, что отдельно взятое эмпирическое утверждение не может быть обосновано или опровергнуто вне рамок той теоретической системы, к которой оно принадлежит.
Теория придает составляющим ее утверждениям дополнитель­ную поддержку, в силу чего чем крепче сама теория, чем она яснее и надежнее, тем большей является такая поддержка. Со­вершенствование теории, укрепление ее эмпирической базы и прояснение ее общих, в том числе философских и ме­тодологических, предпосылок является одновременно существен­ным вкладом в обоснование входящих в нее утверждений. Среди способов прояснения теории особую роль играют выявление логи­ческих связей ее утверждений, минимизация ее исходных допуще­ний, построение ее на основе аксиоматического метода в форме аксиоматической системы и, наконец, если это возможно, ее формализация. Построение научной теории в форме аксиомати­зированной дедуктивной системы возможно, однако, только для очень узкого круга научных теорий. Оно не может быть поэтому идеалом и той конечной целью, к которой должна стремиться каждая научная теория и достижение которой означало бы пре­дел ее совершенствования.
[37]
Еще одним способом А. т. является анализ утверждения с точки зрения возможности эмпирического его подтвер­ждения и опровержения. От научных положений требует­ся, чтобы они допускали принципиальную возможность опровер­жения и предполагали определенные процедуры своего подтверждения. Если этого нет, относительно выдвинутого поло­жения нельзя сказать, какие ситуации и факты несовместимы с ним, а какие поддерживают его. Положение, в принципе не до­пускающее опровержения и подтверждения, оказывается вне кон­структивной критики, оно не намечает никаких реальных пу­тей дальнейшего исследования. Несопоставимое ни с опытом, ни с имеющимся знанием утверждение нельзя признать обоснован­ным. Вряд ли можно назвать обоснованным, напр., утверждение, что ровно через год в этом же месте будет солнечно и сухо. Оно не опирается ни на какие факты, нельзя даже представить, как его можно было бы опровергнуть или подтвердить, если не сейчас, то хотя бы в ближайшем будущем. К этому же классу утверждений относятся и высказывания типа «Вечная сущность есть движение», «Вечная сущность есть единое», «Неверно, что наше восприятие способно охватить все формы существования», «То, что душа сама может высказать о себе, никогда не превосходит ее самое» и т. п.
Важным способом А. т. является проверка обосновываемого ут­верждения на выполнение им совместимости условия, тре­бующего соответствия каждой гипотезы имеющимся в рассматри­ваемой области законам, принципам, теориям и т. п.
Методологическая аргументация представляет собой обо­снование отдельного утверждения или целостной концепции путем ссылки на тот несомненно надежный метод, с помощью которого получено обосновываемое утверждение или отстаиваемая концепция.
Это перечисление способов А. т. не является исчерпывающим.
АРГУМЕНТАЦИЯ ЭМПИРИЧЕСКАЯ
- аргументация, неотъем­лемой частью которой является ссылка на опыт, на эмпиричес­кие данные. А. э. противопоставляется теоретической аргументации, опирающейся на рассуждение и не пользующейся непосредствен­но ссылками на опыт. Различие между А. э. и теоретической являет­ся относительным в той же мере, в какой относительно различие между эмпирическим и теоретическим знанием. Нередки случаи, когда в одном и том же процессе аргументации соединяются вмес­те и ссылки на опыт, и теоретические рассуждения.
Ядро приемов А. э. составляют способы эмпирического обосно­вания знания, называемые также (эмпирическим) подтвер­ждением или верификацией. А. э. не сводится, однако, к



[38]
подтверждению. В частности, пример и иллюстрация, играющие за­метную роль в аргументации, не относятся к эффективным спо­собам подтверждения. Кроме того, в аргументации ссылки на опыт могут быть заведомо недобросовестными, что исключается самим смыслом понятия подтверждения.
И А. э., и ее частный случай — эмпирическое подтверждение применимы, строго говоря, только в случае описательных (деск­риптивных) высказываний. Оценки, нормы, декларации, обещания и иные выражения, тяготеющие к оценкам, не допускают эмпири­ческого подтверждения и обосновываются иначе, чем ссылками на опыт. Использование А. э. с намерением убедить кого-то в при­емлемости определенных оценок, норм и т. п. должно быть отнесе­но к некорректным приемам аргументации.
Подтверждение может быть прямым, или непосредственным, и косвенным. Прямое подтверждение — это непосредствен­ное наблюдение тех явлений, о которых говорится в обосновыва­емом утверждении. В случае косвенного подтверждения речь идет о подтверждении логических следствий обосновываемого поло­жения, а не о подтверждении самого этого положения. Хорошим примером прямого подтверждения служит доказательство гипоте­зы о существовании планеты Нептун: вскоре после выдвижения гипотезы эту планету удалось увидеть в телескоп. Обоснование путем прямой ссылки на опыт дает уверенность в истинности таких ут­верждений, как «Эта роза красная», «Холодно», «Стрелка вольт­метра стоит на отметке 17» и т. п. Нетрудно заметить, что даже в таких простых констатациях нет «чистого» чувственного созерца­ния. Оно всегда пронизано мышлением, без понятий и без приме­си рассуждения человек не способен выразить даже самые про­стые свои наблюдения, зафиксировать самые очевидные факты. Вера в то, что можно начать научное исследование с одних чис­тых наблюдений, не имея чего-то похожего на теорию, необосно­ванна. Опыт, начиная с самого простого, обыденного наблюде­ния и кончая сложным научным экспериментом, всегда имеет теоретическую составляющую и в этом смысле не яв­ляется «чистым». Теоретическая нагруженность фактов особенно наглядно проявляется в современной физике, исследующей объек­ты, не наблюдаемые непосредственно, и широко использующей для их описания математический аппарат. Истолкование фактов, относящихся к таким объектам, представляет собой самостоятель­ную и иногда весьма сложную проблему. Кроме того, «твердость» чувственного опыта, фактов является относительной. Нередки слу­чаи, когда факты, представляющиеся поначалу достоверными,


[39]
приходится — при их теоретическом переосмыслении — пересмат­ривать, уточнять, а то и вовсе отбрасывать. Особенно сложно об­стоит дело с фактами в науках о человеке и обществе. Проблема не только в том, что некоторые факты могут оказываться сомни­тельными, а то и просто несостоятельными. Она еще и в том, что полное значение факта и его конкретный смысл могут быть поня­ты только в определенном теоретическом контексте, при рассмот­рении факта с какой-то общей точки зрения. Косвенное подтвер­ждение состоит в выведении из обосновываемого положения логических следствий и их последующей опытной проверке. Под­тверждение следствий оценивается при этом как свидетельство в пользу истинности самого положения. Пример такого подтверж­дения: известно, что сильно охлажденный предмет в теплом по­мещении покрывается капельками росы; если мы видим, что у человека, вошедшего в дом, тут же запотевают очки, мы можем с достаточной уверенностью заключить, что на улице морозно. Рас­суждение идет по схеме: «если первое, то второе; второе истинно; значит, первое также является, по всей вероятности, истинным» («Если на улице мороз, у человека, вошедшего в дом, очки запо­тевают; очки и в самом деле запотели; значит, на улице мороз»). Это — индуктивное рассуждение, истинность посылок не гаран­тирует здесь истинности заключения. Выведение следствий и их под­тверждение, взятое само по себе, не в состоянии установить спра­ведливость обосновываемого положения. Чем большее количество следствий нашло подтверждение, тем выше вероятность проверяе­мого положения. Значение имеет не только количество следствий, но и их характер. Чем более неожиданные следствия какого-то по­ложения получают подтверждение, тем более сильный аргумент они дают в его поддержку. И наоборот, чем более ожидаемо в свете уже получивших подтверждение следствий новое следствие, тем меньше его вклад в обоснование проверяемого положения. Неожи­данное предсказание — это предсказание, связанное с риском, что оно не подтвердится. Чем более рискованно предсказание, выдви­гаемое на основе какой-то теории, тем больший вклад в ее обо­снование вносит подтверждение этого предсказания.
Важность А. э. невозможно переоценить, что обусловлено прежде всего тем, что конечным источником и критерием знания являет­ся опыт. Он связывает человека с миром, теоретическое знание — только надстройка над эмпирическим базисом. Вместе с тем тео­ретическое не сводимо полностью к эмпирическому. Опыт не является абсолютным и бесспорным гарантом неопровержимости знания. Он тоже может критиковаться, проверяться и пересмат-


[40]
риваться. Если ограничить круг способов обоснования утвержде­ний их прямым или косвенным подтверждением в опыте, то ока­жется непонятным, каким образом все-таки удается переходить от гипотез к теориям, от предположения к истинному знанию. Эмпирическое обоснование требует дополнения теоретическим обоснованием.
АРГУМЕНТ К АВТОРИТЕТУ (от лат. i pse dixit - сам сказал)
-обоснование утверждения или действия путем ссылки на какой-то авторитет. А. к а. необходим, хотя и недостаточен, в случае обо­снования предписаний (команд, директив, законов государства и т. п.). Он важен также при обсуждении ценности советов, пожела­ний, методологических и иных рекомендаций. Данный аргумент должен учитываться при оценке предостережений, просьб, обеща­ний, угроз и т. п. Несомненна роль авторитета и, соответственно, апелляции к нему едва ли не во всех практических делах.
Необходимо проводить различие между эпистемическим авторитетом, или авторитетом знатока, специалиста в какой-то области, и деонтическим авторитетом, авторитетом выше­стоящего лица или органа. А. к а., выдвинутый в поддержку описа­тельного высказывания, - это обращение к эпистемическому ав­торитету; такой же аргумент, но поддерживающий оценочное высказывание, представляет собой обращение к деонтическому авторитету. Последний подразделяется на авторитет санкции и авторитет солидарности. Приказ первого выполняется под уг­розой наказания, указания второго выполняются, поскольку это способствует достижению поставленной общей цели. Напр., за законами государства стоит авторитет санкции; за приказами ка­питана судна в момент опасности - авторитет солидарности. Раз­деление авторитетов на авторитеты санкции и авторитеты соли­дарности не является жестким. Скажем, законы государства преследуют определенные цели, которые могут разделяться и граж­данами государства; распоряжения капитана, адресованные мат­росам тонущего судна, опираются не только на авторитет соли­дарности, но и на авторитет санкции.
А. к а. только в редких случаях считается достаточным основа­нием для принятия утверждения. Обычно он сопровождается дру­гими, явными или подразумеваемыми доводами. Нормы, в отличие от других оценок, всегда требуют указания того авторитета, которо­му они принадлежат. Первый вопрос, встающий при обсуждении нормы, — это вопрос о том, стоит ли за нею какой-то авторитет и правомочен ли он обязывать, разрешать или запрещать. Если ав­торитет отсутствует или не обладает достаточными полномочия-


[41]
ми, нет и возможного наказания за неисполнение нормы, а зна­чит, нет и самой нормы.
Из многих ошибочных суждений, связанных с А. к а., можно выделить два: резкое противопоставление авторитета и разума; смешение деонтического авторитета с эпистемическим. Автори­тет и разум не противоречат друг другу, прислушиваться к авто­ритету — чаще всего означает вести себя вполне благоразумно. Если, к примеру, мать говорит ребенку, что существует большой город Москва, ребенок поступает разумно, считая это правдой. Столь же разумно поступает пилот, когда верит сообщениям метеороло­га. Даже в науке мы прибегаем к авторитетам, о чем говорят, в частности, обширные библиотеки, имеющиеся в каждом науч­ном институте.
А. к а. относится к аргументации контекстуальной, применимой и эффективной не в каждой аудитории. Наиболее часто этот аргу­мент используется в коллективистических обществах, в число ко­торых входят, в частности, средневековое феодальное общество и тоталитарное общество. Мышление, злоупотребляющее А. к а., при­нято называть авторитарным. Такое мышление стремится уси­лить и конкретизировать выдвигаемые положения прежде всего путем поиска и комбинирования цитат и изречений, принадле­жащих признанным авторитетам. При этом последние канонизи­руются, превращаются в кумиров, не способных ошибиться и гарантирующих от ошибок тех, кто следует за ними. Мышления беспредпосылочного, опирающегося только на себя, не существует. Но предпосылочность мышления и его авторитарность не тожде­ственны. Авторитарность — это особый, крайний, так сказать, вы­рожденный случай предпосылочности, когда функцию самого ис­следования и размышления пытаются почти полностью переложить на авторитет. Авторитарное мышление еще до начала изучения конкретных проблем ограничивает себя определенной совокуп­ностью «основополагающих» утверждений, тем образцом, кото­рый определяет линию исследования и во многом задает его ре­зультат. Изначальный образец не подлежит никакому сомнению и никакой модификации, во всяком случае в своей основе. Предпо­лагается, что он содержит в зародыше решение каждой возника­ющей проблемы или, по крайней мере, ключ к такому решению. Система идей, принимаемых в качестве образца, считается внут­ренне последовательной. Если образцов несколько, они призна­ются вполне согласующимися друг с другом. Очевидно, что если все основное уже сказано авторитетом, на долю его последовате­ля остаются лишь интерпретация и комментарий. Мышление, пле-



[42]
тущееся по проложенной другими колее, лишено творческого импульса и не открывает новых путей. Авторитеты нужны, в том числе и в теоретической сфере. Но полагаться на их мнения следу­ет не потому, что это сказано «тем-то», а потому, что сказанное представляется правильным. Слепая вера во всегдашнюю правоту авторитета, а тем более суеверное преклонение перед ним плохо совместимы с поисками истины и добра, требующими непред­взятого, критичного ума. Авторитет принадлежит определенной человеческой личности, но авторитет личности имеет своим пос­ледним основанием не подчинение и отречение от разума, а осоз­нание того, что эта личность превосходит нас умом и остротою суждения. Признание кого-то авторитетом всегда связано с допу­щением, что его суждения не носят неразумно-произвольного характера, а доступны пониманию и критическому анализу.
АРГУМЕНТ К АУДИТОРИИ
- попытка опереться на мнения, чувства и настроения слушателей, вместо того чтобы обосновать тезис объективными доводами.
Пользующийся этим аргументом обращается непосредственно не к своему партнеру в споре, а к другим участникам или даже случайным слушателям и стремится привлечь их на свою сторону, апеллируя по преимуществу к их чувствам, а не к разуму.
А. к а. — один из тех некорректных приемов ведения спора, кото­рые обычны в публичных спорах. Напр., на одной из дискуссий по поводу теории происхождения видов Ч. Дарвина епископ Вильберфорс обратился к слушателям с вопросом, были ли их предки обезьянами. Защищавший данную теорию биолог Т. Хаксли отве­тил на это, что ему стыдно не за своих обезьяньих предков, а за людей, которым не хватает ума и которые не способны отнестись всерьез к выводам Дарвина. Довод епископа — типичный А. к а. Тем, кто присутствовал на этой происходившей в конце прошлого века дискуссии, казалось не вполне приличным иметь своими, пусть и отдаленными, предками обезьян. Довод Т. Хаксли — пример ар­гумента к личности (см. также Эристика). .
АРГУМЕНТ К ЖАЛОСТИ
— возбуждение в другой стороне спора жалости и сочувствия с намерением получить ее поддержку.
Напр., школьник, не выучивший урок, просит не ставить ему двойку, потому что дома бабушка, узнав об этом, очень расстроится (см.: Эристика).
АРГУМЕНТ К НЕЗНАНИЮ, или невежеству,
- ссылка на нео­сведомленность оппонента в споре в вопросах, относящихся к пред­мету спора; упоминание таких фактов или положений, которых никто из споривших не знает и не в состоянии проверить.


[43]
Напр., приводится известный принцип, но сформулирован­ный на латыни, так что другая сторона, не знающая этого языка, не понимает, о чем идет речь, и вместе с тем не хочет этого показать; писатель с порога отвергает замечания критика, ссыла­ясь на то, что последний не мог бы создать даже такого произве­дения.
Иногда неспособность оппонента показать ложность какого-то утверждения истолковывается как подтверждение истинности этого утверждения:
- Можете доказать, что никто не способен читать мысли дру­гого?
- Нет, не могу.
- Значит, вы должны согласиться, что кто-то способен это делать.
Общей чертой разновидностей А. к н. является стремление ис­пользовать незнание одной из спорящих сторон чего-то или ее неумение что-то сделать (см.: Эристика).
АРГУМЕНТ К СИЛЕ («палочный» довод)
— убеждение силой, угроза неприятными последствиями и, в частности, угроза при­менения насилия или прямое употребление каких-то средств при­нуждения с целью склонить оппонента в споре на свою сторону.
Напр., в споре о территориальных границах представители од­ной страны могут угрожать другой стране применением экономи­ческих санкций или даже вооруженной силы, если их притязания не будут удовлетворены (см.: Эристика).
АРГУМЕНТ К СКРОМНОСТИ
- ссылка в ходе спора на какой-то авторитет, который другой спорящей стороной не относится к весомым в обсуждаемом вопросе, но вместе с тем не ставится ею под сомнение из-за несмелости или чрезмерного почтения к дан­ному авторитету.
Напр., в дискуссии на темы генетики одна сторона обращается к авторитету философов, живших задолго до возникновения этой науки; другая сторона не подвергает этот довод сомнению, опаса­ясь упрека в отсутствии должного уважения к авторитету данных философов, высокомерном противопоставлении собственного суж­дения их мнению (см.: Эристика).
АРГУМЕНТ К ТЩЕСЛАВИЮ
- расточение неумеренных похвал противнику в споре в расчете, что, тронутый ими, он станет мяг­че и покладистее.
Этот довод можно считать частным случаем аргумента к лич­ности. Как только в споре начинают встречаться обороты типа «не подлежит сомнению глубокая эрудиция оппонента», «как чело-


[44]
век выдающихся достоинств, оппонент...», можно предполагать завуалированный А. к т. (см.: Эристика).
АССЕРТОРИЧЕСКИЙ (от лат. asserto - утверждаю)
- установ­ленный, достоверный. А. суждение утверждает нечто действитель­но существующее, установленное, достоверное, напр.: «Волга впадает в Каспийское море» (см.: Аподиктический).

Б
БЕССМЫСЛЕННОЕ
— языковое выражение, не отвечающее требованиям синтаксиса или семантики языка. Б. представляет со­бой конфликт с правилами языка, выход за рамки установок, регламентирующих общение людей с помощью языка. Б. не тож­дественно ложному, оно не истинно и не ложно, истинностное значение имеют только осмысленные высказывания. Б. выражение вообще не сопоставимо с действительностью. Напр., выражение «Если идет снег, то паровоз» нарушает синтаксическое правило, требующее соединять с помощью связки «если..., то...» только высказывания; невозможно вообразить ситуацию, в которой оно оказалось бы истинным или ложным. В Б. выражении «Хорошо, что квадратичность пьет воображение», претендующем на оценку, сме­шиваются разные семантические категории; оно также не может быть ни истинным, ни ложным.
Б. (также как и осмысленными) являются только высказывания. Отдельные понятия, такие, как «равнина» и «круглый квадрат», обладают определенным содержанием, но они не претендуют на описание или оценку ч.-л. Из них можно составить высказывание, но сами по себе они высказываниями не являются.
Можно говорить о типах, или видах, Б. и о градациях его в рамках таких типов. К самому простому виду Б. относятся выражения, в ко­торых нарушены правила синтаксиса. В искусственных языках логики эти правила формулируются так, что автоматически исключается Б. последовательность знаков. Синтаксис естественных языков тоже ориентирован на то, чтобы исключить Б. Но его правила весьма рас­плывчаты и неопределенны, и иногда невозможно решить, что еще стоит на грани их соблюдения, а что уже перешло за нее.


[46]
Другой, более сложный тип Б. представляют высказывания син­таксически корректные, но смешивающие разные выражения язы­ка. Не являются осмысленными, в частности, такие высказыва­ния, как «Законы логики желтые», «Цезарь — первое натуральное число» и т. п. С точки зрения обычных представлений о Б. — как и с точки зрения обычной грамматики — в высказывании «Я лгу» не нарушены никакие принципы соединения слов в предложения, и оно должно быть отнесено к осмысленным. Однако из предполо­жения, что оно истинно, вытекает, что оно ложно, и наоборот, так что его следует, скорее всего, исключить из числа осмыслен­ных (см.: «Лжеца парадокс»).
Область Б. является разнородной и нечетко очерченной, про­стирающейся от обычных «ерунды», «чепухи», «нелепости» и «чуши» до экзотичных «нонсенса» и «абракадабры».
Отсутствие определений, разграничивающих осмысленное и Б., принято считать недостатком обычного языка. Однако критика в данном случае должна учитывать многие обстоятельства и быть в должной мере дифференцированной. Расплывчатость границ меж­ду осмысленным и Б. многообразно и интересно используется в языковом общении; в художественной литературе с помощью этой неопределенности нередко оказывается возможным выра­зить и передать то, что невыразимо и непередаваемо никаким совершенным в своем синтаксисе и в своей семантике искусст­венным языком. Особенность естественного языка, представля­ющаяся слабостью и недостатком в одном отношении, оборачи­вается несомненным его преимуществом в другом.
Так, у Ф. М. Достоевского нередки стоящие на грани праьил выражения, подобные «я видел и сильно думал», «ужасно умела слушать», «он впадал в скорбь и шампанское», «мне было как-то удивительно на него» и т. п. Они хорошо вписываются в общую систему экспрессивного языка Ф. М. Достоевского, стремящегося к связности, цельности речевого потока, к неопределенности, размытости характеристик ситуаций и действующих лиц.
Б., даже в своих крайних проявлениях, остается связанным со строем и духом своего языка. Об этом говорят, в частности, пере­воды Б. с одного языка на другой. Такие переводы не просто тео­ретически возможны, они реально существуют, и один из них может быть лучше другого.
Не только в повседневном, но и в научном рассуждении име­ются разные уровни осмысленности, а значит и Б. Они особенно заметны в периоды становления научной теории и ее пересмотра. В формирующейся теории, не имеющей еще полной и цельной


[47]
интерпретации, всегда есть понятия, не связанные однозначно с исследуемыми объектами. Высказывания с подобными понятия­ми неизбежно являются только частично осмысленными. Связано это гл. обр. не с субъективными и случайными ошибками отдель­ных исследователей, а с самой природой научного познания. Кар­тина мира, даваемая наукой, постоянно расширяется и пересмат­ривается. Какие-то ее фрагменты теряют свою прежнюю устойчивость и ясность, и их приходится заново переосмысливать и истолковывать. Рассуждения же об объектах, еще не полностью осмысленных наукой или не обретших твердого места в ее струк­туре и связях, по необходимости недостаточно однозначны и определенны, а то и просто темны.
Некоторые Б. выражения, в частности парадоксальные выс­казывания типа «Я лгу», могут быть элементами логически корректных рассуждений. В последние десятилетия развивается осо­бая логика Б., описывающая логические связи таких выска­зываний. В числе устанавливаемых ею законов положения: отрица­ние Б. высказывания является Б. высказыванием (Б. высказывания не могут, т. о., противоречить друг другу) и т. п.
Слово «Б.» иногда используется в том же значении, что и аб­сурд, или внутренне противоречивое высказывание (напр., «Он был женатым холостяком»). Такое высказывание не является, однако, Б. в строгом смысле. Оно имеет смысл и является ложным.
«БРИТВА ОККАМА»
- методологический принцип, сформули­рованный англ, философом и логиком У. Оккамом и требующий ус­транения из науки всех понятий, не являющихся интуитивно оче­видными и не поддающихся проверке в опыте: «Сущности не следует умножать без необходимости». У. Оккам, средневековый англ. фило­соф и логик, направлял этот принцип против распространенных в то время попыток объяснить новые явления введением разного рода «скрытых качеств», ненаблюдаемых «сущностей», таинственных «сил» и т. п. «Б. О.» может рассматриваться как одна из первых ясных формулировок принципа простоты, требующего использовать при объяснении определенного круга эмпирических фактов возможно меньшее количество независимых теоретических допущений. Прин­цип простоты проходит через всю историю естественных наук. Мно­гие крупнейшие естествоиспытатели указывали, что он неоднок­ратно играл руководящую роль в их исследованиях. В частности, Ньютон выдвигал особое методологическое требование «не изли­шествовать» в причинах при объяснении явлений.
Вместе с тем понятие простоты не является однозначным (про­стота в смысле удобства манипулирования, легкости изучения;



[48]
простота допущений, лежащих в основе теоретического обобще­ния; независимость таких допущений и т. д.). Неочевидно также, что само по себе стремление к меньшему числу посылок непос­редственно связано с повышением эмпирической надежности те­оретического обобщения.
В логике стремление к «экономии исходных допущений» выра­жается в требовании независимости: ни одна из принятых аксиом не должна выводиться из остальных. Это относится и к принима­емым правилам вывода.
С «Б. О.» определенным образом связано и следующее обычное требование к доказательству: в числе его посылок не должно быть «лишних утверждений», т. е. утверждений, не используемых прямо при выведении доказываемого тезиса. Это требование «экономии посылок» не является, конечно, необходимым. Оно не представ­ляется также достаточно ясным и не включается в само определе­ние доказательства. Доказательство с «излишними» или чересчур сильными посылками в каком-то смысле несовершенно, но оно остается доказательством.


В
ВЕРА
— в отличие от религиозной традиции, в науке В. пони­мается как позиция разума, принимающего некоторые положе­ния, которые не могут быть доказаны. В этом смысле В. противо­положна знанию. К знанию мы относим то, что может быть проверено, подтверждено, обосновано, доказано. Однако далеко не все убеждения человека могут быть подвергнуты проверке и обоснованы. Часть из них принимается нами без доказательства, так сказать, «на веру», мы верим в то, что эти убеждения истин­ны, полезны, хороши, хотя и не можем доказать это.
ВЕРБАЛЬНОЕ ОПРЕДЕЛЕНИЕ
— определение, сформулирован­ное в языке с помощью слов или специальных знаков. В.о. проти­вопоставляются остенсивным определениям с помощью указания на объект или явление. Напр., когда вас спрашивают «Что такое собака?», вы можете дать В.о.: «Собака есть домашнее животное из семейства псовых», а можете обойтись и остенсивным определе­нием, т. е. указать на какую-то конкретную собаку, сопроводив свое указание словами: «Вот собака».
ВЕРИФИКАЦИЯ (от лат. verificatio — доказательство, подтвер­ждение)
- понятие, используемое в логике и методологии науч­ного познания для обозначения процесса установления истинно­сти научных утверждений посредством их эмпирической проверки. Проверка заключается в соотнесении утверждения с реальным по­ложением дел с помощью наблюдения, измерения или экспери­мента. Различают непосредственную и косвенную В. При непосредственной В. эмпирической проверке подвергается само ут­верждение, говорящее о фактах действительности или эксперимен­тальных данных. Однако далеко не каждое утверждение может быть



[50]
непосредственно соотнесено с фактами, ибо большая часть науч­ных утверждений относится к идеальным, или абстракт­ным, объектам. Такие утверждения верифицируются косвенным путем. Из данного утверждения мы выводим следствие, относя­щееся к таким объектам, которые можно наблюдать или изме­рять. Это следствие верифицируется непосредственно. В. след­ствия рассматривается как косвенная В. того утверждения, из которого данное следствие было получено. Напр., пусть нам нуж­но верифицировать утверждение «Температура в комнате равна 20°С». Его нельзя верифицировать непосредственно, ибо нет в реальности объектов, которым соответствуют термины «темпера­тура» и «20°С». Из данного утверждения мы можем вывести след­ствие, говорящее о том, что если в комнату внести термометр, то столбик ртути остановится у отметки «20». Мы приносим термо­метр и непосредственным наблюдением верифицируем утвержде­ние «Столбик ртути находится у отметки "20"». Это служит кос­венной В. первоначального утверждения.
Верифицируемость, т. е. эмпирическая проверяемость, научных утверждений и теорий считается одним из важных признаков на­учности. Утверждения и теории, которые в принципе не могут быть верифицированы, как правило, не считаются научными.
ВЕРОЯТНОСТНАЯ ЛОГИКА
— разновидность многозначной ло­гики, в которой высказываниям (суждениям) наряду с истиной и ложью приписываются промежуточные значения, представляющие собой различные степени вероятности истинности высказываний, степени правдоподобия или подтверждения. Истинным высказы­ваниям приписывается истинностное значение (вероятность) 1; ложным высказываниям — значение 0; гипотетическим же выска­зываниям в качестве значения приписывается любое действитель­ное число из интервала (0,1). Над истинностными значениями (ве­роятностями) гипотез определяются логические операции: конъюнкция, дизъюнкция, отрицание. Получившаяся система до­пускает различные аксиоматизации.
ВЕРОЯТНОСТЬ
— количественная мера возможности появле­ния некоторого события при определенных условиях. Существует несколько интерпретаций понятия В.
Классическая концепция В. рассматривает В. как отноше­ние числа благоприятствующих случаев к общему числу всех воз­можностей. Напр., при бросании игральной кости, имеющей 6 гра­ней, выпадения каждой из них можно ожидать с В., равной 1/6, т. к. ни одна грань не имеет преимуществ перед другой. Однако в реаль­ной практике возможности далеко не всегда являются равными.


[51]
Именно это обстоятельство учитывает статистическая концепция В., которая опирается на реальное появление некото­рого события в ходе длительных наблюдений при фиксированных условиях. Поэтому статистическая концепция В. опирается на по­нятие относительной частоты появления интересующего нас со­бытия, которая определяется опытным путем.
Наконец, логическая В. характеризует отношение между посылками и выводом правдоподобного, в частности, индуктив­ного рассуждения. Степень правдоподобия вывода по отношению к посылкам оценивают с помощью В. В семантических концепци­ях логическую В. часто определяют как степень подтверждения одного высказывания другим.
ВОЗМОЖНОСТЬ ЛОГИЧЕСКАЯ
- одна из модальных характе­ристик высказывания, наряду с «необходимостью», «невозмож­ностью» и «случайностью»; высказывание возможно, если его от­рицание не является логически необходимым.
В. л. обычно выражается оборотом «возможно, что A» (A — какое-то высказывание), но может выражаться и иначе. Кроме того, слово «возможно» используется для выражения онтологической возмож­ности (см.: Онтологическая модальность), деонтической возможно­сти, или разрешения (см.: Деонтическая модальность), и др.
В. л. обычно определяется как внутренняя непротиворечивость высказывания. Высказывание «Коэффициент полезного действия паровой машины равен 100%» внутреннее непротиворечиво и, зна­чит, логически возможно. Но высказывание «К.п.д. такой машины выше 100%» противоречиво и потому логически невозможно.
В. л. может быть определена и через понятие логического закона: логически возможно высказывание, не противоречащее законам логики (высказывание, совместимое с этими законами; высказы­вание, отрицание которого не вытекает из законов логики).
В. л. шире онтологической (фактической, физической) возмож­ности: возможное фактически является возможным и логически, но не наоборот. К примеру, двигатель с к.п.д. 100% возможен логи­чески, но физически невозможен. Круговые орбиты планет воз­можны логически, но невозможны физически.
В. л. изучается модальной логикой в связи с понятиями необхо­димости, случайности и др. В число законов, устанавливаемых этой логикой, входят, в частности, утверждения:
о из истинности высказывания вытекает его возможность, но возможность слабее истинности (напр.: «Если вирусы являются живыми организмами, то возможно, что они — живые организ­мы»);


[52]
о логическое противоречие не является возможным высказы­ванием («Неверно, что возможно, что на Венере есть жизнь и нет жизни»);
о возможно первое или второе, если и только если возможно первое или возможно второе («Возможно, что письмо будет от­правлено или сожжено, только если возможно, что оно будет от­правлено, или возможно, что оно будет сожжено»);
о высказывание возможно, если и только если его отрицание не является необходимым («Возможно, что птицы летают, только если неверно, что необходимо, что они не летают»);
о высказывание необходимо тогда и только тогда, когда его отрицание не является возможным («Необходимо, что холостяк не является женатым, только если невозможно, чтобы холостяк был женат»), и т. п.
Понятие возможности и понятие необходимости являются, та­ким образом, взаимно определимыми. Всякое рассуждение, говоря­щее о возможности, можно перефразировать в рассуждение о не­обходимости, и наоборот, так что нет нужды использовать эти понятия наряду друг с другом. В модальной логике в качестве ис­ходного принимается обычно одно из них. Невозможность опре­деляется как отрицание возможности, а случайность — как воз­можность и самого высказывания, и его отрицания.
ВОЗРАЖЕНИЕ
- обоснованное отрицание (отклонение) к.-л. мысли, к.-л. положения, утверждения, предложения; выска­зывание, в котором выражается несогласие с кем-либо или с чем-либо; опровержение чьего-либо мнения или суждения.
ВОПРОС
— предложение, выражающее недостаток информации о к.-л. объекте, обладающее особой формой и требующее ответа, объяснения. В языке В. выражается в вопросительном предложе­нии, напр.: «Когда на Марс ступит первый житель Земли?» В. не является суждением, ибо для суждения характерно утверждение или отрицание ч.-л., в то время как В. не выражает ни утвержде­ния, ни отрицания. Поэтому к В. неприменима истинностная ха­рактеристика: они не являются истинными или ложными. В. могут быть осмысленными или бессмысленными, коррек­тными или некорректными, правильными или не­правильными. Хотя сам В. не выражает суждения, в основе его всегда лежит суждение или совокупность суждений. В частности, приведенный выше В. опирается на суждения о том, что существует Земля и жители Земли, существует планета Марс, имеется принци­пиальная возможность полета с Земли на Марс. Условием осмыслен­ности В. является истинность тех суждений, на которые он неявно


[53]
опирается. В самом деле, если бы планеты Марс не существовало и соответствующее суждение было ложным, наш В. оказался бы бес­смысленным. Всякий В. возникает на основе некоторого исходно­го знания, неполноту или неопределенность которого требуется устранить. Именно на эту неполноту или неопределенность ука­зывают вопросительные слова «кто?», «что?», «когда?», «почему?» и т. п. Ложность суждений, лежащих в основе В., указывает на то, что такого исходного знания, неполноту или неопределенность кото­рого требуется устранить, не существует, поэтому В. теряет смысл.
Если спрашивающий не знает о ложности предпосылок свое­го В., то он совершает простую логическую ошибку, задавая не­корректный В. Если же спрашивающий осознает ложность пред­посылок своего В. и задает его с целью запутать своих оппонентов или слушателей, то его В. квалифицируется как софизм. Особое положение занимает т. наз. риторический В., который по сути дела В. не является, а представляет собой суждение (утверждение или отрицание ч.-л.), которому придана грамматическая форма вопросительного предложения. Знание, на которое опирается ри­торический В., не содержит неполноты или неопределенности, нуждающихся в устранении, спрашивающему не нужна допол­нительная информация. Напр., В. «Кто из нас не любит стихи А. С. Пушкина?» вовсе не выражает стремления спрашивающего выяснить, кто из присутствующих не любит стихи Пушкина. Спра­шивающий пользуется грамматической формой В. для высказыва­ния утверждения «Все мы любим стихи А. С. Пушкина».
Обычно различают два типа В.:
У т о ч н я ю щ и е В., напр.: «Верно ли, что Петров успешно сдал экзамен по математике?» Подобные В. включают в себя обороты «верно ли», «нужно ли», «действительно ли» и т. п.
Уточняющие В. могут быть простыми или сложными (анало­гично простым и сложным суждениям). «Верно ли, что космонав­ты побывали на Луне?» — простой В. «Пойдете вы в кино или не пойдете?» - сложный (дизъюнктивный) В., который составлен из двух простых В.
Восполняющие В., напр.: «Какой город является столи­цей Португалии?», «Что означает слово "филистер"?» и т. п. Та­кие В. включают в себя вопросительные слова «где?», «когда?», «кто?» и т. п. Они выражают стремление спрашивающего получить недостающую информацию. Сложный восполняющий В. включает в себя несколько вопросительных слов и может быть разбит на ряд простых восполняющих В., напр.: «Кто, где, когда, из какого оружия совершил убийство президента США Джона Кеннеди?»



[54]
В. играют большую роль в научном познании, ибо именно в форме В. формулируются те проблемы и задачи, решая которые, наука получает новое знание. Не менее велика роль В. в процессе обучения. Наука ищет ответы на те В., решение которых еще не известно человечеству. Учащийся имеет дело с такими В., ответ на которые уже получен, но ему еще не известен. Поиски ответа на В., получение отсутствующей у учащегося информации в некоторых чертах похожи на процесс научного поиска и должны содейство­вать развитию логического мышления и творческих способностей учащегося. Для этого важно правильно ставить В. и развивать у учащегося умение правильно отвечать на них. При постановке В. нужно соблюдать следующие правила:
1. В. должен быть осмысленным, или корректным. Для проверки корректности В. следует проверить, истинны ли пред­посылки В. Напр., в В. «Какова высота дома?» основными предпо­сылками будут утверждения о существовании дома и о наличии у него такого свойства, как высота. Эти утверждения истинны, по­этому В. корректен. В В. «Какие из натуральных чисел зеленые?» основными предпосылками будут утверждения о существовании натуральных чисел и о том, что они обладают определенным цве­том. Последнее утверждение ложно, следовательно, В. некорректен.
2. В. должен быть сформулирован по возможности кратко и ясно. Длинные, сложные, нечеткие В. затрудняют их понимание и поис­ки ответа на них.
3. Сложный В. целесообразно разбивать на составляющие простые В. Напр.: «Являлись ли Чехословакия и Монголия в 1960 г. членами СЭВ?» Этот сложный В. следует разбить на два простых, т. к. ответы будут различными — «да», «нет», ибо ЧССР в 1960 г. была членом СЭВ, а Монголия вступила в члены СЭВ только в 1963 г.
4. В сложных разделительных В. нужно указывать все возможные альтернативы. Напр.: «Какой оценки заслуживает данная работа — "неудовлетворительно" или "отлично"?» Здесь не указаны другие возможные альтернативы — «удовлетворительно"» и «хорошо».
Только правильно поставленный В. способен выполнить свои функции как в научном познании, так и в дискуссии и в обучении.
ВОПРОСОВ ЛОГИКА, или: Эротетическая, интеррогативная логика,
— раздел современной символической логи­ки, исследующий логико-семантические свойства вопросительных предложений.
Существуют два подхода к построению формальной теории вопросов, которые условно называются «лингвистическим» и «ком­пьютерным». Согласно первому подходу, материалом для построе-


[55]
ния формальных описаний вопросов служат реально существу­ющие вопросы естественного языка с произвольной, неспециа­лизированной семантикой. В рамках этого подхода строится пере­вод вопроса на формальный язык, в котором исследуется соответствующее вопросу формальное представление. Согласно вто­рому подходу, исходным материалом для формализации вопроса является формальный язык, используемый в информационной си­стеме, ориентированной на решение некоторой совокупности ин­формационно-поисковых задач. Формализация вопросов в инфор­мационном языке осуществляется на базе проблемно ориентированной семантики, а именно: каждому типу вопросов со­ответствует специальное вопросно-ответное отношение, характер которого зависит от семантики. Таким образом, в рамках этого под­хода вопрос понимается как запрос — требование информации определенного типа, адресованное к информационной системе.
ВЫВОД ЛОГИЧЕСКИЙ
— рассуждение, в ходе которого из к.-л. исходных суждений — посылок — с помощью логических правил получают заключение — новое суждение. Напр., из суждений «Все люди смертны» и «Кай — человек» мы можем вывести с помощью правил простого категорического силлогизма новое суждение: «Кай смертен».
В символической логике вывод определяется более строго — как последовательность высказываний или формул, состоящая из аксиом, посылок и ранее доказанных формул (теорем). Последняя формула данной последовательности, выведенная как непосред­ственное следствие предшествующих формул по одному из пра­вил вывода, принятых в рассматриваемой аксиоматической тео­рии, представляет собой выводимую формулу. Поскольку каждая формальная система имеет свои собственные аксиомы и правила вывода, постольку во всякой системе понятие вывода носит спе­цифический характер.
В качестве примера приведем определение понятия вывода для следующей формальной системы. Алфавит системы включает в себя бесконечный набор символов:
р, q, r, s, ...; p1 q1, r1, s1, ...; p2q2, r2, s2, ... ,
которые называются пропозициональными переменными. К ним до­бавляются следующие четыре символа:
(,),->, ˜
левая и правая скобки, знак импликации и знак отрицания. Прави­ла построения формул:
1) всякая пропозициональная переменная есть формула;
2) если А и В суть формулы, то (А—>В) есть формула;


[56]
3) если A есть формула, то ˜ A есть формула.
В качестве аксиом можно принять следующие три формулы:
а) s-> (p->s);
б) (s->(p->q))->((s->p)->(s->q));
в) (˜p->˜q)->(q->p).
В качестве правил вывода принимаются следующие два
правила:
1) Правило подстановки: если формула А получается из формулы А путем замены некоторой переменной повсюду, где она встречается в Л, на некоторую формулу С, то из A следует А'.
2) Правило отделения: из формул вида (А->В) и A следует формула В.
Теперь можно определить понятие вывода. Последовательность формул A1, ..., Ат называется выводом формулы A из посылок Г1 ..., Гт, если каждая формула этой последовательности есть либо одна из аксиом системы, либо одна из посылок Г1, ..., Гт, либо получена из каких-то предыдущих формул последовательности по одному из правил вывода данной системы, а формула А есть пос­ледняя формула данной последовательности.
Формулу A, для которой существует вывод из посылок Г1, ..., Гт называют выводимой из Г1, ..., Гт. Утверждение о выводимости формулы A из посылок Г1, ..., Гт записывается так: Г1, ..., Гт |-A и читается: «Формула A выводима из посылок Г1, ..., Гт». Безот­носительно к специфике формальной системы отношению логи­ческой выводимости (|-) присущи следующие свойства:
1) Г |- Е,.если Е входит в список посылок Г.
2) Если Г |- Е, то Г, ? |- Е для любого перечня формул Д.
3) Если Г |- Е, то ? |- Е, когда ? получено из Г путем перестанов­ки формул Г или опускания таких формул, которые тождественны остающимся формулам.
4) Если Г |- Е, то ? |- Е, когда ? получено из Г за счет опуска­ния любых формул Г, которые доказуемы или выводимы из остающихся формул Г.
ВЫСКАЗЫВАНИЕ
- грамматически правильное повествователь­ное предложение, взятое вместе с выражаемым им смыслом.
В логике употребляется несколько понятий В., существенно раз­личающихся между собой.
Прежде всего это понятие В. дескриптивного, или описатель­ного, основной задачей которого является описание действитель­ности. Такое В. является истинным или ложным; иногда допуска­ется, что оно способно принимать некоторые «неопределенные» значения истинности, промежуточные между полной истиной и


[57]
полной ложью. Логика долгое время тяготела к употреблению тер­мина «В.» лишь применительно к описательным В. Так, логика классическая трактует В. как повествовательное предложение, рас­сматриваемое вместе с его содержанием в аспекте истинностного значения. Курс современной логики обычно начинается опреде­лением В. как предложения, являющегося истинным или ложным. Поскольку оценки, нормы, временные утверждения, меняющие свое значение истинности с течением времени, бессмысленные утверждения и т. п. не имеют истинностного значения, данное оп­ределение можно понимать как приложимое только к описатель­ным В. Очевидно, однако, что законы классической логики спра­ведливы не только для описательных В.
Следующим важным типом В. является оценочное В., устанавли­вающее абсолютную или сравнительную ценность какого-то объек­та. К оценочным В. относятся собственно оценки, включающие понятия «хорошо», «плохо», «лучше», «хуже» и т. п., а также анали­тические В., утверждения о целях, стандарты, конвенции, идеалы и т. п. Частным случаем оценочного В. является нормативное В.
Промежуточную группу между описательными и оценочными В. образуют «смешанные», описательно-оценочные В. Они не только описывают и фиксируют сложившуюся языковую прак­тику, но и оценивают ее, предписывают конкретное языковое поведение. Двойственные, описательно-оценочные В. в одних си­туациях играют роль описаний и могут, как таковые, характери­зоваться как истинные или ложные, в других — выполняют функ­цию оценок, лишенных истинностного значения.
В качестве еще одной несамостоятельной группы могут быть выделены неопределенные В. типа: «Этот дом голубой», «Здесь растет дерево», «Завтра будет солнечное затмение» и т. п. Такие В. сами по себе не являются ни истинными, ни ложными, они приобретают истинностное значение только в локализован­ной ситуации, в частности при указании пространственно-вре­менных координат. Многие В., относимые обычно к описатель­ным, являются на самом деле неопределенными. Скажем, В. «Лондон больше Рима» истинно, но истинно именно теперь: было время, когда Рим был больше Лондона, и, возможно, в будущем эта ситуация повторится. Временными В., меняющими свое ис­тинностное значение с течением времени, занимается логика времени. Были попытки построить осо'бую логику пространства, описывающую логические связи пространственно неопределен­ных В. Существенно, что неопределенными могут быть как опи­сательные, так и оценочные В.


[58]
Еще одну группу В., изучаемых современной логикой, состав­ляют В., относимые обычно к бессмысленным. Напр.: «Простые числа зеленые». Это правильно построенное предложение. Таки­ми же являются, очевидно, предложения «Истинно, что простые числа зеленые» и «Должно быть так, что простые числа зеленые» («Простые числа должны быть зелеными»). Первое предложение кажется описанием, но не является ни истинным, ни ложным, поскольку цвета не имеют отношения к числам. Второе предложе­ние выражает, как может показаться, оценку, но о нем нельзя сказать, по аналогии с обычными оценочными высказываниями, что даваемая им оценка эффективна или целесообразна. Сходным образом обстоит дело с В. «Нынешний король Франции является лысым», «Пегас имеет крылья» и т. п., говорящими о свойствах несуществующих объектов. К бессмысленным иногда относятся также В. с туманным смыслом, подобные «Существовать - значит быть воспринимаемым». Нельзя сказать, что бессмысленные В. не являются В., хотя они не относятся ни к описательным, ни к оценочным В. и стоят не только «вне истины и лжи», но и «вне целесообразного и нецелесообразного». Бессмысленные В. могут быть тем не менее составными частями наших рассуждений. Ис­следованием таких В. занимается так называемая «логика бессмыс­ленности» (см.: Бессмысленное). Она устанавливает, в частности, такие законы: отрицание бессмысленного В. есть бессмысленное В.; следствия бессмысленного В. также являются бессмысленны­ми и т. п. Проблема отнесения бессмысленных В. к В. усложняется, однако, тем, что само бессмысленное неоднородно. Оно простира­ется от относительной бессмыленности, связанной со смешением семантических категорий, до полной бессмысленности, обуслов­ленной нарушением правил синтаксиса. Если выражение «И -желтое число» еще можно причислить к В., то вряд ли это право­мерно в случае выражений типа: «Я ходит», «Если идет дождь, то голова», «Хлестаков — человек является человеком» и т. п.
Перечень разных видов В., изучаемых логикой, показывает, что область понятия В. является гетерогенной и не имеет четких границ. Описательные В. - только один из многих видов В., не сводимых друг к другу.
ВЫСКАЗЫВАНИЕ ДЕСКРИПТИВНОЕ (от англ. description - опи­сание), или: Высказывание описательное,
— высказыва­ние, главной функцией которого является описание действитель­ности. Если описание, даваемое высказыванием, соответствует реальному положению дел, высказывание считается истинным, если не соответствует - ложным. В. д. есть повествовательное предложе-


[59]
ние, рассматриваемое вместе с его содержанием (смыслом) как истинное или ложное. В.д. чаще всего имеет грамматическую фор­му повествовательного предложения: «Плутоний — химический элемент», «У ромба четыре стороны» и т. п. Однако описание мо­жет выражаться и предложениями других видов; даже вопроси­тельное предложение способно в подходящем контексте выражать описание. В.д. отличается от высказываний иных видов не грамма­тической формой, а прежде всего своей основной функцией и особенностями составляющих его структурных «частей».
Понятие В. д. может быть в определенной мере прояснено пу­тем противопоставления оценочному высказыванию. Эти два вида высказываний являются выражением двух противоположных от­ношений мысли к действительности: истинностного и цен­ностного. В первом случае отправным пунктом в сопоставлении высказывания с объектом является объект, высказывание высту­пает как его описание и характеризуется в истинностных терми­нах. В случае ценностного отношения исходным является выска­зывание, выступающее как стандарт или проект, которому должен соответствовать объект. Если последний отвечает требованиям, предъявленным к нему высказыванием, он считается позитивно ценным (хорошим). При сопоставлении, допустим, местности и карты можно, приняв за исходное местность, сказать, что карта, отвечающая ей, является верной. Но можно, приняв за исходное карту (скажем, карту планировки местности), сказать, что мест­ность, отвечающая карте, является позитивно ценной, т. е. такой, какой она должна быть. Неутверждаемое выражение «Этот дом голубой», для которого не указан способ соотнесения его с ситу­ацией (способ утверждения), не является ни описанием, ни оцен­кой, ни вопросом. Описание «Истинно, что этот дом голубой», оценка «Этот дом должен быть голубым» и вопрос «Этот дом го­лубой?» совпадают по своей основе и различаются только спосо­бом соотнесения с действительностью.
Описательное отношение высказывания к действительности иногда отмечается словами «истинно», «действительно» и т. п., но чаще всего никак не обозначается. Сказать «Трава зеленая» — все равно что сказать «Истинно, что трава зеленая».
Всякое описание предполагает следующие четыре части, или компонента: субъект — отдельное лицо или сообщество, даю­щее описание, предмет — описываемая ситуация; основа­ние— точка зрения, в соответствии с которой производится опи­сание, и характер — указание на истинность или ложность предлагаемого описания. Не все эти части находят явное выраже-


[60]
ние в В. д. Характер В. д., как правило, не указывается: оборот «ис­тинно, что ...» опускается, вместо высказываний с оборотом «лож­но, что ...» используются отрицательные высказывания. Предпола­гается, что основания всех В. д. тождественны: если оцениваться объекты могут с разных позиций, то описываются они всегда с одной и той же точки зрения. Предполагается также, что, какому бы субъекту ни принадлежало описание, оно остается одним и тем же. Отождествление оснований и субъектов описаний составляет основное содержание идеи интерсубъективности знания, независимости его употребления и понимания от лиц и обстоя­тельств. Постулат тождественности субъектов и оснований описа­ний предписывает исключать упоминание этих двух «частей» из состава описания. Вместо того чтобы говорить «Для каждого чело­века с любой точки зрения истинно, что Земля вращается вокруг Солнца», мы говорим «Земля вращается вокруг Солнца».
Сложность проведения различия между описаниями и оценка­ми (и соответственно между В. д. и оценочными высказываниями) во многом связана с тем, что многие выражения языка имеют «сме­шанный», описательно-оценочный характер. Одно и то же выраже­ние, напр. аксиома какой-то теории или принцип морали, может в одной ситуации функционировать как описание, в другой — как оцен­ка, и нередко даже с помощью контекста трудно определить, в ка­кой из этих двух противоположных ролей употребляется выражение.
ВЫСКАЗЫВАНИЕ КАТЕГОРИЧЕСКОЕ
- высказывание, в кото­ром предикат утверждается или отрицается относительно субъек­та без ограничения к.-л. условиями и вполне определенно. В. к. обычно противопоставляются условным высказываниям и раздели­тельным высказываниям. В традиционной логике В.к., как правило, отождествляются с простыми атрибутивными суждениями (см.: Суждение). Их структура выражается формулой: «S есть (не есть) Р».
ВЫСКАЗЫВАНИЕ (ПРЕДЛОЖЕНИЕ) КОНТРФАКТИЧЕСКОЕ (от лат. contra — против, factum — событие)
— сложное высказывание, в котором с помощью союза «если бы..., то бы...» объединяются два высказывания A и В. В естественном языке ему соответствуют пред­ложения, имеющие форму условно-сослагательного наклонения. Примером такого высказывания может быть: «Если бы А. П. Чехов дожил до 1917 г., то он был бы свидетелем Октябрьской револю­ции» (1). Структуру таких высказываний в логике часто выражают в виде формулы: «А->В» («Если бы имело место А, то имело бы место и В»).
Основная проблема в логике по отношению к В. к. состоит в том, чтобы сформулировать для них в общей форме критерий ис-


[61]
тинности. Для достижения этой цели иногда предлагалось отожде­ствить В. к. с импликацией материальной (А->В), которая, в частно­сти, является истинной, когда антецедент А ложен, а консеквент В может быть как истинным, так и ложным (см.: Условное высказыва­ние). Но это означало бы, что истинным является не только выс­казывание (1), но и такое: «Если бы А. П. Чехов дожил до 1917 г., то он не был бы свидетелем Октябрьской революции» (2). Одна­ко это не соответствует нашей интуиции, согласно которой выс­казывание (2) вряд ли может оцениваться как истинное.
Для выработки общего критерия истинности В. к. обсуждался и такой критерий. Предлагалось A и В считать дескриптивными пред­ложениями и стремиться вывести В из A, а также из некоторой относящейся к существу дела информации (дополнительные ус­ловия), используя при этом некоторые общие предложения зако­номерного характера. Но в таком случае нужно иметь достаточно строгий критерий выделения общих законов из числа общих пред­ложений вообще, среди которых могут встретиться и случайные обобщения. Такой общий строгий формальный критерий в логи­ке не выработан. Сказанное не исключает, однако, таких конкрет­ных случаев, когда нам удается из предложения A, дополнитель­ных условий и законов вывести предложение В и тем самым обосновать истинность предложения «А->В», при этом А и В ис­толковываются как дескриптивные предложения. Допустим, дано предложение: «Если бы вода в колбе была нагрета до 100 °С, то она закипела бы». Из антецедента этого предложения («Вода в колбе нагретадо 100 °С»), некоторых дополнительных условий (напр., вода лишена примесей, находится при нормальном давлении и т. п.), а также из общего закона: «Всякая вода при 100 °С кипит» можно по законам логики вывести и консеквент («Вода в колбе кипит»).


Г
ГЕРМЕНЕВТИКА (от греч. hermeneuo - разъясняю, истолковы­ваю)
- искусство истолкования, перевода литературных текстов, основанное на грамматическом исследовании языка, изучении конкретных типов литературных произведений и связанных с ними исторических данных, помогающее раскрыть внутренний, глубин­ный смысл исторического текста. Г. возникла в древнегреческой философии и филологии как искусство понимания изречений жрецов, оракулов и т. п. Название восходит к имени бога Гермеса, который считался вестником богов и истолкователем их предна­чертаний.
Протестантские теологи использовали Г. как искусство «истин­ной» интерпретации священных текстов. У гуманистов Возрожде­ния Г. становится методом понимания и перевода памятников ан­тичной культуры на национальные языки. В XIX в. Г. провозглашается важнейшим методом исторического познания и гуманитарных наук в целом. В середине XX в. в работах известных европейских филосо­фов М. Хайдеггера, Э. Бетти и Г. Гадамера Г. из метода гуманитарных наук превращается в философское учение о бытии.
В современной методологии научного познания Г. привлекает к себе все большее внимание как учение о понимании, о способах понимания текстов и достижения взаимопонимания между людьми.
ГЁДЕЛЯ ТЕОРЕМА
- важнейший результат, полученный авст­рийским логиком и математиком К. Гёделем (1906-1978). В 1931 г. в статье «О формально неразрешимых предложениях Principia Mathematica и родственных систем» Гёдель доказал теорему о неполноте: если система Z (содержащая арифметику натуральных чисел) непротиворечива, то в ней существует такое предложение
[63]
А, что ни само А, ни его отрицание не могут быть доказаны сред­ствами Z На примере анализа формальной системы, сформулиро­ванной в фундаментальном трехтомном труде англ. математиков и логиков А. Уайтхеда и Б. Рассела «Principia Mathematica», Гёдель показал, что в достаточно богатых содержательных нормальных системах имеются неразрешимые предложения, т. е. предло­жения, которые недоказуемы и одновременно неопровержимы. Значение Г. т. состоит в том, что она показала неосуществимость программы формализации математики, выдвинутой немецким ма­тематиком Д. Гильбертом. Как показывает Г. т., даже арифметику натуральных чисел невозможно формализовать полностью, ибо в формализованной арифметике существуют истинные предложе­ния, которые оказываются неразрешимыми. С философско-мето-дологической точки зрения значение Г. т. заключается в том, что она показывает невозможность полной формализации человечес­кого знания.
ГИПОСТАЗИРОВАНИЕ (от греч. hypostasis - сущность, субстан­ция)
- логическая (семантическая) ошибка, заключающаяся в опредмечивании абстрактных сущностей, в приписывании им ре­ального, предметного существования.
Эту ошибку допускает, напр., тот, кто считает, что наряду со здо­ровыми и больными людьми в реальном мире есть еще такие от­дельные «существа», как «здоровье» и «болезнь». Или даже что есть особые предметы, обозначаемые словами «ничто» и «несуществу­ющий предмет».
Опасность Г. существует не только в обыденном рассуждении, но и в научных теориях. Г. допускает, напр., юрист, когда говорит об идеальных нормах, правах и т. д. так, как если бы они существовали где-то наряду с лицами и их отношениями. Эту же ошибку совер­шает этик, считающий, что «справедливость», «равенство» и т. д. су­ществуют в том же смысле, в каком существуют люди, связанные этими социальными отношениями.
Идея, что общим именам соответствуют не только обознача­емые ими отдельные предметы или лица, но и какие-то «общие предметы», восходит к Платону. Активные споры об объектах об­щих имен велись в ср. века. Сторонники реализма считали, что общее существует до предметов (в уме бога), в предметах и, нако­нец, после предметов (в уме человека, фиксирующем их общ­ность в каких-то чертах). Их противники номиналисты про­тестовали против опредмечивания абстрактных сущностей. С точки зрения номинализма реальны только единичные вещи, общее же существует только в уме человека, но не в самом мире.


[64]
Возражение против Г. было связано также с требованием «не удваивать сущности», известным под названием «бритва Оккама». Если не только объекты, но и их общие свойства становятся само­стоятельными предметами, это означает, что мир удваивается. Нельзя сомневаться в том, утверждали номиналисты, что существуют «круг­лые вещи», однако необходимо протестовать против существова­ния в качестве особого объекта также «круглости». Признание су­ществования такого объекта означало бы, что вещи, называемые «круглыми», дополняются новой вещью, именуемой «круглостью».
Г. недопустимо в строгом рассуждении, где «удвоение мира» ведет к путанице между реальными предметами и вымышленными. Но оно успешно используется в художественной литературе, где правда и вымысел могут переплетаться.
ГИПОТЕЗА (от греч. hipothesis - основание, предположение)
-положение, выдвигаемое в качестве предварительного, условного объяснения некоторого явления или группы явлений; предполо­жение о существовании некоторого явления. Г. может касаться су­ществования объекта, причин его возникновения, его свойств и связей, его прошлого и будущего и т. д. Выдвигаемая на основе определенного знания об изучаемом круге явлений, Г. играет роль руководящего принципа, направляющего и корректирующего даль­нейшие наблюдения и эксперименты. Г. представляет собой необ­ходимое звено в развитии научного знания.
Как предположительное, вероятное знание, еще не доказанное логически и не настолько подтвержденное опытом, чтобы счи­таться достоверным, Г. не истинна и не ложна. О ней можно ска­зать, что она неопределенна, лежит между истиной и ложью. Получив подтверждение, Г. превращается в истину и на этом пре­кращает свое существование. Опровергнутая Г. становится лож­ным положением и опять-таки перестает быть Г.
Г. выдвигается в науке для решения некоторой конкретной про­блемы: объяснения новых фактических данных, устранения про­тиворечия теории с отрицательными результатами эксперимен­тов и т. п.
Процесс обоснования Г., в ходе которого она либо отвергает­ся, либо превращается в достоверное положение (развернутая Г., касающаяся широкого круга явлений, становится научной теори­ей), в принципе не отличается от обоснования любого теорети­ческого положения. Самым общим образом способы обоснования Г. можно разделить на теоретические и эмпирические, учитывая, однако, что различие между ними относительно, как относительно само различение теоретического и эмпирического


[65]
знания. Теоретические способы охватывают исследование Г. на не­противоречивость, на эмпирическую проверяемость, на прило­жимость ко всему классу изучаемых явлений, на выводимость ее из более общих положений, на утверждение ее посредством пере­стройки той теории, в рамках которой она выдвинута. Эмпиричес­кие способы включают непосредственное наблюдение явлений, предполагаемых Г. (если оно возможно), и подтверждение в опыте следствий, вытекающих из неё.
Одним из критериев обоснованности Г. является ее согласие с фактическим материалом, на базе которого и для объяснения ко­торого она выдвинута; Г. должна соответствовать также устано­вившимся в науке законам, теориям и т. п. Это т. наз. условие непротиворечивости. Являясь принципиально важным, оно не означает, однако, что от Г. нужно требовать полного, пассив­ного приспособления к тому, что в момент ее выдвижения счита­ется фактом. Факты — не только исходный момент конструирова­ния Г., но и руководство к действию — к возможной корректировке как выдвигаемого предположения, так и самих фактов. В опреде­ленных условиях правомерна даже Г., противоречащая хорошо ус­тановленным фактам: вырывая факты из привычного теоретиче­ского контекста, она заставляет посмотреть на них с новой точки зрения и повышает вероятность обнаружить в них то, что ранее проходило незамеченным.
Все это относится и к согласованию Г. с утвердившимися в науке теоретическими положениями: соответствие им Г. разумно до тех пор, пока оно направлено на утверждение лучшей, более эффективной теории, а не просто на сохранение старой теории.
Второе необходимое условие обоснованности Г. -ее прове­ряемость, означающая, что Г. должна в принципе допускать возможность опровержения и возможность подтверждения. Г., не отвечающая этому требованию, не указывает пути для дальней­шего исследования. Таково предположение о существовании сверхъестественных, ничем себя не обнаруживающих объектов или Г. о «жизненной силе», проявляющейся только в известных и объяс­нимых и без нее явлениях.
Третьим способом теоретического обоснования Г. является про­верка ее на принципиальную приложимость к широкому классу исследуемых объектов: она должна охватывать не только явления, для объяснения которых специально предложена, но и возможно более обширный круг родственных им явлений. Хорошим приме­ром здесь может служить Г. квантов М. Планка: выдвинутая внача­ле для объяснения сравнительно частного явления (излучения аб-


[66]
солютно черного тела), она в короткое время распространилась на целый ряд областей и объяснила из одного основания чрезвы­чайно широкое поле физических явлений. Если Г., выдвинутая для одной области, ведет к новым результатам не только в исход­ной, но и в смежных областях, ее объективная значимость суще­ственно возрастает. Тенденция к экспансии, к расширению сфе­ры своей приложимости в большей или меньшей степени присуща всем плодотворным научным Г.
Четвертый, собственно логический способ обоснования Г. — выведение ее из некоторых более общих положений. Если выдви­нутое предположение удается вывести из каких-то утвердившихся истин, это означает, что оно истинно. Данный прием находит, однако, только ограниченное применение. Самые интересные и важные Г. являются, как правило, весьма общими и не могут быть получены в качестве следствий уже установленных положе­ний. К тому же Г. обычно выдвигаются относительно новых, не изученных в деталях явлений, не охватываемых еще универсаль­ными принципами.
Пятый путь утверждения Г. — внутренняя перестройка теории, в рамках которой она выдвинута.
Выдвижение Г. диктуется динамикой развития теории, стремле­нием охватить и объяснить новые факты, устранить внутреннюю несогласованность и противоречивость и т. д. Успех Г. является од­новременно и подкреплением породившей ее теории. С другой стороны, сама теория способна сообщать выдвинутой на ее основе Г. определенные импульсы и силу и тем самым содействовать ее утверждению.
Во многом поддержка, оказываемая Г. теорией, связана с внут­ренней перестройкой последней. Эта перестройка обычно заклю­чается во введении номинальных определений вместо реальных, при­нятии новых соглашений относительно изучаемых объектов, уточнении основополагающих принципов теории, изменении иерархии этих принципов или сферы их действия и т. д. Вводимые таким образом новые принципы, образцы, нормы, правила и т. п. меняют внутреннюю структуру как самой теории, так и постули­руемого ею «теоретического мира».
Эмпирические способы обоснования Г. принято наз. верифика­цией, или подтверждением. Прямая верификация — это непосред­ственное наблюдение тех явлений, существование которых пред­полагается Г. Примером может служить доказательство Г. о существовании планеты Нептун: вскоре после выдвижения Г. эту планету удалось увидеть в телескоп. Прямая верификация возмож-


[67]
на лишь в том случае, когда речь идет о единичных объектах или ограниченных их совокупностях, что делает ее сферу чрезвычайно узкой.
Наиболее важным и вместе с тем универсальным способом верификации является выведение следствий из Г. и их последу­ющая опытная проверка. Однако этот способ верификации сам по себе не позволяет установить истинность Г., он только повышает ее вероятность.
Превращение Г. в составной элемент теории, как правило, слож­ный и длительный процесс. Он не сводим к к.-л. одной процедуре, к отдельно взятому умозаключению. Г., ставшая частью теории, опирается уже не только на свои подтвердившиеся следствия, но и на всю теорию, на объяснение последней широкого круга явле­ний, предсказание новых, ранее неизвестных фактов, на связи между ранее казавшимися не связанными процессами и т. д.
Г., превратившаяся в теорию или ее элемент, перестает быть проблематичным знанием. Но она не становится абсолютной ис­тиной, не способной к дальнейшему развитию. При последующем росте и развитии знания она корректируется и уточняется. Однако основное ее содержание, подвергаясь ограничениям и уточнениям, сохраняет свое значение.
ГИПОТЕТИКО-ДЕДУКТИВНЫЙ МЕТОД
- метод научного по­знания и рассуждения, основанный на выведении (дедукций) зак­лючений из гипотез и других посылок, истинностное значение которых неизвестно. Поскольку в дедуктивном рассуждении зна­чение истинности переносится на заключение, а посылками слу­жат гипотезы, то и заключение Г.-д. рассуждения имеет лишь вероятностный характер. Соответственно типу посылок Г.-д. рас­суждения разделяют на две основные группы. К первой, наиболее многочисленной группе относят рассуждения, посылками кото­рых являются гипотезы и эмпирические обобщения, истинность которых еще нужно установить. Ко второй относятся Г.-д. выводы из таких посылок, которые заведомо ложны или ложность которых может быть установлена. Выдвигая некоторое предположение в качестве посылки, можно из него дедуцировать следствия, проти­воречащие хорошо известным фактам или истинным утвержде­ниям. Таким путем в ходе дискуссии можно убедить оппонента в ложности его предположений. Примером является метод при­ведения к абсурду.
В научном познании Г.-д.м. получил широкое распространение и развитие в XVII—XVIII вв., когда были достигнуты значитель­ные успехи в области изучения механического движения земных



[68]
и небесных тел. Первые попытки применения Г.-д.м. были сдела­ны в механике, в частности в исследованиях Галилея. Теория ме­ханики, изложенная в «Математических началах натуральной фи­лософии» Ньютона, представляет собой Г.-д. систему, посылками которой служат основные законы движения. Успех Г.-д.м. в облас­ти механики и влияние идей Ньютона обусловили широкое рас­пространение этого метода в области точного естествознания.
С логической точки зрения Г.-д. система представляет собой иерархию гипотез, степень абстрактности и общности которых уве­личивается по мере удаления от эмпирического базиса. На верши­не располагаются гипотезы, имеющие наиболее общий характер и поэтому обладающие наибольшей логической силой. Из них как из посылок выводятся гипотезы более низкого уровня. На самом низшем уровне системы находятся гипотезы, которые можно со­поставить с эмпирическими данными. В современной науке мно­гие теории строятся в виде Г.-д. системы.
Такое построение научных теорий имеет большое методологи­ческое значение в связи с тем, что не только дает возможность исследовать логические взаимосвязи между гипотезами разного уровня абстрактности, но и позволяет осуществлять эмпири­ческую проверку и подтверждение научных гипотез и теорий. Гипотезы самого низкого уровня проверяются путем со­поставления их с эмпирическими данными. Если они подтвержда­ются этими данными, то это служит косвенным подтверждением и гипотез более высокого уровня, из которых логически выведе­ны первые гипотезы. Наиболее общие принципы научных теорий нельзя непосредственно сопоставить с действительностью, с тем чтобы удостовериться в их истинности, ибо они, как правило, говорят об абстрактных или идеальных объектах, кото­рые сами по себе не существуют в действительности. Для того что­бы соотнести общие принципы с действительностью, нужно с помощью длинной цепи логических выводов получить из них след­ствия, говорящие уже не об идеальных, а о реальных объектах. Эти следствия можно проверить непосредственно. Поэтому ученые и стремятся придавать своим теориям структуру Г.-д. системы.
Разновидностью Г.-д. м. считают метод математической гипоте­зы, который используется как важнейшее эвристическое средство для открытия закономерностей в естествознании. Обычно в каче­стве гипотез здесь выступают некоторые уравнения, представляю­щие модификацию ранее известных и проверенных соотношений. Изменяя эти соотношения, составляют новое уравнение, выра­жающее гипотезу, которая относится к неисследованным явлени-


[69]
ям. Так, М. Борн и В. Гейзенберг приняли за основу канонические уравнения классической механики, однако вместо чисел ввели в них матрицы, построив таким способом матричный вариант кван­товой механики. В процессе научного исследования наиболее труд­ная — подлинно творческая — задача состоит в том, чтобы от­крыть и сформулировать те принципы и гипотезы, которые могут послужить основой всех последующих выводов. Г.-д. м. играет в этом процессе вспомогательную роль, поскольку с его помощью не выдвигаются новые гипотезы, а только выводятся и проверяются вытекающие из них следствия.
ГИПОТЕТИЧЕСКОЕ УТВЕРЖДЕНИЕ
- утверждение, которое высказывается не как установленная истина, а как некое предпо­ложение, способное оказаться как истинным, так и ложным, напр.: «Возможно, что Наполеон был отравлен», «По-видимо­му, завтра будет хорошая погода». Важной разновидностью Г. у. является гипотеза.
ГОМОМОРФИЗМ, ИЗОМОРФИЗМ
— логико-математические понятия, выражающие уподобление (гомоморфизм) либо одина­ковость (изоморфизм) строения систем. Две системы А и В назы­ваются изоморфными, если между их элементами, а также функ­циями, свойствами и отношениями, имеющими смысл для этих систем, существует или может быть установлено взаимно-одно­значное соответствие. Для изоморфных систем A и В выполняются следующие условия: 1) каждому элементу о из A соответствует единственный элемент b из В, и наоборот; 2) каждой функции f, определенной на элементах А и принимающей значения в А, со­ответствует единственная функция g, определенная на элементах В, и наоборот; 3) каждому свойству Р, которым обладают к.-л. элементы системы А, соответствует взаимно-однозначное свой­ство элементов В, и наоборот. Ослабление перечисленных усло­вий, скажем, требование взаимно-однозначного соответствия толь­ко в одну сторону, приводит к более общему, но и более слабому отношению Г. Изоморфный образ полностью воспроизводит ото­бражаемую систему, напр., зеркальное отображение изоморфно отображаемому предмету, схема радиоприемника изоморфна са­мому приемнику. Гомоморфный образ лишь отчасти похож на свой оригинал, напр., карта местности воспроизводит лишь некото­рые черты этой местности, перевод языкового текста лишь отчас­ти похож на оригинал. Всякий И. есть Г., но не наоборот.


Д
ДВОЙНОГО ОТРИЦАНИЯ ЗАКОН, см.: Закон двойного отрицания.
ДВУЗНАЧНАЯ ЛОГИКА
— логика, опирающаяся на двузначнос­ти (бивалентности) принцип. Двузначной логической системой является логика классическая. Обычно термины «Д.л.» и «класси­ческая логика» используются как равнозначные.
Польский логик Я. Лукасевич (1878-1956) считал непримени­мым двузначности принцип для высказываний о будущих случай­ных событиях. Это явилось исходным моментом для построения концепции многозначной логики.
ДВУЗНАЧНОСТИ ПРИНЦИП
- принцип, в соответствии с ко­торым всякое высказывание либо истинно, либо ложно, т. е. имеет одно из двух возможных истинностных значений — «истинно» и «ложно». Этот принцип лежит в основе логики классической, кото­рую называют также двузначной логикой.
Д.п. был известен еще Аристотелю, который, однако, считал его неприменимым к высказываниям о случайных будущих собы­тиях. Аристотель утверждал, что истинность высказывания о буду­щем событии предполагает с необходимостью наступление этого события, а ложность высказывания о нем свидетельствует о его невозможности. Аристотель устанавливал, таким образом, логи­ческую связь между Д.п. и фатализмом, положением о предопре­деленности человеческих действий.
В более позднее время ограничения, налагаемые на Д.п., обо­сновывались тем, что он затрудняет анализ высказываний не толь­ко о будущих событиях, но и о ненаблюдаемых или несуществу­ющих объектах («Мысль либо зеленая, либо не является зеленой», «Пегас имеет крылья либо не имеет их»), высказываний о пере-


[71]
ходных состояниях («Утро уже наступило либо еще не наступи­ло») и т. п.
Сомнения в универсальности Д. п. не были реализованы в логи­ческих системах до появления современной логики, широко ис­пользующей методы, сходные с методами математики и не пре­пятствующие чисто формальному подходу к логическим проблемам. В системах, получивших название многозначной логики, Д. п. заме­щается многозначности принципом, в соответствии с которым выс­казывание имеет одно из п возможных значений истинности, где п больше двух и может быть, в частности, бесконечным. После­дний принцип можно переформулировать так, что двузначная ло­гика окажется частным случаем многозначной: всякое высказыва­ние имеет одно из п значений истинности, где п больше или равно двум и меньше или равно бесконечности.
Исключение дополнительных значений истинности (сверх «ис­тинно» и «ложно») превращает большинство логических систем, опирающихся на многозначности принцип, в классическую дву­значную логику. Последняя оказывается при этом предельным слу­чаем первых. Двузначная логика описывает типичные случаи упот­ребления определенных логических знаков («и», «или», «не» и т. п.). Многозначная логика, претендующая на уточнение описания этих же знаков, не может противоречить результатам двузначной, а дол­жна, напротив, включать их в качестве предельных случаев.
Убеждение, будто Д. п. с неизбежностью ведет к признанию (стро­гого) детерминизма и фатализма, является ошибочным. Столь же ошибочно и предположение, что многозначная логика есть необ­ходимое средство проведения индетерминистических рассуждений и что ее принятие равносильно отказу от (строгого) детерминизма.
ДЕДУКЦИЯ (от лат. deductio — выведение)
— переход от посы­лок к заключению, опирающийся на логический закон, в силу чего заключение с логической необходимостью следует из принятых посылок. Характерная особенность Д. заключается в том, что от ис­тинных посылок она всегда ведет только к истинному заключению.
Д. как умозаключению, опирающемуся на логический закон и с необходимостью дающему истинное заключение из истинных посылок, противопоставляется индукция — умозаключение, не опирающееся на закон логики и ведущее от истинных посылок к вероятному, или проблематичному, заключению.
Дедуктивными являются, напр., умозаключения:
Если лед нагревается, он тает.
Лед нагревается.
Лед тает.



[72]
Всякий газ летуч.
Неон — газ.
Неон летуч.
Черта, отделяющая посылки от заключения, стоит вместо сло­ва «следовательно».
Примерами индукции могут служить рассуждения:
Канада — республика; США — республика.
Канада и США — североамериканские государства.
Все североамериканские государства являются республика­ми.

Италия — республика; Португалия — республика; Финляндия — республика; Франция — республика.
Италия, Португалия, Финляндия, Франция — западноевропейские страны.
Все западноевропейские страны являются республиками.
Индуктивное умозаключение опирается на некоторые факти­ческие или психологические основания. В таком умозаключении заключение может содержать информацию, отсутствующую в по­сылках. Достоверность посылок не означает поэтому достоверно­сти выведенного из них индуктивно утверждения. Заключение индукции проблематично и нуждается в дальнейшем исследова­нии. Так, посылки и первого, и второго приведенных индуктив­ных умозаключений истинны, но заключение первого из них ис­тинно, а второго — ложно. Действительно, все североамериканские государства — республики; но среди западноевропейских стран имеются не только республики, но и монархии.
Особенно характерными Д. являются логические переходы от общего знания к частному типа:
Все люди смертны.
Все греки - люди.
Следовательно, все греки смертны.
Во всех случаях, когда требуется рассмотреть какое-то явление на основании уже известного общего правила и вывести в отно­шении этого явления необходимое заключение, мы умозаключаем в форме Д. Рассуждения, ведущие от знания о части предметов (частного знания) к знанию обо всех предметах определенного класса (общему знанию), - это типичные индукции. Всегда остает­ся вероятность того, что обобщение окажется поспешным и нео­боснованным («Сократ - умелый спорщик; Платон — умелый спорщик; значит, каждый человек - умелый спорщик»).


[73]
Нельзя вместе с тем отождествлять Д. с переходом от общего к частному, а индукцию — с переходом от частного к общему. В рас­суждении «Шекспир писал сонеты; следовательно, неверно, что Шекспир не писал сонетов» есть Д., но нет перехода от общего к частному. Рассуждение «Если алюминий пластичен или глина пла­стична, то алюминий пластичен» является, как принято думать, индуктивным, но в нем нет перехода от частного к общему. Д. — это выведение заключений, столь же достоверных, как и приня­тые посылки, индукция - выведение вероятных (правдоподоб­ных) заключений. К индуктивным умозаключениям относятся как переходы от частного к общему, так и аналогия, каноны индукции, целевое обоснование и т. д.
Тот особый интерес, который проявляется к дедуктивным умо­заключениям, понятен. Они позволяют из уже имеющегося зна­ния получать новые истины, и притом с помощью чистого рассуж­дения, без обращения к опыту, интуиции, здравому смыслу и т. п. Д. дает стопроцентную гарантию успеха, а не просто обеспечивает ту или иную — быть может, и высокую — вероятность истинного заключения. Отправляясь от истинных посылок и рассуждая де­дуктивно, мы обязательно во всех случаях получим достоверное знание.
Подчеркивая важность Д. в процессе развертывания и обосно­вания знания, не следует, однако, отрывать ее от индукции и недо­оценивать последнюю. Почти все общие положения, включая и научные законы, являются результатами индуктивного обобщения. В этом смысле индукция — основа нашего знания. Сама по себе она не гарантирует его истинности и обоснованности, но она по­рождает предположения, связывает их с опытом и тем самым со­общает им определенное правдоподобие, более или менее высо­кую степень вероятности. Опыт — источник и фундамент человеческого знания. Индукция, отправляющаяся от того, что постигается в опыте, является необходимым средством его обоб­щения и систематизации.
В обычных рассуждениях Д. только в редких случаях предстает в полной и развернутой форме. Чаще всего указываются не все ис­пользуемые посылки, а лишь некоторые. Общие утверждения, ко­торые кажутся хорошо известными, опускаются. Не всегда явно формулируются и заключения, вытекающие из принятых посылок. Сама логическая связь, существующая между исходными и выво­димыми утверждениями, лишь иногда отмечается словами, подоб­ными «следовательно» и «значит». Нередко Д. является настолько сокращенной, что о ней можно только догадываться. Проводить


[74]
дедуктивное рассуждение, ничего не опуская и не сокращая, об­ременительно. Вместе с тем всякий раз, когда возникает сомне­ние в обоснованности сделанного вывода, необходимо возвращать­ся к началу рассуждения и воспроизводить его в возможно более полной форме. Без этого трудно или даже невозможно обнаружить допущенную ошибку.
Дедуктивная аргументация представляет собой выве­дение обосновываемого положения из иных, ранее принятых по­ложений. Если выдвинутое положение удается логически (дедук­тивно) вывести из уже установленных положений, это означает, что оно приемлемо в той же мере, что и сами эти положения. Обоснование одних утверждений путем ссылки на истинность или приемлемость других утверждений — не единственная функция, выполняемая Д. в процессах аргументации. Дедуктивное рассужде­ние служит также для верификации (косвенного подтверждения) утверждений: из проверяемого положения дедуктивно выводятся его эмпирические следствия; подтверждение этих следствий оце­нивается как индуктивный довод в пользу исходного положения. Дедуктивное рассуждение используется также для фальсификации утверждений путем показа того, что вытекающие из них след­ствия являются ложными. Не достигшая успеха фальсификация представляет собой ослабленный вариант верификации: неудача в опровержении эмпирических следствий проверяемой гипотезы является аргументом, хотя и весьма слабым, в поддержку этой гипотезы. И наконец, Д. используется для систематизации теории или системы знания, прослеживания логических связей входящих в нее утверждений, построения объяснений и пониманий, опи­рающихся на общие принципы, предлагаемые теорией. Проясне­ние логической структуры теории, укрепление ее эмпирической базы и выявление ее общих предпосылок является вкладом в обо­снование входящих в нее утверждений.
Дедуктивная аргументация является универсальной, при­менимой во всех областях рассуждения и в любой аудитории. «И если блаженство есть не что иное, как жизнь вечная, — пишет средневековый философ И.С.Эриугена, — а жизнь вечная — это познание истины, то блаженство - это не что иное, как познание истины». Это теологическое рассуждение представляет собой де­дуктивное рассуждение, а именно силлогизм.
Удельный вес дедуктивной аргументации в разных областях знания существенно различен. Очень широко она применяется в математике и математической физике и только эпизодически - в истории или эстетике. Имея в виду сферу приложения Д., Аристо-


[75]
тель писал: «Не следует требовать от оратора научных доказательств, точно так же как от математика не следует требовать эмоциональ­ного убеждения» (Метафизика. II, 3). Дедуктивная аргументация является очень сильным средством, но, как и всякое такое сред­ство, она должна использоваться узконаправленно. Попытка стро­ить аргументацию в форме Д. в тех областях или в той аудитории, которые для этого не годятся, приводит к поверхностным рас­суждениям, способным создать только иллюзию убедительности.
В зависимости от того, насколько широко используется дедук­тивная аргументация, все науки принято делить на дедуктив­ные и индуктивные. В первых используется по преимуще­ству или даже единственно дедуктивная аргументация. Во вторых такая аргументация играет лишь заведомо вспомогательную роль, а на первом месте стоит эмпирическая аргументация, имеющая индуктивный, вероятностный характер. Типично дедуктивной на­укой считается математика, образцом индуктивных наук являют­ся естественные науки. Однако деление наук на дедуктивные и индуктивные, широко распространенное еще в начале этого века, сейчас во многом утратило свое значение. Оно ориентировано на науку, рассматриваемую в статике, как систему надежно и окон­чательно установленных истин.
Понятие Д. является общеметодологическим понятием. В логи­ке ему соответствует понятие доказательства.
ДЕЛЕНИЕ ЛОГИЧЕСКОЕ
— логическая операция, посредством которой объем делимого понятия распределяется на известные классы (множества) с точки зрения некоторого признака. Посред­ством операции Д. л. раскрывается объем того или иного поня­тия, выясняется, из каких подмножеств состоит множество, соответствующее делимому понятию. Так, по строению листь­ев множество деревьев может быть подразделено на два под­множества: лиственные деревья и хвойные деревья. Иногда говорят не о Д. л. объема понятия, а просто о Д. л. понятия. Делимое понятие есть понятие, подлежащее делению. Подмно­жества, которые получаются в результате Д. л. понятия, назы­ваются членами деления. Признак, по которому производится Д., называют основанием Д. л. Д. л. может быть произведено по признаку, выступающему в различных вариантах (разновидно­стях). Так, треугольники по признаку величины угла могут быть подразделены на прямоугольные, тупоугольные и остроуголь­ные именно потому, что признак величины угла может высту­пать как признак прямоугольности, тупоугольности и остро-угольности.


[76]
Получившиеся в результате Д. л. подмножества (члены деле­ния) могут, в свою очередь, подвергаться Д. л. Такой вид Д. л. называется последовательным. При выполнении операции Д. л. дол­жны соблюдаться следующие правила:
1. Д. л. должно быть соразмерным. Это значит, что объем дели­мого понятия должен быть равен сумме объемов членов Д. л. Напр., это правило будет нарушено, если все леса разделить на хвойные и лиственные (пропущен член Д. л.: смешанные).
2. Д. л. на каждом его этапе должно производиться по одному основанию. Мы нарушим это правило, если, напр., разделим меж­дународные договоры на справедливые, несправедливые, ус­тные и письменные: сначала международные договоры мы разде­лили по признаку их равноправности, а затем — по признаку формы их заключения.
3. Члены Д. л. должны исключать друг друга. Пример, связанный с нарушением этого правила: «Войны бывают справедливые, не­справедливые и освободительные» (освободительные войны вхо­дят в объем справедливых).
4. Д. л. должно быть непрерывным. Не будет непрерывным, напр., такое Д. л.: «Грамматические предложения бывают простыми, слож­носочиненными и сложноподчиненными». На первом этапе сле­довало бы грамматические предложения подразделить на простые и сложные, а затем сложные подразделить на сложносочиненные и сложноподчиненные.
Д. л. может быть дихотомическим (деление надвое): объем делимого понятия А делится на два исчерпывающих его взаимо­исключающих множества В и не-В. Так, понятие позвоночных (A) мы можем подразделить сначала на млекопитающих (В) и не­млекопитающих (не-В). Затем понятие не-В можем подразделить на птиц (С) и не-птиц (не-С). Продолжается такое деление до тех пор, пока отрицательное понятие в некоторой из пар дихотоми­чески полученных понятий не окажется пустым. Мы подразделим всех позвоночных животных на млекопитающих, птиц, пресмы­кающихся, земноводных, рыб и круглоротых.
ДЕНОТАТ (от лат. denoto — обозначаю), или: Десигнат, предметное значение,
— в логике и семантике предмет, обозначаемый собственным именем некоторого языка (в фор­мализованном языке - константой или термом), или класс пред­метов, обозначаемых общим (нарицательным) именем (в фор­мализованном языке - предметной переменной). Напр., собственное имя «Волга» обозначает великую русскую реку Вол­гу, а сама река Волга является Д. имени «Волга». Общее имя «кос-


[77]
монавт» обозначает всех людей, побывавших в космосе, и класс этих людей будет Д. данного общего имени. Другой характеристи­кой имени является его смысл — совокупность черт предметов, обозначаемых именем, то, что мы усваиваем, когда понимаем имя, и то, благодаря чему мы узнаем, какие предметы оно обозначает.
Д. собственных и общих имен, используемых в повседневном и научном языке, далеко не всегда являются реально существу­ющие предметы и совокупности таких предметов. Часто в качестве Д. выступают идеализированные, абстрактные объекты, напр. объек­ты арифметики или геометрии; литературные герои, напр. Гамлет или Наташа Ростова; вымышленные, фантастические существа, скажем, гуингмы, и т. п. Если Д. некоторого имени не существует как некоторый реальный объект или совокупность таких объек­тов, то иногда считают, что такое имя вообще лишено Д. и обла­дает лишь одним смыслом. Использование языковых выражений такого рода может приводить к ошибкам и противоречиям. Напр., выражение «нынешний король Франции», очевидно, обозначает некоторого человека, относительно которого можно высказать то или иное утверждение, допустим: «Нынешний король Франции лыс». Если мы захотим установить, истинно или ложно это утверж­дение, мы можем перебрать всех ныне живущих французов с це­лью обнаружить среди них короля. Ясно, что короля среди них мы не найдем и вынуждены будем заключить, что наше утверждение ложно. Следовательно, должно быть истинно противоположное ут­верждение: «Нынешний король Франции не лыс». Но, перебрав всех нелысых французов, мы и среди них не обнаружим короля Франции. Поэтому мы будем вынуждены заключить, что два про­тивоположных утверждения одновременно ложны, что является нарушением закона исключенного третьего. Чтобы избежать подоб­ных ошибок, следует ясно отдавать себе отчет, какого рода суще­ствованием обладает Д. используемого нами имени.
ДЕОНТИЧЕСКАЯ ЛОГИКА (от греч. deon — долг, правильность),
или: Логика норм, нормативная л о г и к а, — раздел ло­гики, исследующий логическую структуру и логические связи нор­мативных высказываний. Анализируя рассуждения, посылками или заключениями которых служат такие высказывания, Д.л. отделяет необоснованные схемы рассуждений от обоснованных и система­тизирует последние.
Д. л. слагается из множества систем, или «логик», различа­ющихся используемыми символическими средствами и доказуе­мыми утверждениями. Вместе с тем эти «логики» имеют общие черты. Предполагается, что все многообразные нормы имеют одну и


[78]
ту же структуру. Выделяются четыре структурных «элемента» нор­мы: характер - норма обязывает, разрешает или запрещает; содержание — действие, которое должно быть, может или не должно быть выполнено; условия приложения; субъект — лицо или группа лиц, которым адресована норма. Не все струк­турные элементы нормы находят выражение в символическом аппарате Д. л. Те системы, в которых учитывается только содержа­ние нормы и ее характер, называются абсолютными (или монадическими). В них норма представляется в виде: «Обязательно (разрешено, запрещено) А», где А — высказывание, которое опи­сывает состояние дел, реализуемое предписываемым действием. Де­онтические системы, в которых учитываются также условия при­ложения нормы, называются относительными (или диадическими). В них норма принимает вид: «Обязательно (разре­шено, запрещено) А в условиях В», где А и В — высказывания, описывающие какие-то состояния.
Подход Д. л. к структуре норм является предельно общим. Это позволяет распространить ее законы на нормы любых видов, не­зависимо от их частных особенностей.
Правила игры и грамматики, законы государства и команды, тех­нические нормы, обычаи, моральные принципы, идеалы и т. д. — нормы всех этих видов имеют одинаковую логическую структуру и демонстрируют одинаковое «логическое поведение».
В Д. л. понятия «обязательно», «разрешено» и «запрещено» обыч­но считаются взаимно определенными.
В Д. л. имеют место закон деонтической непротиво­речивости (выполнение действия и воздержание от него не могут быть вместе обязательными), закон деонтической пол­ноты (всякое действие или обязательно, или безразлично, или запрещено), законы: логические следствия обязательного — обяза­тельны; если действие ведет к запрещенному следствию, то само действие запрещено, и т. п.
Если Д. л. строится как расширение логической теории дей­ствия, различаются действие и (сознательное) воздержание от действия, не равносильное простой бездеятельности. Если в осно­ву Д.л. положена логика взаимодействия, проводится различие меж­ду типами деятельности, связывающей двух субъектов (предос­тавление какого-то объекта, навязывание его и т. п.).
В соответствии с «Юма принципом», невозможен логический переход от утверждений со связкой «есть» к утверждениям со связ­кой «должен». Ни одна из существующих деонтических систем не нарушает данный принцип и не санкционирует переходов от опи-


[79]
сательных посылок к нормативным заключениям. Невозможным считается и логический вывод описательных высказываний из нормативных. Нарушающий якобы это положение «принцип Кан­та» — «Если должен, то может» (обязательность действия влечет его логическую возможность или выполнимость) — не является на самом деле контрпримером. В нем фигурирует не обязывающая норма, а описательное высказывание о ней.
Попытки свести Д. л. к логике описательных высказываний не увен­чались успехом и сейчас оставлены. Более плодотворным является истолкование норм как частного случая оценок. Норма представляет собой групповую оценку, подкрепленную угрозой наказания (санк­ции), т. е. социально навязанную и социально закрепленную оценку. «Обязательно действие A» можно определить так: «Действие A оце­нивается положительно; и хорошо, что уклонение от этого действия сопровождается наказанием». Такое определение нормативных по­нятий через оценочные позволяет свести деонтические модальности к аксиологическим модальностям и Д. л. к оценок логике.
Д. л. нашла уже достаточно широкие и интересные приложения. Понимание логических характеристик норм необходимо для реше­ния вопросов о месте и роли норм в научном и ином знании, о взаимных связях норм и оценок, норм и описательных высказыва­ний и т. д. Знание логических законов, которым подчиняется мо­ральное, правовое, экономическое и всякое иное рассуждение, использующее и обосновывающее нормы, позволяет сделать бо­лее ясными представления об объектах и методах наук, опериру­ющих нормами, оказать существенную помощь в их систематизации. Распространяя формальные критерии рациональности на область нор­мативного рассуждения, Д. л. позволяет дать аргументированную кри­тику концепциям, утверждающим алогичность такого рассуждения и настаивающим на невозможности сколь-нибудь убедительного обоснования моральных, правовых и иных норм и их систем.
Источником философского и методологического интереса яв­ляется также то, что Д. л. заставляет по-новому взглянуть на ряд собственно логических проблем. В частности, построение логиче­ской теории нормативных высказываний, не имеющих истиннос­тного значения, означает выход логики за пределы «царства исти­ны», в котором она находилась до недавних пор. Пони-мание логики как науки о приемах получения истинных следствий из истинных посылок должно в связи с этим уступить место более широкой концепции логики.
ДЕОНТИЧЕСКАЯ МОДАЛЬНОСТЬ (от греч. deon - долг, пра­вильность),
или: Нормативная модальность, модаль-


[80]
ность долженствования, - характеристика практическо­го действия с точки зрения определенной системы норм. Норма­тивный статус действия обычно выражается понятиями «обяза­тельно», «разрешено», «запрещено», «(нормативно) безразлично», используемыми в нормативном высказывании. Напр.: «Обязатель­но надо заботиться о близких», «Разрешено ездить в автобусе», «Безразлично, как человек называет свою собаку» и т. п.; здесь обязанность является характеристикой определенного круга дей­ствий с точки зрения принципов морали; разрешение относится к действию, не противоречащему системе правовых норм; норма­тивное безразличие утверждается относительно достаточно нео­пределенной системы норм, скажем, совокупности требований обычая, традиции и т. п.
Вместо слов «обязательно», «разрешено», «запрещено» могут использоваться слова «должен», «может», «не должен», «необхо­димо» и т. п.
При употреблении понятий «обязательно», «разрешено» и т. п. всегда имеется в виду какая-то нормативная система, налагающая обязанность, предоставляющая разрешение и т. д. Поскольку су­ществуют различные системы норм и нередко они не согласуются друг с другом, действие, обязательное в рамках одной системы, может быть безразличным или даже запрещенным в рамках дру­гой. Напр., обязательное с точки зрения морали может быть без­различным с точки зрения права; запрещенное в одной правовой системе может разрешаться другой такой системой.
Д. м. понятия, являющиеся необходимыми структурными ком­понентами нормативных высказываний, изучаются этикой, тео­рией права и другими дисциплинами, занимающимися нормами. Логическое исследование норм и нормативных понятий осуще­ствляется деонтической логикой, называемой также логикой норм. В ней деонтические понятия рассматриваются как модаль­ные характеристики высказываний, говорящих либо о действиях, либо о состояниях, возникающих в результате того или иного дей­ствия. С помощью этих понятий все действия, рассматриваемые с точки зрения какой-то системы норм, разбиваются на три класса: обязательные, нормативно безразличные и запрещенные. К раз­решенным относятся действия, являющиеся обязательными или безразличными.
По своим логическим свойствам Д. м. аналогичны модальнос­тям других групп: логическим («необходимо», «случайно», «не­возможно»), эпистемическим («убежден», «сомневается», «отвергает»), аксиологическим («хорошо», «(оценочно) безразлично», «плохо») и др. Напр., действие и воздержание от


[81]
него не могут быть обязательными аналогично тому, как нельзя быть убежденным и в истинности, и в ложности какого-то утверждения, нельзя считать хорошим и наличие, и отсутствие чего-то и т. п.
Понятия «обязательно», «разрешено» и «запрещено» считают­ся взаимно определимыми:
>> обязательно то, от чего не разрешено воздерживаться; обя­зательно все, что запрещено не делать;
>> разрешено то, от выполнения чего не обязательно воздер­живаться; разрешено все, что не запрещено;
>> запрещено то, от чего обязательно воздерживаться; запре­щено все, что не является разрешенным.
По поводу принципа «разрешено все, что не запрещено» нуж­но отметить, что он принимается не во всех системах деонтиче­ской логики. О системах, включающих данный принцип, гово­рится, что они определяют либеральный нормативный режим; системы, не предполагающие, что из отсутствия запрещения ло­гически вытекает разрешение, характеризуют деспотический нормативный режим.
Безразлично действие, не являющееся ни обязательным, ни запрещенным, или, что то же, действие, которое разрешено вы­полнять и разрешено не выполнять.
Эти определения означают, что любую систему норм можно сформулировать не только в виде перечня «обязанностей», но и в форме множества «запрещений» или множества «разрешений» (включающего, конечно, и «неразрешения»).
Понятие обязанности (или деонтической необходимости) мож­но пояснить путем противопоставления ее другим видам необхо­димости. В зависимости от основания утверждения о необходимо­сти можно выделить три ее вида: логическую, физическую (называемую также онтологической или каузаль­ной) и деонтическую (нормативную) необходимость. Логи­чески необходимо все, что вытекает из законов логики. Физиче­ски необходимо то, что следует из законов природы. Деонтически необходимо то, что вытекает из законов или норм, действующих в обществе, т. е. то, отрицание чего противоречит таким законам или нормам. Что касается взаимных связей трех видов необходимости, то предполагается, что действие, вменяемое в обязанность, долж­но быть логически и физически возможным, поскольку невозмож­но сделать то, что противоречит законам логики или природы.
Вместе с тем аналогия между логической и физической необ­ходимостью, с одной стороны, и деонтической необходимостью, с другой, не является полной. Необходимое в силу законов логи­ки или законов природы реально существует. Но из обязательное-


[82]
ти чего-то не следует, что оно имеет место. Принципы морали, законы государства, правила обычая или ритуала и т. п., как изве­стно, нарушаются.
В логике предложено определение обязательности - а значит, и других деонтических понятий — через понятие наказания (санкции): действие обязательно, когда воздержание от него вле­чет за собой наказание. Однако при таком определении само понятие наказания должно быть нормативным, иначе окажет­ся, что нормативное высказывание сводится к высказыванию опи­сательному.
Нормы являются частным случаем оценок (см.: Оценочное выс­казывание). Это дает основание определить «обязательно» через «хорошо»: действие обязательно, когда оно представляет собой позитивную ценность, и хорошо, что воздержание от него ведет к наказанию. К примеру: «Обязательно быть честным, когда правди­вость оценивается позитивно, и хорошо, что нечестность влечет осуждение». Д.м. является, таким образом, частным случаем акси-ологической (оценочной) модальности.
ДЕСКРИПЦИЯ ОПРЕДЕЛЕННАЯ (от лат. descriptio - описание)
-языковое выражение, служащее для обозначения единичных объек­тов посредством описания их свойств или отношений к другим объектам. В языке Д. о. выполняет те же функции, что и соб­ственное имя. Объект можно обозначить именем, напр. «Го­мер», «Эверест», «Авраам Линкольн», но и его же можно выде­лить и посредством Д. о.: «Тот древнегреческий поэт, которому приписывают авторство "Илиады" и "Одиссеи"», «Та горная вер­шина, которая является самой высокой на земном шаре», «Тот президент США, который возглавил борьбу за освобождение не­фов». Д. о. необходима тогда, когда в языке нет собственного име­ни для некоторого объекта, напр.: «самый глупый человек на Зем­ле», «изобретатель колеса», «самая плодоносная яблоня в данном саду». Однако Д.о. может относиться и к тем объектам, которые обозначаются собственными именами.
Для того чтобы использование Д.о. не приводило к противо­речиям, она должна удовлетворять следующим двум условиям: 1) существования: объект, к которому относится Д.о., должен существовать; 2) единственности: этот объект должен быть един­ственным.
ДИАГРАММЫ ВЕННА
- геометрическое наглядное представле­ние отношений между классами (объемами понятий) в буле­вой алгебре с помощью кругов или иных фигур. Д. В. были введены в логику в конце XIX в. англ. логиком Дж. Венном.


[83]
Элемент 1 булевой алгебры представляется как универсаль­ный класс, или рассматриваемая предметная область; ее мож­но изображать в виде квадрата. Элементу 0 соответствует пустой класс. Некоторый непустой класс А представляется в виде круга, включенного в предметную область. То, что лежит за пределами класса A, является его дополнением А:
Сумма двух классов A E В представляется в виде объединения изоб­ражающих их кругов:
Произведение двух классов ACВ представляется в виде общей ча­сти изображающих их кругов:
Допустим теперь, что нам нужно с помощью Д. В. наглядно представить класс AE(BCС). Сначала образуем класс ВCС, ко­торый представляет собой общую часть классов В и С, а затем к этой общей части добавляем весь класс A и в итоге получаем:
Д. В. используются для наглядной иллюстрации справедливости аксиом и теорем булевой алгебры, а также для представления от­ношений между объемами понятий.
ДИАЛЕКТИЧЕСКАЯ ЛОГИКА
- название философской теории, пытавшейся выявить, систематизировать и обосновать в качестве


[84]
универсальных основные особенности мышления коллекти­вистического общества (средневекового феодального обще­ства, тоталитарного общества и др.). Основной принцип Д.л. (ее «ядро») провозглашает сближение и отождествление противопо­ложностей: имеющегося в разуме и существующего в действитель­ности, количества и качества, исторического и логического, сво­боды и необходимости и т. д. Д. л. отражала сочетание коллективистической твердости ума с его софистической гиб­костью. Результатом ее применения к осмыслению социальных процессов являлась двойственность, мистифицированность со­циальных структур и отношений: провозглашаемое в тотали­тарных государствах право на труд оказывалось одновременно и обязанностью, наука — идеологией, а идеология — научной, свобода — (осознанной) необходимостью, выборы — провер­кой лояльности, искусство — государственной мифологией и т. п. Однако этот парадокс «прошлого — будущего», «полновластия народа под руководством партии», «высоты, зияющей котлова­ном» мало заботил Д. л., относившую его к особым свойствам нового, радикально порывающего с метафизическим прошлым мышления.
Эту сторону коллективистического мышления, его постоянное тяготение к парадоксу и соединению вместе несовместимых по­нятий хорошо выразил Дж. Оруэлл в романе «1984». В описыва­емом им обществе министерство мира ведает войной, министер­ство любви — охраной порядка, а бесконечно повторяемые главные партийные лозунги гласят: «Война — это мир», «Свобода — это рабство», «Незнание — это сила». Такое «диалектическое мышле­ние» Оруэлл называет «двоемыслием». А. А.3иновьев в книге «Зи­яющие высоты», само название которой навеяно типично коллек­тивистическим соединением несоединимого, удачно пародирует эту бросающуюся в глаза черту коллективистического мышления: «В результате цены на продукты были снижены, и потому они вы­росли только вдвое, а не на пять процентов», «Из душевных пере­живаний ибанцам разрешается радоваться успехам, благодарить за заботу и восторгаться мудростью руководства», «...Мы верим даже в то, во что на самом деле не верим, и выполним все, что на самом деле не выполним» и т. п.
Первую попытку систематического построения Д. л. как прило­жения диалектики к мышлению («субъективной диалектики») предпринял в начале прошлого века Г. Гегель, позаимствовавший все основные идеи диалектики из средневековой философии и теологии. После Гегеля за сто с лишним лет в Д. л. не было внесено


[85]
ничего существенно нового. Все попытки построить связную тео­рию «диалектического мышления» кончились безрезультатно.
Глубинной основой гегелевской диалектики является средне­вековая концепция истории. Последняя представляет собой раз­витие применительно к человеческому обществу христианской доктрины Бога и человека, так что диалектика Гегеля — это рас­пространение не только на общество, но и на природу ключевых идей христианского понимания Бога и человека. Отсюда внутрен­нее противоречие диалектики: одни ее принципы приложимы только к духу, но не к природе, другие — к природе, но не к духу.
Гегель сам обращал внимание на то, что основной принцип диалектики, утверждающий изменчивый и преходящий харак­тер всех конечных вещей, соответствует представлению о все­могуществе Бога. (См.: Энциклопедия философских наук. — М., 1974. - С. 208.) Однако более близким основанием его диалектики было не само по себе абстрактное, бедное «определениями» хри­стианское представление о Боге и даже не связанное с ним пред­ставление о человеке, а именно являющееся их развитием и кон­кретизацией христианское истолкование истории.
Основные идеи, лежащие в основе гегелевской диалектики, просты. «...Все конечное, вместо того чтобы быть прочным и окон­чательным, наоборот, изменчиво и преходяще», поскольку, «бу­дучи в себе самом другим, выходит за пределы того, что оно есть непосредственно, и переходит в свою противоположность». (Там же.) Всякий развивающийся объект имеет свою «линию разви­тия», определяемую его качеством, свою «цель» или «судьбу». Эта линия слагается из отличных друг от друга «отрезков», разделяе­мых характерными событиями («узлами»). Они снимают (отрица­ют) определенное качество, место которого тотчас же занимает другое качество, так что развитие включает подлинные возник­новение и уничтожение. «Этот процесс можно сделать наглядным, представляя его себе в образе узловой линии». (Там же. — С. 261.) Все взаимосвязано со всем, «линии развития» отдельных объек­тов, сплетаясь, образуют единый поток мирового развития. Он имеет свою объективную «цель», внутреннюю объективную логи­ку, предопределяемую самим потоком и не зависящую от «целей» или «судеб» отдельных объектов.
В одной из послегегелевских систематизации диалектики, при­званных сделать ее доступной, одни из этих идей именуются «прин­ципами» («принцип всеобщей взаимосвязи», «принцип развития»), другие — «законами» («закон отрицания отрицания», говорящий о «судьбах» или «целях» объектов, напр. о «целях» пшеничного зер-



[86]
на; «закон единства и борьбы противоположностей», касающий­ся перехода вещей в процессе развития в свою противополож­ность; «закон перехода количества в качество», говорящий об «уз­лах» на «линиях развития» объектов, обладающих качеством). Эта систематизация упускает, однако, главное в гегелевской диалек­тике: идею «цели» или «судьбы», заданной извне. Без этой идеи распространение диалектики на природу, не имеющую — в обыч­ном, но не в гегелевском представлении — «цели» и не подвласт­ную судьбе, кажется грубым насилием над диалектикой, на что обращал внимание еще Д. Лукач.
Основные идеи гегелевской диалектики обнаруживают ясную параллель с характерными чертами христианской историографии. Согласно последней, исторический процесс универсален, всегда и везде его характер один и тот же. История является реализацией определенных целей, но не человеческих, а божественных: хотя человек и ведет себя так, как если бы он был мудрым архитекто­ром своей судьбы, мудрость, обнаруживаемая в его действиях, при­надлежит не ему, а Богу, милостью которого желания человека направляются к достойным целям. Человек является той целью, ради которой происходит история, но вместе с тем он существует всего лишь как средство осуществления божественных предначер­таний. История делится на эпохи, или периоды, каждый из кото­рых имеет свои специфические особенности, свое качество и от­деляется от периода, предшествовавшего ему, каким-то особым («эпохальным», «узловым») событием. Действующим лицом ис­тории является все человечество, все люди и все народы в равной мере вовлечены в единый исторический процесс. История как воля Бога предопределяет самое себя. В ней возникают и реализуются цели, не планируемые ни одним человеческим существом, и ее закономерное течение не зависит от стремления человека управ­лять ею. Историческая эволюция касается самой сущности вещей, их возникновения и уничтожения, ибо Бог — не простой ремес­ленник, формирующий мир из предшествующей материи, а тво­рец, создающий сущее из небытия.
Для средневековой исторической мысли характерен трансцен­дентализм: деятельность божества представляется не как проявля­ющаяся в человеческой деятельности и посредством ее, а как дей­ствующая извне и управляющая ею, не имманентная миру человеческого действия, а трансцендентная ему. Такого рода транс­цендентализм очевидным образом свойствен и гегелевской диа­лектике. Факты малозначительны для нее, она не стремится уста­новить, что конкретно происходит в мире. Ее задача — обнаружить


87
общий план мировых событий, найти сущность мира вне его са­мого, пренебрегая конкретными событиями. Ученому, заботяще­муся о точности в передаче фактов, такая методология, ориенти­рующая не на конкретное изучение, а лишь на прослеживание на эмпирическом материале общих и не зависящих от него схем, ка­жется не просто неудовлетворительной, но преднамеренно и от­талкивающе ложной.
ДИЗЪЮНКТИВНЫЙ СИЛЛОГИЗМ, см.: Модус понендо толленс. Модус толлендо поненс.
ДИЗЪЮНКЦИЯ (от лат. disjunctio — разобщение, различение)
— логическая операция — аналог употребления союза «или» в обыч­ном языке, с помощью которой из двух или более исходных сужде­ний строится новое суждение. Так, из суждений «Он — способен» и «Он — прилежен» с помощью операции «или» можно получить новое суждение «Он способен или он прилежен» (1). Из суждений «Он совершил преступление», «Он не совершал преступления» с помощью «или» можно получить новое суждение «Он совершил преступление или он не совершал преступления» (2). Суждение (1) истинно в трех случаях: 1) когда какой-то человек оказывает­ся способным, но не прилежным; 2) когда этот человек оказыва­ется прилежным, но не способным; 3) когда установлено, что этот человек и способен, и прилежен. Оно является ложным, ког­да оказалось, что этот человек не является ни способным, ни прилежным. Суждения типа (1) в логике называют соединительно-разделительными. Суждение же (2) истинно лишь только в том случае, когда имеет место или только первая ситуация («Он со­вершил преступление»), или только вторая ситуация («Он не со­вершал преступления»). Суждение (2) не допускает, чтобы имели место обе ситуации. Суждения типа (2) носят название исключающе-разделительных или строго разделительных.
В рамках логики высказываний (раздел классической математи­ческой логики) различают слабую (нестрогую) Д. и силь­ную (строгую) Д. Если A и В - высказывания, а знак v - знак нестрогой Д., то высказывание «A U B» называют нестрогой Д. (читается: «A или В»). Если U — знак строгой Д., то высказывание «A U В» называют строгой Д. (читается: «либо А, либо В»). Выска­зывание «A U В» истинно в том и только в том случае, когда истинно по крайней мере одно из составляющих его высказыва­ний, и ложно, когда оба составляющие его высказывания ложны. Высказывание «A U В» истинно в том случае, когда истинно одно и только одно из составляющих его высказываний, и ложно в остальных случаях.


[88]
ДИЛЕММА (от греч. di(s) - дважды и lemma - предположение)
-в традиционной логике условно-разделительное умо­заключение, т. е. умозаключение, посылками которого явля­ются условные и разделительные суждения. Условно-разделитель­ные умозаключения вообще называются леммами; если разделительная посылка содержит только два члена, то такое умо­заключение называется дилеммой, если в нее входит три чле­на, то перед нами трилемма, и вообще полилемма, когда разделительная посылка содержит больше двух членов. Логика вы­деляет несколько разновидностей Д.
Простая конструктивная Д. имеет вид:
Если а, то b; если с то b.
______а или с.______
b.
Разделительная посылка утверждает основания условных по­сылок, вывод утверждает следствие этих посылок, напр.:
Если студент спит на лекциях, то он не усваивает логики. Если студент спит дома, то он не усваивает логики. Студент спит на лекциях или дома.
Следовательно, студент не усваивает логики.
Сложная конструктивная Д. отличается тем, что ус­ловные суждения посылок имеют разные следствия, поэтому, ут­верждая их основания в разделительной посылке, мы утверждаем оба следствия в заключении:
Если а, то b; если с то d.
______а или с.______
b или d.
Напр.:
Если пойдешь направо, коня потеряешь.
Если пойдешь налево, голову потеряешь. Но нужно идти направо или налево.
Следовательно, придется потерять коня или голову.
В средние века альтернативы леммы назывались «рогами». Ка­кую бы альтернативу вы ни выбрали, обе они равно приводят к неприятным следствиям и вы оказываетесь на «рогах» Д. Дест­руктивная Д. отличается тем, что разделительная посылка от­рицает следствия условных посылок, а в выводе мы отрицаем основания условных посылок.


[89]
Простая деструктивная Д. имеет вид:
Если а, то b; если а то с.
Не-b или не-с.
_____________
Не-a.
Пример:
Если мне выплатят зарплату, я устрою вечеринку с друзья­ми.
Если мне выплатят зарплату, то я приглашу свою девушку в театр.
Но я не устроил вечеринки и не ходил со своей девушкой в театр.
______________________________________________________
Следовательно, мне не выплатили зарплату.
Соответственно, сложная деструктивная Д. выглядит так:
Если а, то b; если с то d.
___He-b или не-d._____
Не-а или не-с.
Пример:
Если бы я был богат, я купил бы себе автомобиль.
Если бы я был министром, мне предоставили бы казенный автомобиль.
Но у меня нет ни личного, ни казенного автомобиля.
Следовательно, я не богат и я не министр.
ДИСКУРСИВНЫЙ (от лат. discursus — рассуждение, довод, аргу­мент)
- рассудочный, логический, противоположный инту­итивному, чувственному.
Д. познание как опирающееся на разум и рассуждение про­тивопоставляется интуитивному познанию, которое ос­новывается на непосредственном созерцании и интуиции. Д. зна­ние является результатом связного, последовательного, ясного рассуждения, в котором каждая последующая мысль вытекает из предыдущей и обусловливает последующую. Д. является, напр., знание, полученное в результате логического вывода из некото­рых общих принципов заключения, относящегося к конкретному случаю, или знание, возникающее путем обобщения некоторой совокупности фактов. Различие между Д. и интуитивным до неко­торой степени относительно. Всякая новая идея, мысль, представ­ление возникают на основе предшествующего знания, предпола­гают осознание и формулировку проблемы, задачи, требуют сознательного и целенаправленного размышления. После того как


[90]
новая идея возникла, требуется развитие ее следствий, установ­ление ее связей с другими идеями, ее проверка и т. п. Т. о., инту­итивный скачок мышления всегда включен в процессы Д. раз­мышления. Однако различие между Д. и интуитивным все же имеет определенный смысл, ибо новое знание часто не может быть по­лучено простым логическим рассуждением из имеющегося зна­ния и требует творческого акта, выходящего за рамки логических схем и правил.
ДИСКУССИЯ (от лат. discussio — рассмотрение, исследование)
— обсуждение к.-л. вопроса или группы связанных вопросов компе­тентными лицами с намерением достичь взаимоприемлемого ре­шения. Д. является разновидностью спора, близкой к полемике, и представляет собой серию утверждений, по очереди высказыва­емых участниками. Заявления последних должны относится к од­ному и тому же предмету или теме, что сообщает обсуждению необходимую связность. Сама тема Д. обычно формулируется до ее начала.
Д. отличается от полемики как своей направленностью, так и используемыми средствами. Если цель Д. — достижение опреде­ленной степени согласия ее участников относительно дискутиру­емого тезиса, то цель полемики — не само по себе согласие, а скорее победа над другой стороной, утверждение собственной точки зрения. В Д. всегда есть известные элементы компромисса. Тем не менее она, как правило, в большей мере, чем полемика, ориен­тирована на отыскание и утверждение истины. Используемые в Д. средства должны признаваться всеми, кто принимает в ней учас­тие. Употребление других средств недопустимо и ведет к прекра­щению Д. Употребляемые в полемике средства не обязательно дол­жны быть настолько нейтральными, чтобы с ними соглашались все участники. Каждая из полемизирующих сторон применяет те приемы, которые находит нужными для достижения победы.
Это различие целей и средств Д. и полемики лежит в основе терминологии: противоположная сторона в Д. именуется обычно «оппонентом», в полемике — «противником».
У каждого из участников Д. должны иметься определенные пред­ставления относительно обсуждаемого предмета. Однако итог Д. — не сумма имеющихся представлений, а нечто общее для разных представлений. Но это общее выступает уже не как чье-то частное мнение, а как более объективное суждение, поддерживаемое всеми участниками обсуждения или их большинством.
В обычных спорах элементы Д. и полемики чаще всего перепле­таются, и чистая Д. является столь же редкой, как и чистая полеми-


[91]
ка. Тем не менее, начиная спор, полезно уже в самом начале ре­шить, будет он Д. или же полемикой, и в дальнейшем придержи­ваться принятого решения. Выбор формы спора — Д. или полеми­ка — определяется конкретными обстоятельствами. Каждая из этих форм может быть полезной в свое время и на своем месте. И даже случающееся в ходе спора смешение Д. и полемики оказывается иногда полезным.
Д. - одна из важнейших форм коммуникации, плодотворный метод решения спорных вопросов и вместе с тем своеобразный способ познания. Она позволяет лучше понять то, что не является в полной мере ясным и не нашло еще убедительного обоснования. В Д. снимается момент субъективности, убеждения одного челове­ка или группы людей получают поддержку других и тем самым определенную обоснованность.
К Д. близка такая форма прояснения представлений, как ди­алог. Он также связан не только с сопоставлением, но и с опре­деленным противопоставлением точек зрения или позиций, хотя и не является спором, борьбой мнений.
ДИСТРИБУТИВНЫЕ И КОЛЛЕКТИВНЫЕ СВОЙСТВА. Д. с.
- об­щие свойства, принадлежащие каждому элементу множества (со­вокупности предметов, коллективу), которое они определяют. Так, свойство «быть русским поэтом» принадлежит каждому из эле­ментов множества «русские поэты» (Пушкину, Есенину и др.). Таковы же свойства «быть космонавтом», «быть птицей», «быть хи­мическим элементом» и т. п.
К. с. — свойства, которые не принадлежат каждому элементу некоторого множества, но принадлежат множеству в целом (со­вокупности, коллективу) как особому предмету. Так, в предложе­нии «Наше собрание было многочисленным» свойство «быть мно­гочисленным» является коллективным, т. к. относится не к каждому присутствовавшему на собрании, а ко всему коллективу в целом.
Процентные характеристики некоторых коллективов, множеств также представляют собой К. с. Так, в предложении «Мужчины на данном заводе составляют 40%» свойство «составлять 40%» относится не к каждому лицу. мужского пола, а характеризует коллектив завода в целом с точки зрения наличия в нем лиц мужского пола.
При статистических методах анализа частота исследуемого свой­ства в некоторой выборке из большого коллектива переносится на весь коллектив в целом и рассматривается как К. с. Так, если мы убедились, что в выборке в 1000 человек из взрослого мужско­го населения в большом городе 800 человек бреются электробрит-


[92]
вой, то свойство, «относительная частота» бреющихся электро­бритвой в выборке равна 0,8 и характеризует исследованную часть населения города в целом. При переносе этого свойства на все население данного города оно также остается коллективным.
ДИХОТОМИЯ (от греч, dicha и tome - рассечение на две части)
— деление объема понятия на две взаимоисключающие части, пол­ностью исчерпывающие объем делимого понятия. Основанием дихотомического деления объема понятия служит наличие или отсутствие видообразуюшего признака. Напр., объем понятия «человек» можно разделить на два взаимоисключающих класса: «мужчины» и «не-мужчины». Понятия «мужчины» и «не-мужчины» являются противоречащими друг другу, поэтому их объемы не пересекаются. От Д. следует отличать обычное деление, приводящее к тому же самому результату. Напр., объем понятия «человек» можно разделить по признаку пола на «мужчин» и «жен­щин». Но между понятиями «мужчина» и «женщина» нет логичес­кого противоречия, поэтому здесь нельзя говорить о дихотомичес­ком делении.
В объеме понятия не-а можно выделить вид b и вновь разделить понятие не-а на две части — b и не-b:
Полное дихотомическое деление получает такой вид:
Напр.:
кислота{органическая кислота
неорганическая кислота
{кислородсодержащая кислота
бескислородная кислота

Дихотомическое деление привлекательно своей простотой. Дей­ствительно, при Д. мы всегда имеем дело лишь с двумя классами, которые исчерпывают объем делимого понятия. Т. о., дихотомичес­кое деление всегда соразмерно; члены деления исключают друг друга, т. к. каждый объект делимого множества попадает только в один из классов A или не-А; деление проводится по одному основа­нию — наличие или отсутствие некоторого признака. Обозначив делимое понятие буквой A и выделив в его объеме некоторый вид, скажем, а, можно разделить объем A на две части — а и не-а:


[93]
Дихотомическое деление имеет недостаток: при делении объе­ма понятия на два противоречащих понятия каждый раз остается крайне неопределенной та его часть, к которой относится части­ца «не». Если разделить ученых на историков и не-историков, то вторая группа оказывается весьма неясной. Кроме того, если в начале дихотомического деления обычно довольно легко устано­вить наличие противоречащего понятия, то по мере удаления от первой пары понятий найти его становится все труднее. Д. обычно используется как вспомогательный прием при установлении клас­сификации.
ДОКАЗАТЕЛЬСТВО
— рассуждение, устанавливающее истин­ность к.-л. утверждения путем приведения других утверждений, истинность которых уже доказана. В Д. различаются тезис - ут­верждение, которое нужно доказать, и основание, или ар­гументы, — те утверждения, с помощью которых доказывается тезис. Напр., тезис «Платина проводит электрический ток» мож­но доказать с помощью следующих истинных утверждений: «Пла­тина — металл» и «Все металлы проводят электрический ток».
Понятие Д.— одно из центральных в логике и математике, но оно не имеет однозначного определения, применимого во всех случаях и в любых научных теориях.
Логика не претендует на полное раскрытие интуитивного, или «наивного», понятия Д. Д. образует довольно расплывчатую сово­купность, которую невозможно охватить одним универсальным определением. В логике принято говорить не о доказуемости вооб­ще, а о доказуемости в рамках данной конкретной системы или теории. При этом допускается существование разных понятий Д., относящихся к разным системам. Напр., Д. в интуиционистской логике и опирающейся на нее математике существенно отличает­ся от Д. в логике классической и основывающейся на ней математи­ке. В классическом Д. можно использовать, в частности, закон исклю­ченного третьего, закон (снятия) двойного отрицания и ряд других логических законов, отсутствующих в интуиционистской логике.
По способу проведения Д. делятся на два вида. При прямом Д. задача состоит в том, чтобы найти такие убедительные аргумен­ты, из которых логически вытекает тезис. Косвенное Д. устанавли­вает справедливость тезиса тем, что вскрывает ошибочность про­тивоположного ему допущения, антитезиса.
Задача Д. — исчерпывающе утвердить истинность тезиса. Этим оно отличается от других мыслительных процедур, призванных только частично поддержать тезис, придать ему большую или мень­шую убедительность.


[94]
Нередко в понятие Д. вкладывается более широкий смысл: оно понимается как любой способ обоснования истинности тезиса. Расширительное толкование Д. обычно используется в социальных науках и рассуждениях, непосредственно опирающихся на наблю­дения; в процессе обучения, где для подтверждения выдвинутого положения активно привлекаются эмпирический материал, ста­тистические данные, ссылки на типичные в определенном отно­шении явления и т. п.
Придание термину «Д.» широкого смысла не ведет к недоразу­мениям, если учитывается, что обобщение, переход от частных факторов к общим заключениям дает не достоверное, а лишь ве­роятное знание.
Определение Д. включает два центральных понятия логики: по­нятие истины и понятие логического следования. Оба эти понятия не являются в достаточной мере ясными, и, значит, определяемое через них понятие Д. также не может быть отнесено к ясным.
Многие утверждения не являются ни истинными, ни ложны­ми, лежат вне «категории истины». Оценки, нормы, советы, дек­ларации, клятвы, обещания и т. п. не описывают каких-то ситуа­ций, а указывают, какими они должны быть, в каком направлении их нужно преобразовать. От описаний требуется, чтобы они соот­ветствовали действительности и являлись истинными. Удачный совет, приказ и т. п. характеризуется как эффективный или целе­сообразный, но не как истинный. Высказывание «Вода кипит» истинно, если вода действительно кипит; команда же «Вскипяти­те воду!» может быть целесообразной, но не имеет отношения к истине. Очевидно, что, оперируя выражениями, не имеющими истинностного значения, можно и нужно быть и логичным и до­казательным. Встает, таким образом, вопрос о существенном рас­ширении понятия Д., определяемого в терминах истины. Им дол­жны охватываться не только описания, но и утверждения типа оценок или норм. Задача переопределения Д. пока не решена ни логикой оценок, ни деонтической (нормативной.) логикой. Это де­лает понятие Д. не вполне ясным по своему смыслу.
Не существует, далее, единого понятия логического следова­ния. Логических систем, претендующих на определение этого по­нятия, в принципе существует бесконечно много. Ни одно из име­ющихся в современной логике определений логического закона и логического следования не свободно от критики и от того, что принято называть «парадоксами логического следования».
Образцом Д., которому в той или иной мере стремятся следо­вать во всех науках, является математическое Д. Долгое время счи-


[95]
талось, что оно представляет собой ясный и бесспорный про­цесс. В нашем веке отношение к математическому Д. изменилось. Сами математики разбились на враждующие группировки, каж­дая из которых придерживается своего истолкования Д. Причи­ной этого послужило, прежде всего, изменение представления о лежащих в основе Д. логических принципах. Исчезла уверенность в их единственности и непогрешимости. Логицизм был убежден, что логики достаточно для обоснования всей математики; по мнению формалистов (Д. Гильберт и др.), одной лишь логики для этого недостаточно и логические аксиомы необходимо до­полнить собственно математическими; представители теорети­ко-множественного направления не особенно интересовались логическими принципами и не всегда указывали их в явном виде; интуиционисты из принципиальных соображений считали нуж­ным вообще не вдаваться в логику. Полемика по поводу матема­тического Д. показала, что нет критериев Д., не зависящих ни от времени, ни от того, что требуется доказать, ни от тех, кто ис­пользует критерий. Математическое Д. является парадигмой Д. вообще, но даже в математике Д. не является абсолютным и окон­чательным.
ДОКАЗАТЕЛЬСТВО КОНСТРУКТИВНОЕ, см.: Конструктивная логика.
ДОКАЗАТЕЛЬСТВО ОТ ПРОТИВНОГО, см.: Косвенное доказа­тельство.
ДОКАЗАТЕЛЬСТВО ПО СЛУЧАЯМ, или: Доказательство разбором случаев,
— логически правильное рассуждение, когда от нескольких условных высказываний (посылок), имею­щих одинаковое следствие, осуществляется переход к утвержде­нию этого следствия путем установления того, что по меньшей мере одно из оснований условных высказываний истинно. В наи­более простом случае посылками являются высказывания: «Если есть первое, то есть третье», «Если есть второе, то есть третье» и «Есть первое или есть второе», заключением — высказывание «Есть третье». Напр.: «Если будет дождь, мы пойдем в кино; если будет холодно, мы пойдем в кино; будет дождь или будет холодно; зна­чит, мы пойдем в кино».
Более сложные формы Д. п. с. включают не две, а большее число альтернатив. В случае, когда таких альтернатив три, на ос­нове посылок: «Если есть первое, то есть четвертое», «Если есть второе, есть четвертое», «Если есть третье, есть четвертое» и «Есть или первое, или второе, или третье» доказывается тезис «Есть четвертое».


[96]
Наиболее простая форма Д. п. с. в традиционной логике называет­ся простой конструктивной дилеммой; термин «Д. п. с.» обычен в математике. Более сложные формы Д. п. с., включающие более двух условных высказываний, иногда по традиции именуют-сятрилеммой, тетралеммой, полилеммой.
ДОКАЗУЕМОСТЬ, см.: Доказательство.
ДОПОЛНЕНИЕ К МНОЖЕСТВУ
- такое множество не-А, когда A + не-А = 1, где 1 обозначает некоторую предметную область (уни­версальный класс). Пусть A будет множеством млекопитающих, а областью нашего рассуждения будет множество позвоночных жи­вотных. Тогда дополнением к нему (не-А) будет множество «не­млекопитающие», которое включает множества: рыб, круглоротых, земноводных, пресмыкающихся и птиц. Сложив множество млекопитающих (A) с множеством не-млекопитающих (не-А), мы получим класс позвоночных, т. е. некоторый универсальный класс, обозначаемый 1.
ДОСТАТОЧНОГО ОСНОВАНИЯ ПРИНЦИП
- принцип, требу­ющий, чтобы в случае каждого утверждения указывались основа­ния, в силу которых оно принимается и считается истинным.
В логике традиционной это требование обоснованности знания, именуемое законом достаточного основания, включалось (наряду с непротиворечия законом, законом исключенного третьего, тожде­ства законом и др.) в число т. наз. «основных законов мышления» или «основных законов логики».
Последующее развитие логики показало, однако, что отнесе­ние закона достаточного основания к числу логических законов лишено оснований. Стало также ясно, что сама проблема «твер­дых оснований», затрагивавшаяся традиционной логикой в связи с данным законом, трактовалась поверхностно, без учета системно­го характера научного знания и динамики его развития.
Обоснование теоретического утверждения - сложный и про­тиворечивый процесс, не сводимый к построению отдельного умо­заключения или проведению одноактной эмпирической провер­ки. При этом из процесса обоснования не исключаются ни аксиомы, ни определения, ни суждения непосредственного опыта.
Обоснование теоретического утверждения слагается из целой серии процедур, касающихся не только самого утверждения, но и той теории, составным элементом которой оно является.
Из многообразных способов обоснования, обеспечивающих в конечном счете «достаточные основания» для принятия утвер­ждения, можно выделить следующие, наиболее часто использу­емые:


[97]
о Проверка выдвинутого положения на соответствие установив­шимся в науке законам, принципам, теориям и т. п. Утверждение должно находиться также в согласии с фактами, на базе которых и для объяснения которых оно предложено. Требование такой провер­ки не означает, конечно, что новое утверждение должно полностью согласовываться с тем, что считается в данный момент законом и фактом. Может случиться, что оно заставит иначе посмотреть на то, что принималось раньше, уточнить или даже отбросить что-то из старого знания.
> Анализ утверждения с точки зрения возможности эмпири­ческого подтверждения или опровержения. Если такой возможно­сти в принципе нет, не может быть и оснований для принятия утверждения: научные положения должны допускать принципи­альную возможность опровержения и предполагать определенные процедуры своего подтверждения.
> Исследование выдвинутого положения на приложимость его ко всему классу объектов, о которых идет речь, а также к род­ственным им явлениям.
> Анализ логических связей утверждения с ранее принятыми общими принципами: если утверждение логически следует из ус­тановленных положений, оно обоснованно и приемлемо в той же мере, что и эти положения.
> Если утверждение касается отдельного объекта или ограни­ченного круга объектов, оно может быть обосновано с помощью непосредственного наблюдения каждого объекта. Научные поло­жения касаются обычно неограниченных совокупностей вещей, поэтому сфера применения прямого наблюдения в этом случае является узкой.
> Выведение следствий из выдвинутого положения и эмпири­ческая проверка их. Это универсальный способ обоснования тео­ретических утверждений, но способ, никогда не дающий полной уверенности в истинности рассматриваемого положения. Подтвер­ждение следствий повышает вероятность утверждения, но не де­лает его достоверным.
о Внутренняя перестройка теории, элементом которой явля­ется обосновываемое положение. Может оказаться, что введение в теорию новых определений и соглашений, уточнение ее основ­ных принципов и области их действия, изменение иерархии таких принципов и т. д. приведет к включению анализируемого положе­ния в ядро теории. В этом случае оно опирается не только на под­тверждение своих следствий, но и на те явления, которые объяс­няет теория, на связи ее с другими научными теориями и т. д. Ни


[98]
одно утверждение не обосновывается изолированно, само по себе обоснование всегда носит системный характер. Включение утверж­дения в теоретическую систему, придающую устойчивость своим элементам, является одним из наиболее важных шагов в его обо­сновании.
> Совершенствование теории, укрепление ее эмпирической базы и прояснение ее общих, философских предпосылок одно­временно является вкладом в обоснование входящих в нее утвер­ждений. Среди способов прояснения теории особую роль играют выявление логических связей входящих в нее утверждений, ми­нимизация исходных допущений, аксиоматизация и, если это возможно, ее формализация.
ДОСТАТОЧНОЕ УСЛОВИЕ, см.: Условное высказывание.
ДОСТОВЕРНОСТЬ
- обоснованность, доказательность, бесспор­ность знания. Достоверное суждение - такое суждение, в котором высказывается твердо обоснованное знание, напр.: «Луна — спут­ник Земли», «Вода кипит при 100 °С» и т. п. Достоверные суждения разделяются на два вида: ассерторические, констатирующие реальное положение дел, и аподиктические, утверждающие необходимую связь явлений. Д. суждений обеспечивается эмпири­ческим подтверждением, экспериментальными данными, обще­ственной практикой.


З
ЗАБЛУЖДЕНИЕ
- гносеологическая оценка знания, выража­ющая его ограниченный характер. Марксистская гносеология и ме­тодология научного познания используют четыре истинностные оценки знания: истина — ложь, относительная исти­на - абсолютная и с т и н а. Первая пара понятий использу­ется при анализе структуры научного знания в некоторый период его развития при проверке, подтверждении и опро­вержении законов и теорий, при установлении их соответствия действительности. При таком подходе все научные утверждения и теории разделяются на два класса — истинные и ложные, соответ­ствующие действительности и не соответствующие ей. Когда мы переходим к рассмотрению развития знания, пара понятий «исти­на — ложь» уже не может служить для истинностной оценки. В самом деле, как квалифицировать экономическую теорию Д.Рикардо или астрономическую теорию Н. Коперника? Их нельзя на­звать истиной, ибо во многих своих частях они ошибочны, но эти теории трудно квалифицировать как просто ложные, ибо они были большим шагом вперед в развитии науки и внесли в нее много новых идей, получивших признание и подтверждение. Такие теории называются относительно истинными, т. е. неполными, неточными, исторически ограниченными истинами, на смену которым прихо­дят более точные истины.
Иногда под 3. понимают ложь, которая ошибочно принима­ется за истину. Такое понимание не вполне удовлетворительно, ибо приводит к абсурдному выводу, что вся история познания представляет собой доходящую почти до наших дней цепь оши­бок.


[100]
Категория 3. используется при диалектическом рассмотре­нии познания, когда она добавляется к понятиям относительной и абсолютной истины. Всякая истина объективно становится 3. после того, как обнаружился ее относительный характер. Геоцентрическая система вовсе не была 3. во времена Птолемея и в течение почти полутора тысяч лет после ее создания. Она соответствовала общим мировоззренческим представлениям эпохи, уровню развития обще­ственной практики и подтверждалась наблюдениями с использова­нием существовавших инструментов. Она была истиной. Как истина она играла прогрессивную роль и в практике, и в развитии астроно­мического знания. Только после того как выяснилась ее ограничен­ность, т. е. после победы гелиоцентрической системы, система Птоле­мея объективно превратилась в 3.
Момент, когда относительная истина превращается в 3., трудно зафиксировать. В течение пятидесяти лет после появления труда Коперника не было объективных оснований квалифицировать кон­цепцию Птолемея как 3. Лишь постепенно, после изобретения теле­скопа, появления ранее неизвестных данных, результатов Галилея и Кеплера, система Птолемея стала рассматриваться как 3.
3. не может играть прогрессивной роли в познании. Защищать 3. — значит выступать против истины. Конечно, всегда находились люди, которые в силу субъективной слепоты или социального интереса пытались ставить 3. на место истины. И всегда такие по­пытки лишь тормозили прогресс, но не могли остановить его.
ЗАКОН АССОЦИАТИВНОСТИ (от лат. associatio — соединение)
-общее имя для ряда логических законов, позволяющих по-разному группировать высказывания, соединяемые с помощью конъюнкции («и»), дизъюнкции («или») и др.
Операции сложения и умножения чисел в математике ассоци­ативны:
(а + b)+с=а + (b + с), (а·b)·с=а·(b·с).
Ассоциативностью обладают также логическое сложение (дизъ­юнкция) и логическое умножение (конъюнкция). Символически соответствующие законы представляются так (р, q, r — некоторые высказывания, v - дизъюнкция, & - конъюнкция, = [є] - эквива­лентность, «если и только если»):
(pvq)vr = pv(qvr), (p&q)&r = p&(q&r).
В силу З.а. в формулах, представляющих конъюнкцию более чем двух высказываний или их дизъюнкцию, можно опускать скобки.


[101]
ЗАКОН ГИПОТЕТИЧЕСКОГО СИЛЛОГИЗМА
- закон логики, характеризующий импликацию («если, то»): если первое влечет вто­рое, то если второе влечет третье, то первое влечет третье. Напр.: «Если с ростом знаний о человеке возрастает возможность защитить его от болезней, то если с ростом этой возможности растет средняя продолжительность человеческой жизни, то с ростом знаний о че­ловеке растет средняя продолжительность его жизни». Иначе говоря, если условием истинности первого является истинность второго, то если условием истинности второго является истинность третьего, то истинность последнего есть также условие истинности первого.
С использованием символики логической (р, q, r — некоторые высказывания; a — импликация, «если, то») данный закон пред­ставляется так:
(р a q) -> ((qa r) -> (р a r)),
если (если р, то q), то (если (если q, то r), то (если р, то r)).

стр. 1
(всего 4)

СОДЕРЖАНИЕ

>>