<<

стр. 2
(всего 4)

СОДЕРЖАНИЕ

>>

3. г. с. близок по своей структуре транзитивности закону, назы­ваемому также конъюнктивно-гипотетическим сил­логизмом: если дело обстоит так, что если первое, то второе, и если второе, то третье, то если первое, то третье.
Эти законы называются гипотетическими (условными, имшшкативными) силлогизмами по сходству их с традици­онными логическими схемами, известными еще с античности и именуемыми силлогизмами. Схемы подобных умозаключений ведут от двух посылок определенного вида к выводу, также имеющему некоторый определенный (хотя, может быть, и иной) вид.
ЗАКОН ДВОЙНОГО ОТРИЦАНИЯ
- закон логики, позволяющий отбрасывать двойное отрицание. Его можно сформулировать так: от­рицание отрицания дает утверждение, или: повторенное дважды отрицание ведет к утверждению. Напр.: «Если неверно, что Вселен­ная не является бесконечной, то она бесконечна».
3. д. о. был известен еще в античности. В частности, древнегреческие философы Зенон Элейский и Горгий излагали его так: если из отри­цания к.-л. высказывания следует противоречие, то имеет место двой­ное отрицание исходного высказывания, т. е. оно само.
С применением символики логической (р - некоторое высказы­вание; a - условная связь, «если, то»; ˜ - отрицание, «неверно, что») закон записывается так:
˜ ˜ p a p, если неверно, что неверно р, то верно р.
Другой закон логики, говорящий о возможности не снимать, а вводить два отрицания, принято называть обратным 3. д. о.: ут-


[102]
верждение влечет свое двойное отрицание. Напр.: «Если Шекспир писал сонеты, то неверно, что он не писал сонеты». Символически:
pa ˜ ˜p,
если р, то неверно, что не-р.
Объединение этих законов дает т. наз. полный 3. д. о.: двойное отрицание равносильно утверждению. Напр.: «Планеты не непод­вижны в том и только том случае, если они движутся». Символи­чески (= — эквивалентность, «если и только если»):
˜ ˜Р = Р, неверно, что не-р, если и только если верно р.
ЗАКОН ДЕ МОРГАНА
- общее название логических законов, связывающих с помощью отрицания конъюнкцию («и») и дизъюн­кцию («или»). Названы именем англ. логика XIX в. А. де Моргана.
Один из этих законов можно выразить так: отрицание конъюнк­ции эквивалентно дизъюнкции отрицаний. Напр.: «Неверно, что завтра будет холодно и завтра будет дождливо, тогда и только тогда, когда завтра не будет холодно или завтра не будет дождливо».
Другой закон: отрицание дизъюнкции эквивалентно конъюнк­ции отрицаний. Напр.: «Неверно, что ученик знает арифметику или знает геометрию, тогда и только тогда, когда он не знает ни арифметики, ни геометрии».
В терминах символики логической (р, q — некоторые высказыва­ния; & - конъюнкция; v - дизъюнкция; ˜ — отрицание, «невер­но, что»; = — эквивалентность, «если и только если») данные два закона представляются формулами:
˜ (p & q) = (˜ p v˜q), неверно, что р и q, если и только если неверно р и неверно q;
˜ (p v q) = (˜ p & ˜ q), неверно, что или р, или q, если и только если неверно р и неверно q.
На основе этих законов, используя отрицание, связку «и» мож­но определить через «или», и наоборот: «р и q» означает «Невер­но, что не-р или не-q», «р или q» означает «Неверно, что не-р и не-q».
Напр., «Идет дождь и идет снег» означает «Неверно, что нет дождя или нет снега»; «Сегодня холодно или сыро» означает «Не­верно, что сегодня не холодно и не сыро».
ЗАКОН ДИСТРИБУТИВНОСТИ (от англ. distribution - распреде­ление, размещение)
- общее название группы логических законов сходной структуры. Эти законы позволяют распределить одну ло­гическую связь относительно другой.


[103]
Полный 3. д. конъюнкции относительно дизъюнкции с использо­ванием символики логической формулируется так (р, q, r — некото­рые высказывания; & - конъюнкция, «и»; v - дизъюнкция, «или»; = — эквивалентность, «если и только если»):
p&(qvr) = (p&q)v(p&r),
первое и (второе или третье), если и только если (первое и вто­рое) или (первое и третье). Напр.: «Сегодня идет дождь и завтра ясно или послезавтра ясно в том и только в том случае, когда сегодня идет дождь и завтра ясно или сегодня идет дождь и после­завтра ясно».
Полный 3. д. дизъюнкции относительно конъюнкции:
pv(q&r) = (pvq)&(pvr),
первое или (второе и третье), если и только если (первое или вто­рое) и (первое или тре'тье). Напр.: «Завтра будет солнечно или послезавтра будет мороз и снег тогда и только тогда, когда завтра будет солнечно или послезавтра будет мороз и завтра будет сол­нечно или послезавтра будет снег».
Закон самодистрибутивности импликации (->, «если, то») дает возможность распределять импликацию по импликации:
(p->(q->r))->((p->q)->(p->r)),
если (если первое, то (если второе, то третье)), то (если (если первое, то второе), то (если первое, то третье)). Этот закон верен для импликации материальной, но не имеет места для целого ряда иных импликаций, вводимых в современной логике.
ЗАКОН ДУНСА СКОТА
- закон логики классической, характери­зующий логическое противоречие и импликацию материальную. За­кон можно передать так: ложное высказывание влечет (имплици­рует) любое высказывание. Напр.: «Если дважды два не равно четырем, то, если дважды два четыре, вся математика ничего не значит».
Первое упоминание закона принадлежит средневековому фило­софу и логику Дунсу Скоту, прозванному «тонким доктором» схо­ластики. Амер. философ и логик К. И. Льюис (1883-1964), поло­живший начало исследованию модальной логики, отнес данный закон к парадоксальным положениям классической логики. В пред­ложенной самим К. И. Льюисом новой теории логического следо­вания — т. наз. теории строгой импликации — 3. Д. С. не­доказуем. Но в этой теории есть собственный аналогичный парадокс, говорящий уже о логической невозможности: логически невоз-



[104]
можное высказывание влечет любое высказывание. Напр.: «Если снег бел и вместе с тем не бел, трава бывает только черной».
С использованием символики логической (р, q — некоторые выска­зывания; ˜ - отрицание, «неверно, что»; —> импликация, «если, то») 3. Д. С. выражается формулой:
˜p->(p->q),
если неверно, что p, то если р, то q; или эквивалентной ей в класси­ческой логике формулой:
(p&˜p)->q, если р и не-р, то q.
Если принимаются высказывание и его отрицание, то, исполь­зуя данные формулы в качестве схем вывода, можно получить лю­бое высказывание. В подобного рода переходах есть элемент пара­доксальности. Особенно заметным он становится, когда в качестве следствия берется явно ложное и совершенно не связанное с по-сылками высказывание. Напр.: «Если Солнце и звезда, и не звезда, то Луна сделана из зеленого сыра».
3. Д. С. есть своего рода предостережение против принятия лож­ного высказывания: введение в научную теорию такого высказыва­ния ведет к тому, что в ней становится доказуемым все что угодно и она перестает выполнять свои функции. Однако предостережение не настолько очевидно, чтобы стать одним из правил логического следования. Не все современные описания следования принимают 3. Д. С. в качестве правомерного способа рассуждения. Уже построены теории логических связей, в которых этот и подобные ему способы рассуждения считаются недопустимыми.
Если 3. Д. С. не принимается, то появление противоречия в сис­теме утверждений становится допустимым. Такое более «терпи­мое» отношение к противоречию лежит в основе логических тео­рий, получивших название паранепротиворечивой логики.
ЗАКОН ИМПОРТАЦИИ, см.: Закон экспортации — импортации.
ЗАКОН ИСКЛЮЧЕННОГО ТРЕТЬЕГО
- логический закон, со­гласно которому истинно или само высказывание, или его отри­цание. Закон устанавливает связь между противоречащими друг другу высказываниями: одно из таких высказываний истинно. Напр.: «Аристотель умер в 322 г. до н. э. или он не умер в этом году». «Завтра будет морское сражение или завтра не будет морского сражения» и т. п.
Само название закона выражает его смысл: дело обстоит так, как описывается в рассматриваемом высказывании, или так, как говорит его отрицание; третьего варианта нет («третьего не дано»).


[105]
Символически 3. и. т. представляется формулой (р — некоторое высказывание; v — дизъюнкция, «или»; ˜ - отрицание, «неверно, что»):
pv˜p, р или не-р.
3. и. т. был известен еще до Аристотеля. Однако он первым сфор­мулировал этот закон, подчеркнув его важность для понимания мышления: «Не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходи­мо что бы то ни было одно либо утверждать, либо отрицать».
От Аристотеля идет традиция давать 3. и. т. разные интерпрета­ции.
1. З.и.т. истолковывается как принцип логики, говорящий о выс­казываниях и их истинности: или высказывание, или его отрица­ние должно быть истинным.
2. Закон понимается как утверждение об устройстве самого мира: всякий объект или реально существует, или не существует.
3. Закон звучит как принцип методологии научного познания: исследование каждого объекта должно вестись до тех пор и быть настолько полным, чтобы относительно каждого утверждения об этом объекте можно было решить, истинно оно или нет.
Нередко полагают, что эти три истолкования - логическое, онтологическое и методологическое — различаются между собой только словесно. На самом деле это не так. Устройство мира, зани­мающее онтологию, и своеобразие научного исследования, интере­сующее методологию, - темы эмпирического, опытного изучения. Получаемые с его помощью положения являются эмпирическими истинами. Принципы же логики не вытекают из онтологических соображений и представляют собой не эмпирические, а логически необходимые истины.
Аристотель сомневался в приложимости 3. и. т. к высказыва­ниям о будущих событиях: в настоящий момент наступление не­которых из них еще не предопределено. Нет причины ни для того, чтобы они произошли, ни для того, чтобы они не случились. «Че­рез пять лет в этот же день будет идти дождь» — это высказыва­ние в настоящий момент ни истинно, ни ложно. Таким же явля­ется его отрицание. Сейчас нет причины ни для того, чтобы через пять лет пошел дождь, ни для того, чтобы его не было. Но 3. и. т. утверждает, что или само высказывание, или его отрицание ис­тинно. Значит, заключал Аристотель, закон следует ограничить высказываниями о прошлом и настоящем и не прилагать его к высказываниям о будущем.


[106]
В XX в. размышления Аристотеля над З.и.т. натолкнули на мысль о возможности принципиально нового направления в логике. Была создана многозначная логика.
Последовательная критика 3. и. т. берет начало от голландского математика и логика Л. Брауэра. Критика Брауэра положила нача­ло новому направлению в формальной логике - интуиционист­ской логике.
Одной из предпосылок особого внимания к 3. и. т. является его широкая применимость в самых разных областях рассуждений. Че­ловек говорит прозой или не говорит прозой, кто-то рыдает или не рыдает, дождь идет или не идет и т. п. - других вариантов не существует. Это известно каждому, что показывает, насколько уко­ренен 3. и. т. в нашем мышлении и с каким автоматизмом осуще­ствляется его применение в рассуждениях.
ЗАКОН КЛАВИЯ
— логический закон, характеризующий связь импликации («если, то») и отрицания. Его можно передать так: если из отрицания некоторого высказывания вытекает само это высказывание, то оно является истинным. Или короче: высказы­вание, вытекающее из своего собственного отрицания, истинно. Иначе говоря: если необходимым условием ложности некоторого высказывания является его истинность, то это высказывание ис­тинно. Напр., если условием того, чтобы машина не работала, является ее работа, то машина работает.
Закон назван именем Клавия — ученого иезуита, жившего в XVI в., одного из создателей григорианского календаря. Клавий обратил внимание на этот закон в своем комментарии к «Нача­лам» Евклида. Одну из своих теорем Евклид доказал из допуще­ния, что она является ложной.
С использованием символики логической (р — некоторое выска­зывание; -> - условная связь, «если, то»; ˜ - отрицание, «невер­но, что») 3. К. представляется формулой:
(˜р->р)->р,
если не-р имплицирует р, то верно р.
3. К. лежит в основе рекомендации, касающейся доказательства: если хочешь доказать А, выводи A из допущения, что верным яв­ляется не-А. Напр., нужно доказать утверждение «Трапеция имеет четыре стороны». Отрицание этого утверждения: «Неверно, что трапеция имеет четыре стороны». Если из этого отрицания удает­ся вывести утверждение, то последнее будет истинно.
Эту схему рассуждения использовал однажды древнегреческий философ Демокрит в споре с софистом Протагором, который ут-


[107]
верждал: «Истинно все то, что к.-л. приходит в голову». На это Демокрит ответил, что из положения «Каждое высказывание ис­тинно» вытекает истинность и его отрицания: «Не все высказыва­ния истинны». И, значит, это отрицание, а не положение Прота-гора на самом деле истинно.
3. К. является одним из случаев общей схемы косвенного доказа­тельства: из отрицания утверждения выводится само это утвер­ждение, вместе с отрицанием оно составляет логическое проти­воречие; это означает, что отрицание ложно, а верным является само утверждение.
К 3. К. близок по своей структуре другой логический закон, от­вечающий этой же общей схеме: если из утверждения вытекает его отрицание, то последнее истинно. Напр., если условием того, что поезд прибудет вовремя, будет его опоздание, то поезд опоздает. Иначе говоря: если необходимым условием истинности некоторого утвер­ждения является его ложность, то утверждение ложно.
Символически:
(p->˜p)->˜p,
если р имплицирует не-р, то верно не-р. Данный закон представ­ляет собой схему рассуждения, идущего от некоторого утвержде­ния к его отрицанию. Можно сказать, что он в некотором смысле слабее, чем З.К., представляющий рассуждение, идущее от отри­цания утверждения к самому утверждению. В частности, оба эти закона имеют место в логике классической, но 3. К. не принимается в интуиционистской логике.
ЗАКОН КОММУТАТИВНОСТИ (от лат. commutatio - изменение, перемена)
— общее название логических законов, позволяющих менять местами высказывания, связанные конъюнкцией («и»), дизъ­юнкцией («или»), эквивалентностью («если и только если») и др. Эти законы аналогичны алгебраическим законам коммутативно­сти для умножения, сложения и др., по которым результат умно­жения не зависит от порядка множителей, сложения - от поряд­ка слагаемых и т. д.
Символически 3. к. для конъюнкции и дизъюнкции записываются так (р, q — некоторые высказывания, & — конъюнкция, v — дизъ­юнкция, = — эквивалентность):
(p&q) = (q&p), р и q тогда и только тогда, когда q и р;
(pvq) = (qvp), р или q, если и только если q или р.



[108]
Данные эквивалентности можно проиллюстрировать примера­ми: «Волга — самая длинная река в Европе и Волга впадает в Кас­пийское море в том и только том случае, если Волга впадает в Каспийское море и Волга является самой длинной рекой в Евро­пе»; «Завтра будет дождь или будет снег, если и только если завтра будет снег или завтра будет дождь».
Существуют важные различия между употреблением слов «и» и «или» в повседневном языке и в логике. В обычном языке этими словами соединяются два высказывания, связанные по своему со­держанию. Нередко обычное «и» употребляется при перечислении, а обычное «или» предполагает, что мы не знаем, какое именно из соединяемых им двух высказываний истинно. В логике значение «и» и «или» упрощается и делается более независимым от времен­ной последовательности, от психологических факторов и т. п. «И» и «или» в логике коммутативны. Но «и» обычного языка, как прави­ло, коммутативным не является. Скажем, «Он сломал ногу и попал в больницу» очевидно не равносильно «Он попал в больницу и сломал ногу».
ЗАКОН КОММУТАЦИИ (от лат. commutatio - изменение, переме­на)
— логический закон, говорящий о возможности перестановки двух последовательных оснований некоторого условного высказы­вания. Словами: первое влечет, что если второе, то третье, в том и только том случае, когда второе влечет, что если первое, то третье. Напр., утверждение «Если население Земли будет расти нынеш­ними темпами, то, если не будет значительно поднят уровень сель­скохозяйственного производства, наступит кризис» равносильно утверждению «Если уровень сельскохозяйственного производства не будет значительно поднят, то в случае роста населения Земли нынешними темпами наступит кризис».
С применением символики логической 3. к. записывается таким образом (р, q, r - некоторые высказывания; -> - импликация, «если, то»; = - эквивалентность, «если и только если»):
(p -> (q ->r)) = (q -> (p -> r)),
р имплицирует, что q имплицирует r, если и только если q имп­лицирует, что р имплицирует r.
ЗАКОН КОМПОЗИЦИИ (от лат. compositio — сочинение, состав­ление)
- общее название ряда логических законов, позволяющих объединять следствия определенных условных высказываний или разделять их основание.
Один из этих законов можно выразить так: если верно, что если первое, то второе, и если первое, то третье, то верно, что если первое, то второе и третье. Напр.: «Если верно, что стороны квадрата рав-



[109]
ны, и верно, что его диагонали равны, то у квадрата равны как его стороны, так и его диагонали».
Символически (р, q, r - некоторые высказывания; & — конъ­юнкция, «и»; -> - импликация, «если, то»):
((p->q)&(p->r))->(р->(q&r)),
если (если р, то q) и (если р, то r), то (если р, то q и r). Иногда этот закон называют также законом гипотетического силлогизма.
Другой 3. к.: если дизъюнкция двух высказываний влечет третье высказывание, то каждый из членов этой дизъюнкции влечет это высказывание. Напр.: «Если верно, что рукопись, брошенная в огонь или брошенная в воду, погибнет, то верно, что рукопись, брошен­ная в огонь, погибнет».
Символически (v — дизъюнкция, «или»):
((pvq)->r)->(p->r),
если (если р или q, то r), то (если р, то r); ((pvg)->r)->(q->r),
если (если р или q, то r), то (если q, то r).
ЗАКОН КОСВЕННОГО ДОКАЗАТЕЛЬСТВА
- логический закон, позволяющий делать заключения об истинности какого-то выска­зывания на основании того, что отрицание этого высказывания влечет противоречие. Напр.: «Если из того, что 11 не является простым числом, вытекает то, что оно делится на число, отлич­ное от самого себя и единицы, и то, что оно не делится на такое число, то 11 есть простое число».
С использованием символики логической (p, q — некоторые выска­зывания; -> — импликация, «если, то»; & — конъюнкция, «и»; ˜ — отрицание, «неверно, что») закон записывается так:
(˜ p->q)&(˜p->˜q)->p,
если (если не-р, то q) и (если не-р, то не-q), то р. 3. к. д. обычно называется также формула:
(˜p->q&˜q)->p,
если (если не-р, то q и не-q), то р. Напр.: «Если из-того, что 10 не является четным числом, вытекает то, что оно делится и не делится на 2, то 10 - четное число».
ЗАКОН ЛОГИКИ, см.: Логический закон.
ЗАКОН МЫШЛЕНИЯ - термин традиционной логики,
обозна­чавший требование к логически совершенному мышлению, имею-



[110]
щее формальный характер, т. е. не зависящее от конкретного со­держания мыслей. 3. м. назывались также законами логики или (формально-) логическими законами. Из множества З.м. выделя­лись т. наз. основные З.м. (логики), связанные, как считалось, с наиболее существенными свойствами мышления - такими, как определенность, непротиворечивость, последовательность, обо­снованность. Основные 3. м. рассматривались как наиболее оче­видные из всех утверждений логики, являющиеся чем-то вроде аксиом этой науки. Под неясное понятие основного 3. м. подводи­лись чаще всего непротиворечия закон, тождества закон, закон ис­ключенного третьего. Нередко к ним добавляли достаточного ос­нования принцип и принцип «обо всех и ни об одном» («сказанное обо всех предметах какого-то рода верно и о некоторых из них, и о каждом в отдельности; неприложимое ко всем предметам не­верно также в отношении некоторых и отдельных из них»).
В концепции основных 3. м. собственно логическое содержание смешивалось с теоретико-познавательным и с расплывчатыми методологическими рекомендациями (требованиями обосновывать каждое выдвигаемое утверждение, доводить исследование любого вопроса до полной определенности, выделять обсуждаемые объек­ты по достаточно устойчивым признакам и т. п.).
Логика современная (математическая, символическая) показала, что логических законов бесконечно много и нет оснований делить их на основные и второстепенные. Построены логические системы, в которых не являются законами закон исключенного третьего (ин­туиционистская логика, некоторые системы многозначной логики), непротиворечия закон (паранепротиворечивая логика). Термин «3. м.» в логике современной не употребляется (см.: Логический закон).
ЗАКОН ПРОТИВОРЕЧИЯ, см.: Непротиворечия закон.
ЗАКОН ЭКСПОРТАЦИИ - ИМПОРТАЦИИ (от лат. exportare -вывозить, importare — ввозить)
— логический закон, говорящий о заменимости в определенных случаях конъюнкции («и») имплика­цией («если, то»), и наоборот. Его можно передать так: первое и второе влечет третье тогда и только тогда, когда первое влечет, что второе влечет третье.
Закон слагается из двух импликаций. Одна из них - закон экс­портации (вынесения) - с использованием символики логичес­кой представляется так (р, q, r — некоторые высказывания, & -конъюнкция, -> - импликация):
((p&q)->r)->(p->(q->r)),
если (если р и q, то r), то (если р, то (если q, то r)). Напр.: «Если верно, что плоская геометрическая фигура, имеющая четыре рав-


[111]
ные стороны и четыре равных угла, является квадратом, то, если у плоской фигуры четыре равные стороны, она является квадра­том, если у нее четыре равных угла».
Вторая импликация, входящая в данный закон, именуется за­коном импортации (внесения). Символическая ее запись:
(p->(q->r))->((p&q)->r),
если верно, что (если р, то (если q, то r)), то (если р и q, то r).
ЗНАК
- материальный предмет, воспроизводящий свойства, отношения некоторого другого предмета. Различают языковые и неязыковые З. Среди последних выделяют три разновидно­сти. 3. - копии обладают определенным сходством с представля­емыми ими объектами, напр. фотографии, отпечатки пальцев и т. п. 3. - признаки связаны с обозначаемыми объектами как следствия со своими причинами, напр. дым - 3. и следствие огня. З. - символы представляют собой некоторые наглядные образы, используе­мые для представления отвлеченного и часто весьма значительно­го содержания, напр. чайка — символ Московского Художественного театра, Московский Кремль — символ Москвы и России и т. п. Языковые 3. характеризуются тем, что не функци­онируют независимо друг от друга. Они объединяются в систему, правила которой определяют способы построения 3. — правила грамматики или синтаксиса, а также правила приписы­вания знакам смысла, значения, употребления. Выделяют 3. ес­тественных и искусственных языков. 3. естественного языка — отдельные слова, предложения, выражения, тексты и т. п. — состоят как из звуковых 3., так и из соответствующих им руко­писных, типографских и иных 3. Развитие науки привело к введе­нию в естественные языки специальных графических 3., исполь­зуемых для выражения научных понятий: математических 3., химических, физических и иных 3. Из 3. такого рода строятся ис­кусственные языки, правила которых — в отличие от правил есте­ственных языков — формулируются в явном виде. Искусственные языки находят преимущественное применение в науке, где они служат не только для общения между учеными, но и как мощное средство получения новой информации об изучаемых объектах.
Различают предметное, смысловое и экспрессив­ное значение 3. Предмет, обозначаемый 3., называется пред­метным значением или денотатом 3.3. обозначает свой предмет, но выражает свой смысл - свойство представлять опре­деленные стороны, черты, характеристики обозначаемого объекта, фиксирующие область приложения 3. В науке смысл 3. выражается в понятии. Под экспрессивным значением 3. понимают выража-



[112]
емые с помощью данного 3. чувства и желания человека, употре­бившего данный 3. в определенной ситуации.
С развитием способности извлекать и перерабатывать инфор­мацию о предметах, оперируя не с самими предметами, а со 3., их представляющими, связаны революционные перевороты в раз­витии науки. Напр., разработка математической символики в XVI-XVII вв. содействовала резкому ускорению развития матема­тики и расширению сферы ее приложений в механике, астроно­мии, физике; развитие формализованных, информационных, ма­шинных языков было тесно связано с развитием кибернетики. Создание специальной символики обычно открывает перед нау­кой новые возможности: рационально построенные системы 3. позволяют в обозримой форме выражать соотношения между изу­чаемыми явлениями; добиваться однозначности используемых тер­минов; фиксировать такие понятия, для которых в обычном языке нет словесных выражений; формулы часто выражают не только некоторый готовый результат, но и тот путь, следуя которому этот результат можно получить. Выражение информации с помощью 3. делает возможной ее передачу по техническим каналам связи и ее математическую, логическую, статистическую обработку с помо­щью вычислительных устройств (см.: Денотат, Смысл, Имя).
ЗНАНИЕ
— результат процесса познания действительности, получивший подтверждение в практике; адекватное отражение объективной реальности в сознании человека (представления, понятия, суждения, теории). 3. фиксируется в знаках естественных и искусственных языков. Различают обыденное и научное 3. Обыденное, или житейское, 3. опирается на здравый смысл и формы повседневной практической деятельности. Обыденное 3. слу­жит основой ориентации человека в окружающем мире, основой его поведения и предвидения.
Научное 3. отличается от обыденного своей систематичностью, обоснованностью и глубиной проникновения в сущность вещей и явлений. Наука объединяет разрозненные 3., полученные в повсед­невной практике, в стройные системы, опирающиеся на совокуп­ность исходных принципов, в которых отображаются существен­ные связи и отношения вещей, - научные теории. Законы и теории науки сознательно и целенаправленно сопоставляются с действительностью для установления их истинности и получают обоснование в эксперименте и практических приложениях. Для фиксации научного 3. используется научный язык c точны­ми понятиями, допускающий применение математического аппа­рата для обработки и сжатого выражения полученных данных. Ис­пользование особых познавательных средств позволяет науке



[113]
получать знания о таких сторонах и свойствах объективного мира, которые не даны человеку в его повседневном опыте.
Научное 3. принято разделять на э м п и р и ч е с к о е и тео­ретическое. Эмпирическое 3. — результат применения эмпири­ческих методов познания — наблюдения, измерения, эксперимента. Оно, как правило, констатирует качественные и количественные характеристики объектов и явлений. Устойчивая повторяемость свя­зей между эмпирическими характеристиками выражается с помо­щью эмпирических законов, часто носящих вероятностный харак­тер. Теоретический уровень научного 3. предполагает открытие законов, дающих возможность идеализированного восприятия, опи­сания и объяснения эмпирических ситуаций, т. е. познания сущно­сти явлений. Теоретическое и эмпирическое научное 3. функцио­нирует в тесной взаимосвязи: теоретические представления возникают на основе обобщения эмпирических данных и, в свою очередь, влияют на обогащение и изменение эмпирического 3. Эти уровни 3. выражаются соответственно в эмпирическом и те­оретическом языках. Термины эмпирического языка обо­значают чувственно воспринимаемые или экспериментально фик­сируемые предметы и явления. Предложения эмпирического языка непосредственно соотносятся с действительностью — с помощью наблюдения или эксперимента. Термины теоретического языка от­носятся к идеализированным, абстрактным объектам, что делает невозможной их непосредственную экспериментальную проверку.
В методологии научного познания иногда говорят о я в н о м и неявном 3. К явному относят 3., фиксированное в языке на­уки - в утверждениях и теориях. Неявное, т. е. не выраженное в языке, 3. состоит из навыков и умений читать чертежи, графики, пользоваться приборами и инструментами, применять явное 3. в конкретных ситуациях.
Роль 3. в развитии человечества постоянно возрастает. Главным источником 3. была и остается материальная практика. Однако про­изводство 3., выделившись в самостоятельную сферу человеческой деятельности, оказывает мощное воздействие на развитие самой практики. Революционные преобразования 3. всегда вызывали круп­ные изменения в средствах производства, резко повышали произ­водительность общественного труда, содействовали изменению условий жизни людей. Взаимосвязь научного 3. и общественного производства выражается в понятии научно-технической револю­ции, ведущим фактором которой является рост научного 3.
ЗНАЧЕНИЕ
— содержание, связываемое с тем или иным языко­вым выражением. Вопрос о 3. языковых выражений исследуется лингвистикой, семиотикой и логической семантикой. В последней



[114]
наибольшим признанием пользуется концепция 3., предложен­ная немецким математиком и логиком Г. Фреге в конце XIX в. Дальнейшую разработку эта концепция получила в трудах Б. Рас­села, Р. Карнапа, К. И. Льюиса и др.
В концепции Фреге все языковые выражения рассматриваются как имена, т. е. как обозначения некоторых внеязыковых объектов. Объект, обозначаемый языковым выражением, называется денота­том этого выражения. Напр., собственное имя «Рембрандт» обо­значает голландского художника Рембрандта, а сам этот художник является денотатом имени «Рембрандт». Точно так же и имя «ав­тор романа "Айвенго"» обозначает шотландского писателя, кото­рый является денотатом этого имени и имени «Вальтер Скотт».
Иногда денотат отождествляют со 3. Однако такое отождест­вление не всегда правомерно, ибо денотат представляет собой лишь одну сторону 3. языковых выражений. В этом легко убедиться, сопо­ставив два имени, имеющие один и тот же денотат и тем не менее различные, напр.: «автор романа "Айвенго"» и «Вальтер Скотт». Эти два имени различаются своим содержанием: первое говорит о том, что обозначаемый им объект написал определенный роман, в то время как второе говорит о том, что он носит имя «Вальтер» и фамилию «Скотт». Разница в содержании этих имен выступает с полной очевидностью в вопросе: «Был ли Вальтер Скотт автором романа "Айвенго"?» Если бы имена «Вальтер Скотт» и «автор ро­мана "Айвенго"» были тождественны, то в этом вопросе можно было бы заменить одно другим. Однако вопрос «Был ли Вальтер Скотт Вальтером Скоттом?» имеет совершенно иное содержание, и едва ли кому-нибудь придет в голову задавать такой вопрос.
Каждое языковое выражение наряду с денотатом имеет смысл — содержание выражения, которое усваивается в процессе его пони­мания. Языковое выражение обозначает свой денотат и выражает свой смысл. Разные выражения могут иметь один и тот же денотат, но различаться по смыслу. Выражение может иметь смысл, но не иметь денотата. Денотат и смысл — две стороны 3. языковых выра­жений.
Эта концепция 3. применима и к предложениям. Предложение можно рассматривать как имя некоторого истинностного 3. - ис­тины или лжи. Истина является денотатом истинного предложе­ния, ложь — денотатом ложного предложения. Смыслом предложе­ния является выражаемая им мысль, суждение. В формальных логических системах, в которых отвлекаются от смысла предложе­ний, истинные предложения оказываются взаимозаменяемыми и точно так же взаимозаменимы ложные предложения.
И
ИДЕАЛИЗАЦИЯ
— процесс мысленного конструирования пред­ставлений и понятий об объектах, не существующих и не могущих существовать в действительности, но сохраняющих некоторые чер­ты реальных объектов. В процессе И. мы, с одной стороны, отвле­каемся от многих свойств реальных объектов и сохраняем лишь те из них, которые нас в данном случае интересуют, с другой — вводим в содержание образуемых понятий такие признаки, кото­рые в принципе не могут принадлежать реальным объектам. В ре­зультате И. возникают идеальные, или идеализирован­ные, объекты, напр., «материальная точка», «прямая линия», «идеальный газ», «абсолютно черное тело», «инерция» и т. п. Любая наука, выделяя из реального мира свой аспект для изучения, пользу­ется И. и идеализированными объектами. Последние гораздо про­ще реальных объектов, что позволяет дать их точное математиче­ское описание и глубже проникнуть в природу изучаемых явлений. Плодотворность научных И. проверяется в эксперименте и мате­риальной практике, в ходе которой осуществляется соотнесение теоретических идеализированных объектов с реальными вещами и процессами.
ИДЕМПОТЕНТНОСТИ ЗАКОН (от лат. idempotens - сохраняющий ту же степень)
- логический закон, позволяющий исключить повторение одного и того же высказывания. Его формулировка: повторение высказывания через «и» и «или» равносильно само­му высказыванию. Напр., «Марс - планета и Марс - планета» есть то же самое, что «Марс - планета»; «Солнце — звезда или Солнце — звезда» то же самое, что «Солнце — звезда».
С применением символики логической (р — некоторое высказы-



[116]
вание; & - конъюнкция, «и»; v - дизъюнкция, «или»; = () - экви­валентность, «если и только если») закон записывается так:
(р&р) = (pvp) = р,
р и р, если и только если р, и р или р, если и только если р. Закон позволяет исключить из логики коэффициенты и показатели сте­пеней. В алгебре а*а=а2 и а+а=2а; аналогами операций умножения и сложения в логике являются конъюнкция и дизъюнкция, однако, как показывает И. з., аналогия не является полной.
ИЛЛЮСТРАЦИЯ (от лат. illustratio - прояснять)
- факт или частный случай, призванный укрепить убежденность аудитории в правильности уже известного и принятого положения. Пример под­талкивает мысль к новому обобщению и подкрепляет это обобще­ние, И. проясняет известное общее положение, демонстрирует его значение с помощью целого ряда возможных применений, усиливает эффект его присутствия в сознании аудитории. С разли­чием задач примера и И. связано различие критериев их выбо­ра. Пример должен выглядеть достаточно твердым, однозначно трак­туемым фактом. И. вправе вызывать небольшие сомнения, но она должна особенно живо воздействовать на воображение аудито­рии, останавливать на себе ее внимание. И. в гораздо меньшей степени, чем пример, рискует быть неверно интерпретирован­ной, т. к. за нею стоит уже известное положение. Различие между примером и И. не всегда является отчетливым. Аристотель разли­чал два употребления примера, в зависимости от того, имеются у оратора к.-л, общие принципы или нет: «...необходимо бывает привести много примеров тому, кто помещает их в начале, а кто помещает их в конце, для того достаточно одного [примера], ибо свидетель, заслуживающий веры, бывает полезен даже в том слу­чае, когда он один» (Риторика. Кн. II, 20, 1394а). Роль частных случаев является, по Аристотелю, разной в зависимости от того, предшествуют они тому общему положению, к которому отно­сятся, или следуют после него. Дело, однако, в том, что факты, приводимые до обобщения, — это, как правило, примеры, в то время как один или немногие факты, даваемые после него, пред­ставляют собой И. Об этом говорит и предупреждение Аристотеля, что требовательность слушателя к примеру более высока, чем к И. Неудачный пример ставит под сомнение то общее положение, ко­торое он призван подкрепить. Противоречащий пример способен даже опровергнуть это положение. Иначе обстоит дело с неудач­ной, неадекватной И.: общее положение, к которому она приво­дится, не ставится под сомнение, и неадекватная И. расценивается


[117]
скорее как негативная характеристика того, кто ее применяет, свидетельствующая о непонимании им общего принципа или о его неумении подобрать удачную И. Неадекватная И. может иметь комический эффект: «Надо уважать своих родителей. Когда один из них вас ругает, тут же ему возражайте». Ироническое использо­вание И. является особенно эффектным при описании какого-то определенного лица: сначала этому лицу дается позитивная ха­рактеристика, а затем приводится И., прямо несовместимая с нею. Так, в «Юлии Цезаре» Шекспира Антоний, постоянно напоми­ная, что Брут - честный человек, приводит одно за другим сви­детельства его неблагодарности и предательства.
Конкретизируя общее положение с помощью частного случая, И. усиливает эффект присутствия. На этом основании в ней иног­да видят образ, живую картинку абстрактной мысли. И. не ставит, однако, перед собой цель заменить абстрактное конкретным и тем самым перенести рассмотрение на другие объекты. Это делает аналогия, И. же - не более чем частный случай, подтверждающий уже известное общее положение или облегчающий более отчетли­вое его понимание.
Часто И. выбирается с учетом того эмоционального резонанса, который она способна вызвать. Так поступает, напр., Аристотель, предпочитающий стиль периодический стилю связному, не име­ющему ясно видимого конца: «... потому что всякому хочется ви­деть конец; по этой-то причине [состязающиеся в беге] задыхают­ся и обессиливают на поворотах, между тем как раньше они не чувствовали утомления, видя перед собой предел бега» (Риторика. Кн. III, 9,1409а).
Сравнение, используемое в аргументации и не являющееся срав­нительной оценкой (предпочтением), обычно представляет собой И. одного случая другим, при этом оба случая рассматриваются как конкретизация одного и того же общего принципа. Типичный при­мер сравнения: «Людей показывают обстоятельства. Стало быть, когда тебе выпадает какое-то обстоятельство, помни, что это бог, как учитель гимнастики, столкнул тебя с грубым концом» (Эпиктет. Беседы. Кн. 1, 24, 1).
ИМПЛИКАЦИЯ (от лат. implicatio - сплетение, от implico — тесно связываю)
- логическая связка, соответствующая грамматической конструкции «если ..., то ...», с помощью которой из двух простых высказываний образуется сложное высказывание. В импликативном высказывании различают антецедент (основание) — высказыва­ние, идущее после слова «если», и консеквент (следствие) - выска­зывание, идущее за словом «то». Импликативное высказывание пред-



[118]
ставляет в языке логики условное высказывание обычного языка. Последнее играет особую роль как в повседневных, так и в науч­ных рассуждениях, основной его функцией является обоснование одного путем ссылки на нечто другое.
В современной логике имеется большое число И., различающих­ся своими формальными свойствами. Наиболее известны из них И. материальная, строгая И. и релевантная (уместная) И.
Материальная И. обозначается знаком E. Это одна из основных связок логики классической. Определяется она через функции ис­тинности: И. ложна только в случае истинности антецедента и лож­ности консеквента и истинна во всех остальных случаях. Условное высказывание «Если А, то В» предполагает некоторую реальную связь между тем, о чем говорится в A и В; выражение А EВ такой связи не предполагает.
Строгая И. определяется через модальное понятие (логической) невозможности: «А строго имплицирует В» означает «Невоз­можно, чтобы А было истинно, а В ложно».
В релевантной логике И. понимается как условный союз в его обычном смысле. В случае релевантной И. нельзя сказать, что ис­тинное высказывание может быть обосновано путем ссылки на любое высказывание и что с помощью ложного высказывания можно обосновать какое угодно высказывание.
ИМПЛИКАЦИЯ МАТЕРИАЛЬНАЯ - импликация в трактовке ло­гики классической.
Для установления истинности И. м. «Если А, то В» достаточно выяснить истинностные значения высказываний А и В. И. м. истинна в трех случаях: 1) ее основание и ее следствие истинны; 2) основание ложно, а следствие истинно; 3) и основа­ние и следствие ложны. Только в одном случае, когда основание истинно, а следствие ложно, вся импликация ложна. При установле­нии истинности И. м. не предполагается, что высказывания A и В связаны между собой по содержанию. В случае истинности В выска­зывание «Если A, то В» истинно, независимо от того, является A истинным или ложным и связано оно по смыслу с В или нет. Истин­ными считаются, напр., высказывания: «Если на Солнце есть жизнь, то дважды два равно четыре», «Если Волга - озеро, то Токио — большой город» и т. п. Условное высказывание истинно также тогда, когда А ложно. При этом опять-таки безразлично, истинно В или нет и связано оно по содержанию с A или нет. К истинным отно­сятся, напр., высказывания: «Если Солнце — куб, то Земля - тре­угольник», «Если дважды два равно пять, то Токио - маленький город» и т. п. В обычном рассуждении все эти высказывания вряд ли будут рассматриваться как имеющие смысл и еще в меньшей


[119]
степени как истинные. Очевидно, что И. м. плохо согласуется с обычным пониманием условной связи.
В классической логике И. м. является формальным аналогом ус­ловного высказывания. Но, схватывая многие важные черты «логиче­ского поведения» условного высказывания, И.м. не является доста­точно адекватным его описанием. Ряд законов классической логики, содержащих И. м. и не согласующихся с обычными, или интуитивны­ми, представлениями о логических связях, получил название па­радоксов материальной импликации (см.: Парадоксы импликации). В числе этих парадоксов закон Дунса Скота (парадокс ложного высказывания), парадокс истинного высказывания и др. В последние полвека были предприняты энергичные попытки реформировать теорию импликации. При этом речь шла не об отказе от И. м., а о введении наряду с нею другого понятия им­пликации, учитывающего не только истинностные значения выс­казываний, но и связь их по содержанию. Наибольшую извест­ность среди таких «неклассических» импликаций получили строгая импликация и релевантная импликация (см.: Ло­гическое следование). Теории «неклассических» импликаций явля­ются сужениями классической логики, выступающей в качестве своего рода предельного их случая. Польский логик А. Тарский отмечал: «...в настоящее время представляется почти несомнен­ным, что теория И.м. превзойдет все другие теории в простоте, и во всяком случае не надо забывать, что логика, опирающаяся на это простое понятие, оказалась вполне пригодной основой для самых сложных и тонких математических рассуждений».
ИМЯ
- выражение естественного или искусственного, форма­лизованного языка, обозначающее отдельный предмет, совокуп­ность сходных предметов, свойства, отношения и т. п. Напр., слово «Наполеон» обозначает отдельный предмет - Наполеона Бонапар­та; слово «полководец» обозначает класс людей, каждый из которых командовал войсками в сражениях; слово «белый» можно рассмат­ривать как обозначение свойства белизны; слово «выше» — как обозначение определенного отношения между предметами.
Объект, обозначаемый И., называется денотатом этого И.; со­держание И., т. е. способ, которым оно указывает на свой денотат, называется смыслом И. В традиционной логике понятиям «дено­тат» и «смысл» соответствуют понятия объема и содержа­ния. Между И. и его денотатом имеется отношение именования, т. е. И. называет, именует свой денотат. При построении логических систем стремятся к тому, чтобы отношение именования удовлет­воряло трем следующим принципам.



[120]
1.Принцип однозначности: И. должно иметь только один денотат, т. е. обозначать только один предмет, класс предметов или свойство. Принцип однозначности в естественных языках часто нарушается из-за многозначности и неопределенности слов и вы­ражений. Однако следует стремиться к тому, чтобы по крайней мере в пределах одного контекста или одного рассуждения наши слова и выражения относились к одним и тем же объектам. В про­тивном случае неизбежны логические ошибки.
2. Принцип предметности: всякое предложение говорит о денотатах входящих в него выражений. Напр., предложение «Ураль­ские горы разделяют Европу и Азию» говорит не об именах «Ураль­ские горы», «Европа», «Азия», а о той горной цепи, которая разде­ляет Европейский и Азиатский материки. Принцип предметности кажется достаточно очевидным, однако, когда мы начинаем гово­рить о самих языковых выражениях или о математических объек­тах, может произойти смешение И. с их денотатами.
3. Принцип взаимозаменимости: если два И. имеют один и тот же денотат, то одно из них можно заменить другим, причем предложение, в котором осуществляется такая замена, не изменяет своего истинностного значения. Напр., И. «Москва» и «столица России» имеют один и тот же денотат, поэтому в предло­жении «Москва — многомиллионный город» можно И. «Москва» заменить И. «столица России»: «Столица России — многомилли­онный город». Второе предложение остается истинным.
Принцип взаимозаменимости называют также принципом экстенсиональности (объемности), т. к. он служит для отличения экстенсиональных контекстов от интенси­ональных. Экстенсиональным наз. такой контекст, для которо­го важны только денотаты языковых выражений. Поэтому принцип взаимозаменимости в таком контексте выполняется: при замене И. с одним денотатом предложение сохраняет свое истинностное значение. Однако если для контекста важен не только денотат, но и смысл И., принцип взаимозаменимости нарушается: заме­на И. с одним денотатом может сделать истинное предложение ложным. Поэтому неэкстенсиональными, или интенсиональны­ми, наз. контексты, в которых принцип взаимозаменимости на­рушается. Напр., цифра «9» и И. «число планет Солнечной систе­мы» имеют один и тот же денотат (т. к. число планет Солнечной системы равно 9). Рассмотрим предложение: «9 необходимо боль­ше 7». Это предложение истинно. Заменим теперь в этом предло­жении «9» именем «число планет Солнечной системы», получим предложение: «Число планет Солнечной системы необходимо боль-


[121]
ше 7». Последнее предложение очевидно ложно, т. к. нет никакой необходимости в том, чтобы число планет Солнечной системы превосходило 7.
В зависимости от характера денотата и смысла И. подразделя­ются на классы.
Единичное (собственное) И. - И., денотатом которого яв­ляется один-единственный предмет, напр. «Аристотель», «Монб­лан», «Нева», «величайший философ древности», «река, на которой стоит Ленинград» и т. п.
Общее И. — И., денотатом которого является класс однород­ных предметов, напр. «философ», «гора», «река» и т. п.
Пустое И. — И., у которого отсутствует денотат, т. е. не суще­ствует такого предмета, который обозначается данным И., напр. «единорог», «Зевс», «русалка», «кентавр» и т. п. Вопрос о пустоте или непустоте того или иного И. часто имеет большое значение, и на него не всегда просто ответить. Имеются логически противоре­чивые И., смысл которых включает в себя логически несовмести­мые признаки, напр. «круглый квадрат», «деревянное железо». Та­кие И. можно назвать логически пустыми. Однако существование женщин с рыбьим хвостом или существ, объединяющих в себе коня и человека, не противоречит законам логики, но с точки зрения физики и биологии невозможно. Поэтому И. «русалка» и «кентавр» пусты по естественнонаучным основаниям. Во многих случаях мы не знаем законов природы, отрицающих существова­ние тех или иных объектов, поэтому вопрос о пустоте или непус­тоте соответствующих И. решается эмпирическим исследованием.
Конкретное И. -И., обозначающее отдельный предмет, вещь, в противоположность абстрактному И., обозначающему свой­ство или отношение между предметами. Напр., слово «стол» — кон­кретное И., т. к. обозначает предметы, целостные вещи, а слово «белизна» является абстрактным И., поскольку обозначает не пред­мет, а свойство предметов. Деление И. на конкретные и абстрактные осуществляется в рамках традиционной логики и не является вполне определенным. Во многих случаях довольно трудно решить, имеем ли мы дело с предметом или с некоторым свойством. Напр., такие слова, как «республика», «совесть» и т. п., можно истолковать и как обозначения предметов, и как обозначения свойств и отношений.
ИНДИВИД (от лат. individuum - неделимое)
— единичное как противоположность совокупности, массе; отдельное живое суще­ство, особь, отдельный человек, в отличие от стада, группы, коллек­тива. В логике И. называют любой объект, обозначаемый еди­ничным, или собственным, именем. Логические формальные



[122]
исчисления, содержащие общие и экзистенциальные предложе­ния, обычно предполагают существование непустой области к.-л. индивидуальных предметов - индивидов, к которым относятся утверждения формальной системы. Природа И. для логики безраз­лична, требуется только, чтобы они отличались один от другого и чтобы каждый И. обозначался одним именем.
ИНДУКТИВНАЯ ЛОГИКА
- раздел логики, изучающий индук­тивные умозаключения, которые отличаются от дедуктивных умо­заключений тем, что вывод в них вытекает из посылок не с необходимостью, а лишь с некоторой вероятностью. Типичным примером индуктивного умозаключения является переход от еди­ничных фактов к общему утверждению. Современная И.л. в основ­ном занимается анализом степени подтверждения гипотезы h на основании имеющегося свидетельства е. В формальной теории сте­пень связи между гипотезой h и свидетельством е выражается фун­кцией c(h,e), удовлетворяющей условию 0?c(h,e) ?1. Значение фун­кции с (h, е) равно 1, если Л логически выводится из е; оно равно О, если е противоречит Л; во всех остальных случаях оно располагает­ся в интервале (О, 1) и характеризует большую или меньшую сте­пень вероятности (подтверждения) гипотезы Л по отношению к свидетельству е. В некоторых теориях И. л. степень подтверждения гипотезы h оценивается не строго количественно, а лишь сравни­тельно — в терминах «больше — меньше» (см.: Индукция).
ИНДУКТИВНОЕ ОПРЕДЕЛЕНИЕ
- определение, позволяющее из некоторых исходных объектов теории с помощью некоторых операций строить новые объекты теории. И.о. находят широкое применение в математике, логике и других науках. Примером мо­жет быть И.о. натуральных чисел. Исходным объектом здесь будет число 0, исходной операцией — «следующее за п», т. е. операция, обеспечивающая переход от числа п к п + 1. Она обозначается «'» («n'» — «следующее за n»). И.о. состоит из ряда пунктов: 1) 0 явля­ется натуральным числом; 2) если п - натуральное число, то п' -натуральное число; 3) никаких натуральных чисел, кроме тех, ко­торые получаются согласно применению пунктов (1) и (2), нет.
Таково же определение четного числа. Исходным объектом здесь является число 0, исходной операцией — операция прибавления двойки (+2), И. о. состоит из таких пунктов: 1) 0- четное число; 2) если п - четное число, то п + 2 - четное число; 3) никаких (натуральных) чисел, кроме тех, которые порождены примене­нием пунктов (1) и (2), нет.
Примером И. о. может быть И. о. формулы в исчислении высказы­ваний.


[123]
Различают два основных вида И. о.: фундаментальные и нефундаментальные. Фундаментальными называются такие И. о., с помощью которых из исходных объектов порождается та или иная исходная предметная область. Нефундаментальными являют­ся И. о., с помощью которых из заранее определенной области объектов выделяется некоторое ее подмножество. Приведенные выше И. о. натурального числа и формулы в исчислении высказы­ваний являются фундаментальными, И. о. четного числа является нефундаментальным: предполагается, что область натуральных чи­сел дана с самого начала или порождена фундаментальным И. о., а мы на ней определяем некоторое подмножество натуральных чи­сел (т. е. множество «четные числа»).
ИНДУКЦИИ КАНОНЫ (от греч. canon — правило, предписание)
-методы установления причинных связей между явлениями. Сфор­мулированы англ. логиком Д. С. Миллем (1806-1873) («методы Милля», «каноны Милля»). Он опирался на «Таблицы открытий» англ. философа Ф. Бэкона (1561-1626).
Метод единственного сходства:
если предшеству­ющие обстоятельства ABC вызывают явление abc, а обстоятель­ства ADE - явление ade, то делается заключение, что А - причи­на а (или что явления А и а причинно связаны). Так, желая установить, почему изучаемые маятники имеют одинаковый пе­риод колебания при различии материалов, из которых они изго­товлены, различии форм и других их характеристик, мы обнару­живаем между ними единственное сходство: они имеют одинаковую длину. Отсюда делается заключение, что одинаковая длина маят­ников есть причина равенства периодов их колебаний.
Метод единственного различия: если предшеству­ющие обстоятельства ABC вызывают явление abc, а обстоятельства ВС (явление A устраняется в ходе эксперимента) вызывают явле­ние bc, то делается заключение, что А есть причина а. Основанием такого заключения служит исчезновение а при устранении A. Допу­стим, в спектре вещества, содержащего натрий, наблюдается жел­тая линия. При устранении натрия из этого вещества желтая линия исчезает. Делается заключение, что присутствие натрия в данном веществе есть причина желтой линии в наблюдаемом спектре.
Объединенный метод сходства и различия об­разуется как подтверждение результата, полученного с помощью метода единственного сходства, применением к нему метода един­ственного различия.
Метод сопутствующих изменений:
если при изме­нении предшествующего явления а изменяется и наблюдаемое



[124]
явление а, а остальные предшествующие явления остаются неиз­менными, то отсюда можно заключить, что А является причиной а. Так, изменяя температуру некоторого тела A, мы устанавливаем, что объем его также изменяется; при этом все иные обстоятель­ства, предшествующие явлению а, остаются неизменными. Делает­ся заключение, что А есть причина а.
Метод остатков.
Пусть изучаемое сложное явление U со­стоит из частей (abcd), а предшествующие обстоятельства ABC та­ковы, что A есть причина а, В есть причина b, С есть причина с. Поскольку abcd - части сложного явления и взаимосвязаны, мож­но предположить, что среди названных обстоятельств должно су­ществовать обстоятельство D, которое и является причиной d -остатка изучаемого явления U. Так, французский астроном Леверье, используя метод остатков, предсказал существование планеты Нептун. При наблюдении планеты Уран было обнаружено ее от­клонение от вычисленной орбиты. Далее было выяснено, что силы тяготения других известных планет (А, В, С) являются причина­ми величин отклонения abc. Оставалась необъясненной величина отклонения d. Леверье построил гипотезу о существовании неиз­вестной планеты D и описал некоторые ее характеристики. Вско­ре немецкий астроном Галле открыл планету Нептун.
Иногда простая последовательность событий принимается за их причинную связь. В этом случае допускается ошибка, которая носит название «после этого, следовательно, по причине этого» (post hoc ergo propter hoc). Эта логическая ошибка явилась причиной многих суеверий. Напр., солнечное затмение рассматривалось как причина возникновения ряда народных бедствий на том основа­нии, что когда-то солнечное затмение предшествовало войне, не­урожайному году и т. п.
ИНДУКЦИЯ (от лат. inductio - наведение)
- умозаключение, в котором связь посылок и заключения не опирается на логиче­ский закон, в силу чего заключение вытекает из принятых посы­лок не с логической необходимостью, а только с некоторой веро­ятностью. И. может давать из истинных посылок ложное заключение; ее заключение может содержать информацию, отсутствующую в посылках. И. противопоставляется дедукция - умозаключение, в котором связь посылок и заключения опирается на закон логики и в котором заключение с логической необходимостью следует из посылок.
Два примера индуктивных умозаключений:
Енисей течет с юга на север; Лена течет с юга на север; Обь и Иртыш текут с юга на север.


[125]
Енисей, Лена, Обь, Иртыш — крупные реки Сибири. Все крупные реки Сибири текут с юга на север.
Железо - металл; медь - металл; калий - металл; кальций -
металл; рутений — металл; уран — металл.
Железо, медь, калий, кальций, рутений, уран — химические
элементы.
Все химические элементы — металлы.
Посылки обоих этих умозаключений истинны, но заключение первого истинно, а второго ложно.
Понятие дедукции (дедуктивного умозаключения) не является вполне ясным. И. (индуктивное умозаключение) определяется, в сущности, как «недедукция» и представляет собой еще менее яс­ное понятие. Можно темные менее указать относительно твердое «ядро» индуктивных способов рассуждения. В него входят, в част­ности, неполная И., индуктивные методы установления причин­ных связей, аналогия, т.наз. «перевернутые» законы логики и др.
Неполная И. представляет собой рассуждение, имеющее следу­ющую структуру:
S1 есть Р, S2 есть Р,
.............
Sn есть Р
Все S1, S2,..., Sn есть S.
Все S есть Р.
Посылки данного рассуждения говорят о том, что предметам S1, S2,..., Sn, не исчерпывающим всех предметов класса S, присущ при­знак Р и что все перечисленные предметы S1, S2, ..., Sn принадлежат классу S. В заключении утверждается, что все S имеют признак Р. Напр.:
Железо ковко.
Золото ковко.
Свинец ковок.
Железо, золото и свинец — металлы.
Все металлы ковки.
Здесь из знания лишь некоторых предметов класса металлов дела­ется общий вывод, относящийся ко всем предметам этого класса.
Индуктивные обобщения широко применяются в эмпириче­ской аргументации. Их убедительность зависит от числа приводи-



[126]
мых в подтверждение случаев. Чем обширнее база индукции, тем более правдоподобным является индуктивное заключение. Но иног­да и при достаточно большом числе подтверждений индуктивное обобщение оказывается все-таки ошибочным. Напр.:
Алюминий — твердое тело.
Железо, медь, цинк, серебро, платина, золото, никель, барий, калий, свинец — твердые тела.
Алюминий, железо, медь, цинк, серебро, платина, золото, ни­кель, барий, калий, свинец — металлы.
Все металлы — твердые тела.
Все посылки этого умозаключения истинны, но его общее зак­лючение ложно, поскольку ртуть — единственная из металлов — жидкость.
Поспешное обобщение, т. е. обобщение без достаточных на то оснований, — обычная ошибка в индуктивных умозаключениях и, соответственно, в индуктивной аргументации. Индуктивные обобщения всегда требуют известной осмотрительности и осто­рожности. Их убедительная сила невелика, особенно если база индукции незначительна («Софокл — драматург; Шекспир -драматург; Софокл и Шекспир — люди; следовательно, каж­дый человек — драматург»). Индуктивные обобщения хороши как средство поиска предположений (гипотез), но не как сред­ство подтверждения каких-то предположений и аргументации в их поддержку.
Начало систематическому изучению И. было положено в нача­ле XVII в. Ф. Бэконом. Уже он весьма скептически относился к неполной И., опирающейся на простое перечисление подтвер­ждающих примеров.
Этой «детской вещи» Бэкон противопоставлял описанные им особые индуктивные принципы установления причинных связей. Он даже полагал, что предлагаемый им индуктивный путь откры­тия знаний, являющийся очень простой, чуть ли не механической процедурой, «почти уравнивает дарования и мало что оставляет их превосходству...». Продолжая его мысль, можно сказать, что он на­деялся едва ли не на создание особой «индуктивной машины». Вводя в такого рода вычислительную машину все предложения, относящиеся к наблюдениям, мы получали бы на выходе точную систему законов, объясняющих эти наблюдения.
Программа Бэкона была, разумеется, чистой утопией. Никакая «индуктивная машина», перерабатывающая факты в новые зако-


[127]
ны и теории, невозможна. И., ведущая от единичных утвержде­ний к общим, дает только вероятное, а не достоверное знание.
Высказывалось предположение, что все «перевернутые» законы логики могут быть отнесены к схемам индуктивного умозаключения. Под «перевернутыми» законами имеются в виду формулы, получае­мые из имеющих форму импликации (условного утверждения) за­конов логики путем перемены мест основания и следствия. К приме­ру, поскольку выражение «Если р и q, то р» есть закон логики, то выражение «Если р, то р и q» есть схема индуктивного умозаключе­ния. Аналогично для «Если р, то р или q» и «Если р или q, то р» и т. п. Сходно для законов модальной логики: поскольку выражения «Если р, то возможно р» и «Если необходимо р, то р» - законы логики, выражения «Если возможно р, то р» и «Если р, то необходимо р» являются схемами индуктивного рассуждения и т. п. Законов логики бесконечно много. Это означает, что и схем индуктивного рассужде­ния (индуктивной аргументации) бесконечное число.
Предположение, что «перевернутые» законы логики представля­ют собой схемы индуктивного рассуждения, наталкивается на серь­езные возражения: некоторые «перевернутые» законы остаются зако­нами дедуктивной логики; ряд «перевернутых» законов, при истолко­вании их как схем И., звучит весьма парадоксально. «Перевернутые» законы логики не исчерпывают, конечно, всех возможных схем
И
ИНДУКЦИЯ МАТЕМАТИЧЕСКАЯ, ПОЛНАЯ МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ
- средство доказательства общих положений в матема­тике и др. дедуктивных науках. Этот прием опирается на использова­ние двух суждений. Первое представляет собой единичное суждение и наз. базой индукции. В нем доказывается, что 1 обладает некоторым свойством (S(1)). Второе суждение - общее условное. В нем утверж­дается, что если произвольное число п обладает свойством S (т. наз. индуктивное предположение), то и непосредственно следующее за ним (в натуральном ряду) число n+1 также обладает этим свойством S (т. наз. индукционный шаг). Это т.наз. наследуемость свойства S в натуральном ряду чисел 1, 2, 3, 4, 5, ..., n, n+1 ... Если первое и второе положения верны, то можно сделать заключение, что и все натуральные числа обладают свойством S, что S принадлежит все­му бесконечному множеству натуральных чисел.
Символически это доказательство записывается так:
S(1)& "n(S(n)->S(n+1)) ®" mS(m).
Доказательство некоторого общего математического суждения может быть продемонстрировано последовательностью процедур: из " n(S(n) ->S(n+1)) по правилам логики могут быть получе-


[128]
ны следующие суждения: S(1)->S(2) (1), S(2)->S(3) (2), S(3)->S(4) (3)... и т. д. Поскольку же нам надо 5(1), то из сужде­ния (1) мы получаем по модус поненс S(2); поскольку нам дано S(2), мы из (2) можем получить 5( 3); поскольку нам дано S(3), мы из (3) можем получить 5(4), и т. д. до бесконечности. Это и означает доказанность истинности общего суждения "mS(m).
ИНДУКЦИЯ НЕПОЛНАЯ
- индуктивный вывод о том, что всем представителям изучаемого множества принадлежит свойство Р на том основании, что Р принадлежит некоторым представителям этого множества. Так, напр., узнав о том, что инженер А работает продавцом, инженер B работает продавцом и инженер С также ра­ботает продавцом, вы можете сделать индуктивный вывод, что все инженеры ныне работают продавцами. Множество инженеров ве­лико, трудно или даже невозможно установить, чем сейчас зани­мается каждый из них, поэтому ваше индуктивное заключение связано с риском: оно может оказаться ошибочным. Для повыше­ния степени надежности индуктивного вывода используют спе­циальные методы (см.: Индукция научная, Индукции каноны).
ИНДУКЦИЯ ПОЛНАЯ
- индукция, в которой делается заключе­ние о том, что всем представителям изучаемого множества при­надлежит свойство Р, на основании полученной при опытном ис­следовании информации о том, что каждому представителю изучаемого множества принадлежит свойство Р. Умозаключения полной индукции являются дедуктивными в том смысле, что зак­лючение в них следует из посылок с логической необходимостью: при истинности посылок, применяя известные правила логики, мы не можем получить ложного заключения.
ИНДУКЦИЯ ПОПУЛЯРНАЯ
- наиболее распространенный вид индуктивного вывода, в котором не предпринимается никаких мер для повышения достоверности заключения. Именно так мы чаще всего рассуждаем в повседневной жизни. Напр., столкнувшись с грубостью одного-двух чиновников к.-л. учреждения, мы с лег­костью делаем вывод о том, что все сотрудники этого учреж­дения грубияны, или, купив два-три раза в магазине испорчен­ные консервы, мы заключаем, что все консервы в этом магази­не испорчены. Ясно, что такого рода заключения часто оказыва­ются ложными. В таких случаях мы совершаем ошибку поспеш­ного обобщения. Для того чтобы избежать этой ошибки, ис­пользуют специальные приемы для повышения степени досто­верности индуктивного вывода (см.: Индукция научная).
ИНТЕНСИОНАЛ И ЭКСТЕНСИОНАЛ
- понятия, введенные ав­стрийским логиком и философом Р. Карнапом для анализа зна -


[129]
чения языковых выражений. Метод И. и Э. представляет собой модификацию и дальнейшую разработку семантической концеп­ции немецкого математика и логика Г. Фреге. Но если для Фреге исходным и основным было понятие имени, то Карнап скорее ориентировался на роль прилагательных - он анализировал пре­дикаты. Утверждение «Сократ — человек» можно трактовать двоя­ко. Можно считать, что это утверждение приписывает Сократу некоторое свойство «быть человеком». В то же время данное утвер­ждение можно рассматривать как говорящее о том, что индивиду­ум Сократ включается в класс людей. Этот пример показывает, что предикат, в данном случае «человек», может обозначать как свойство, так и класс. Классы и свойства взаимосвязаны: каждое свойство задает некоторый класс и каждому классу соответствует некоторое свойство. Объекты, обладающие свойством «быть чело­веком», образуют класс людей; с другой стороны, класс людей характеризуется тем, что входящие в него элементы обладают свой­ством «быть человеком». Класс, задаваемый некоторым свойством, может быть и пустым.
Большую роль в концепции Карнапа играет понятие эквива­лентности. Два класса эквивалентны, если они состоят из одних и тех же элементов. Два предиката эквивалентны, если они обозна­чают один и тот же класс. Класс, обозначаемый предикатным вы­ражением, называется Э. этого выражения. И. предикатного выра­жения Карнап называет выражаемое им свойство. Напр., Э. предиката «человек» является класс людей; его И. будет свойство «быть человеком». Предикаты «человек» и «существо, имеющее мягкую мочку уха» будут экстенсионально эквивалентны, т. к. обо­значают один и тот же класс. Предикаты «человек» и «существо, способное производить орудия труда» не только экстенсионально, но и интенсионально эквивалентны, т. к. обозначают один и тот же класс и выражают одно и то же свойство.
Поскольку два предложения являются эквивалентными в том случае, когда имеют одинаковое истинностное значение, постоль­ку Э. предложения целесообразно считать его истинностное значе­ние. И. предложения является выражаемое им суждение, мысль. Э. собственного имени Карнап считал предмет, обозначаемый этим именем; И. имени является концепт - индивидуальное понятие. Понятия Э. и И. лежат в основе различения экстенсиональ­ных и интенсиональных контекстов. Экстенсиональ­ными контекстами называют множества утверждений, в которых взаимозаменимы экстенсионально эквивалентные языковые вы­ражения, т. е. которые учитывают лишь Э. выражений. Интенсио-



[130]
нальный контекст допускает замену только интенсионально эк­вивалентных выражений, т. е. для него важны И. выражений (см.: Имя, Смысл, Значение).
ИНТЕРПРЕТАЦИЯ (от лат. interpretatio - разъяснение, истолко­вание)
- в логике приписывание некоторого содержательного смысла, значения символам и формулам формальной системы; в результате формальная система превращается в язык, описыва­ющий ту или иную предметную область. Сама эта предметная об­ласть и значения, приписываемые символам и формулам, также
наз. И.
Рассмотрим обычное построение исчисления высказываний.
Сначала задается список исходных с и м в о л о в: А, В, С, ...; ˜, &, U®,), (. Затем устанавливаются правила построения формул:
1. Отдельная буква из числа А, В, С,... есть формула.
2. Если х есть формула, то ˜ х тоже формула.
3. Если х и у - формулы, то х&у, xvу, х->у тоже будут формулами.
К этому добавляются правила, позволяющие из одних фор­мул получать другие. В частности, некоторые формулы, построен­ные в соответствии с правилами построения, можно принять в качестве аксиом, добавить к ним правило подстановки, разре­шающее на место одной правильно построенной формулы под­ставлять другую правильно построенную формулу, и правило от­деления: из формул х -> у и х можно получить формулу у.
Такое синтаксическое построение формальной системы пред­ставляет собой просто игру с символами, когда мы комбинируем символы в соответствии с правилами, соединяем их, разъединя­ем, из одних получаем другие и т. п. Для того чтобы система при­обрела смысл, стала языком, описанием каких-то объектов, связей и отношений между объектами, нужно придать ей И. Это делается следующим образом.
Сначала приписывается значение исходным символам. Будем считать, что символы А, В, С, ... представляют предложения, которые могут быть истинными или ложными. Истинность или ложность сложных формул устанавливается следующим образом:
Если формула х истинна, то формула ˜ х ложна, если формула х ложна, то формула ˜ х истинна.
Формула х&у истинна только в том случае, если х истинна и у истинна; во всех остальных случаях формула х & у ложна.
Формула xvy ложна только в том случае, если х ложна и у лож­на; во всех остальных случаях формула х v у истинна.
Формула х -> у ложна только в том случае, если х истинна, а у ложна; во всех остальных случаях формула х -> у истинна.


[131]
После И. формул синтаксической системы она становится сис­темой предложений, обозначающих истину или ложь, а правила преобразования одних формул в другие превращаются в правила вывода одних предложений из других. Подставляя в формулы кон­кретные истинные или ложные предложения, мы можем устанав­ливать между ними разнообразные логические отношения. Можно придать исходным символам и другую И., напр. считать, что А, В, С, ... обозначают события, а символ «®» выражает причинную связь событий. Тогда выражение «А®В» приобретает такой смысл: со­бытие A причинно влечет событие В.
Если в формальной системе имеются знаки для индивидуаль­ных переменных, скажем, х, у, z, ...;, для предикатных выражений -Р, Q, ...; для кванторов -", $, то мы можем образовать формулы вида"хР(х) и $хР(х). Для И. таких формул вводят некоторую область объектов, по которым пробегают индивидные перемен­ные, и свойства этих объектов, которые обозначаются предикат­ными выражениями. Тогда предложение вида"хР(х) считается истинным, если все объекты данной области обладают свойством Р. Предложение вида$хР(х) истинно, если хотя бы один объект из нашей объектной области обладает свойством Р.
В отличие от формальных логических систем, в содержатель­ных естественнонаучных и математических теориях всегда под­разумевается некоторая И.: в таких теориях используются лишь осмысленные выражения, т. е. смысл каждого выражения предпо­лагается заранее известным. В общем случае понятия и предложе­ния естественнонаучных теорий интерпретируются посредством образов сознания, идеальных объектов, совокупность которых должна быть адекватна интерпретируемой теории относительно описываемых свойств объектов. И. теоретических построений раз­витых областей научного знания носит, как правило, опосредо­ванный характер и включает в себя многоступенчатые, иерар­хические системы промежуточных И. Связь начального и конечного звеньев таких иерархий обеспечивается тем, что И. интерпретаций к.-л. теории дает и непосредственную ее И. В мате­матике интерпретируемость различных систем аксиом с помощью других аксиоматических теорий служит традиционным средством установления их относительной непротиворечивости (на­чиная с доказательства непротиворечивости неевклидовой гео­метрии Лобачевского посредством ее И. в терминах обычной гео­метрии Евклида).
В повседневном языке И. называют истолкование, раскрытие смысла того или иного положения, текста, художественного про-



[132]
изведения. Однако в процессе И. текста или музыкального произ­ведения интерпретатор - литературовед, режиссер, исполнитель всегда вносит в интерпретируемый материал некоторый личност­ный смысл, истолковывает его по-своему. Это служит основой множественности И. в искусстве и литературе.
ИНТЕРСУБЪЕКТИВНЫЙ (от лат. inter - между)
- межлично­стный, общий, общедоступный, в противоположность лично­му, индивидуальному, уникальному. В логико-методологической литературе понятие интерсубъективности получило широкое рас­пространение в связи с программой эмпирического обо­снования науки, выдвинутой представителями логического по­зитивизма в 20-х годах XX в.
Эмпирическое обоснование науки, по мнению логических по­зитивистов, должно состоять в логическом сведении всех научных понятий и утверждений к таким понятиям и предложениям, ко­торые непосредственно выражают чувственные переживания субъекта, напр. «красный», «теплый», «Я чувствую боль» и т. п. Не­посредственная связь с чувственным опытом обеспечивает осмысленность понятий и несомненную достоверность предложений. Однако если содержание понятий и предложений определяется только чувственным опытом субъекта, то каждый человек образу­ет свой собственный эмпирический язык, выражающий его
собственные чувства и переживания. Эмпирические предложения, выражающие чувственный опыт одного человека, будут непонят­ны другому человеку, чувственный опыт которого отличается от опыта первого. Эмпирические языки, значения понятий и пред­ложений при таком подходе оказываются субъективными. Поэто­му встает вопрос отыскания или построения И. языка, слова и предложения которого были бы понятны всем людям и который вместе с тем был бы связан с чувственным восприятием и мог служить эмпирическим базисом науки. Таким языком был при­знан фрагмент повседневного языка, относящийся к чувственно воспринимаемым объектам и их свойствам.
ИНТУИТИВНАЯ ЛОГИКА
- интуитивные представления о пра­вильности рассуждений, сложившиеся стихийно в процессе повседневной практики мышления. И. л., как правило, успешно справляется с встающими перед нею задачами, но совершенно недостаточна для анализа и критики неправильных рассуждений. Правильно ли рассуждает человек, когда говорит: «Если бы барий был металлом, он проводил бы электрический ток; барий прово­дит электрический ток, следовательно, он металл»? Чаще всего на основе логической интуиции отвечают: правильно, барий ме-


[133]
талл и он проводит ток. Этот ответ, однако, неверен. Логическая правильность, как гласит теория, зависит только от способа свя­зи утверждений. Она не зависит от того, истинны используемые в выводе утверждения или нет. Хотя все три утверждения, входящие в рассуждение, верны, между ними нет логической связи. Рассуж­дение построено по неправильной схеме: «Если есть первое, то есть второе; второе есть; значит, есть и первое». Такая схема от истинных исходных положений может вести не только к истинно­му, но и к ложному заключению, она не гарантирует получения новых истин из имеющихся. В рассуждении «Если у человека по­вышенная температура, он болен; человек болен; следовательно, у него повышенная температура» обе посылки могут быть истин­ными, а заключение ложным: многие болезни протекают без по­вышения температуры. Другой пример: «Если бы шел дождь, зем­ля была бы мокрой; но дождя нет; значит, земля не мокрая». Это рассуждение интуитивно обычно оценивается как правильное, но достаточно небольшого рассуждения, чтобы убедиться, что это не так. Верно, что в дождь земля всегда мокрая; но если дождя нет, из этого вовсе не следует, что она сухая: земля может быть просто полита или быть мокрой после таяния снега. Рассуждение опять-таки идет по неправильной схеме: «Если первое, то второе; но первого нет; значит, нет и второго». Эта схема может привести от истинных посылок к ошибочному заключению: «Если у человека повышенная температура, он болен; у него нет повышенной тем­пературы; значит, он не болен». Эти простые примеры показывают, что логика, усвоенная стихийно, даже в обычных ситуациях может оказаться ненадежной.
Навык правильного мышления не предполагает к.-л. теорети­ческих знаний, умения объяснить, почему что-то делается именно так, а не иначе. К тому же сама И. л., как правило, беззащитна перед лицом критики.
Усвоение языка есть одновременно и усвоение общечелове­ческой, не зависящей от конкретных языков логики. Без нее, как и без грамматики, нет, в сущности, владения языком. В дальней­шем стихийно сложившееся знание грамматики систематизиру­ется и шлифуется в процессе школьного обучения. На логику же специального внимания обычно не обращается, ее совершенство­вание остается стихийным процессом. Нет поэтому ничего стран­ного в том, что, научившись на практике последовательно и дока­зательно рассуждать, человек затрудняется ответить, какими принципами он при этом руководствуется. Почувствовав сбой в рассуждении, он оказывается, как правило, не способным объяс-



[134]
нить, какая логическая ошибка допущена. Это под силу только теории логики.
ИНТУИЦИОНИЗМ
- направление в обосновании математики и логики, согласно которому конечным критерием приемлемости методов и результатов этих наук является наглядно-содержатель­ная интуиция. Вся математика должна опираться, согласно И., на интуитивное представление ряда натуральных чисел и на прин­цип математической индукции, истолковываемый как требование действовать последовательно, шаг за шагом; допускаются лишь конструктивные доказательства существования рассматриваемого объекта, указывающие способ его построения.
Создателем И. является голландский математик Л. Э. Я. Брауэр (1881 — 1966). В начале XX в. он выдвинул программу радикальной перестройки математики, противопоставив ее концепции сведе­ния математики к логике (см.: Логицизм) и истолкованию мате­матики исключительно как языка математических символов (см.: Формализм).
Представители И. полагают, что чистая математика является мыслительной активностью, не зависящей от языка, ее объект -нелингвистические математические конструкции. Язык служит лишь для сообщения математических идей, математика не сво­дится к языку и тем более не может быть истолкована как особый язык. Предметом исследования (математической) логики являет­ся математический язык, более или менее адекватно передающий математические построения. Логика вторична по отношению к ма­тематике, последняя не может быть обоснована с помощью логи­ческих средств.
Основной тезис интуиционистов гласит, что существование в математике — это то же самое, что конструктивность, или «построяемость». Из существования математического объекта вытека­ет его непротиворечивость, но не наоборот: не каждый непроти­воречивый объект существует. Построение является единственным средством обоснования в математике.
Интуиционисты подвергли резкой критике закон исключенного третьего, закон (снятия) двойного отрицания и ряд других зако­нов логики классической. Согласно Брауэру, логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Закон исключенного третьего, верный в случае конечной математики, неприменим в рассуждениях о бесконечных множествах. Объекты бесконечного множества невозможно пере­брать. Если в процессе перебора не удалось найти элемент с требу­емым свойством, ни утверждение о существовании такого объекта,


[135]
ни отрицание этого утверждения не является истинным. Критика И. классической логики привела к созданию нового направления в логике — интуиционистской логики.
Одновременно с Брауэром сомнения в универсальной прило­жимости закона исключенного третьего высказал рус. философ и логик Н. А. Васильев (1880-1940). Он ставил своей задачей постро­ение такой системы логики, в которой была бы ограничена не только сфера действия этого закона, но и непротиворечия закона. Казавшиеся парадоксальными, идеи Васильева не были в свое время оценены по достоинству.
ИНТУИЦИОНИСТСКАЯ ЛОГИКА
- одна из наиболее важных ветвей логики неклассической, имеющая своей философской пред­посылкой программу интуиционизма. Выдвигая на первый план ма­тематическую интуицию, интуиционисты не придавали большого значения систематизации логических правил. Только в 1930 г. гол­ландский математик и логик А. Гейтинг — ученик создателя инту­иционизма Л. Брауэра - дал аксиоматическую формулировку И. л., подчеркнув, что «интуиционизм развивается независимо от фор­мализации, которая может идти только по следам математи­ческой конструкции». В И. л. не действует закон исключенного тре­тьего, а также ряд других законов логики классической, позволяющих доказывать существование объектов, которые невозможно реали­зовать или вычислить. В числе таких законов — закон (снятия) двой­ного отрицания и закон приведения к абсурду.
Отбрасывание закона исключенного третьего не означает при­нятия отрицания этого закона; напротив, И. л. утверждает, что от­рицание отрицания этого закона (его двойное отрицание) явля­ется верным. Отбрасывание не должно пониматься также как введение какого-то третьего истинностного значения, промежу­точного между истиной и ложью.
В классической логике центральную роль играет понятие исти­ны. На его основе определяются логические связки, позволяющие строить сложные высказывания. В И. л. смысл связок задается пу­тем указания тех необходимых и достаточных условий, при кото­рых может утверждаться сложное высказывание.
Если р и q — некоторые высказывания, то их конъюнкцию (р и q) можно утверждать, только если можно утверждать как р, так и q. Дизъюнкцию (р или q) можно утверждать тогда и только тогда, когда можно утверждать хотя бы одно из высказываний р и q. Мате­матическое высказывание р можно утверждать только после прове­дения некоторого математического построения с определенными свойствами; соответственно отрицание р можно утверждать, если



[136]
и только если имеется построение, приводящее к противоречию предположение о том, что построение р выполнено. Понятие про­тиворечия здесь принимается в качестве неопределяемого, прак­тически противоречие всегда можно привести к форме 1 = 2. Имп­ликацию (если р, то q) можно утверждать, только если имеется такое построение, которое, будучи объединено с построением р, автоматически дает построение q.
Интуиционистское понимание логических связок таково, что из доказательства истинности высказывания всегда можно извлечь способ построения объектов, существование которых утверждается.
И. л. является единственной из неклассических логик, в рамках которой производилась достаточно последовательная и глубокая разработка многих разделов математики. Эта логика позволяет тонко и точно исследовать трудный и важный вопрос о характере суще­ствования объектов, исследуемых в математике.
Идеи, касающиеся ограниченной приложимости законов исклю­ченного третьего, снятия двойного отрицания, редукции к абсурду и связанных с ними способов математического доказательства, раз­рабатывались рус. математиками А. Н. Колмогоровым (1903-1985), В. И. Гливенко (1897-1910), А. А. Марковым (1903-1979), Н. А. Шани­ным (р. 1919) и др. В результате критического переосмысления ос­новных принципов И.л. возникла конструктивная логика, также считающая неправильным перенос ряда логических принципов, применимых в рассуждениях о конечных множествах, на область бесконечных множеств.
ИНТУИЦИЯ (от лат. intuitio — пристальное, внимательное всматривание, созерцание)
— способность к прямому усмотрению ис­тины, постижению ее без всякого рассуждения и доказательства. Для И. обычно считаются типичными неожиданность, невероят­ность, непосредственная очевидность и неосознанность пути, ве­дущего к ее результату. С «непосредственным схватыванием», внезапным озарением и прозрением много неясного и спорного. Иногда даже говорится, что И. - это куча хлама, в которую свали­ваются все интеллектуальные механизмы, о которых не известно, как их проанализировать. И., несомненно, существует и играет за­метную роль в познании. Далеко не всегда процесс научного и тем более художественного творчества и постижения мира осущес­твляется в развернутом, расчлененном на этапы виде. Нередко че­ловек охватывает мыслью сложную ситуацию, не отдавая отчета во всех ее деталях, да и просто не обращая внимания на них. Особенно наглядно это проявляется в военных сражениях, при постановке диагноза, при установлении виновности и невиновности и т. п.


137
Из многообразных трактовок И. можно эскизно наметить сле­дующие:
>> И. Платона как созерцание стоящих за вещами идей, прихо­дящее внезапно, но предполагающее длительную подготовку ума;
>> интеллектуальная И. Декарта как понятие ясного и внима­тельного ума, настолько простое и отчетливое, что не оставляет никакого сомнения в том, что мы мыслим;
>> И. Спинозы, являющаяся «третьим родом» познания (наряду с чувствами и разумом) и схватывающая сущность вещей;
>> чувственная И. Канта и его более фундаментальная чистая И. пространства и времени, лежащая в основе математики;
>> художественная И. Шопенгауэра, улавливающая сущность мира как мировую волю;
>> И. философии жизни (Ницше), несовместимая с разумом, логикой и жизненной практикой, но постигающая мир как фор­му проявления жизни;
>> И. Бергсона как непосредственное слияние субъекта с объек­том и преодоление противоположности между ними;
>> моральная И. Мура как непосредственное видение добра, не являющегося «естественным» свойством вещей и не допускающе­го рассудочного определения;
>> чистая И. времени Брауэра, лежащая в основе деятельности мысленного конструирования математических объектов;
>> И. Фрейда как скрытый, бессознательный первоисточник твор­чества;
>> И. Полани как спонтанный процесс интеграции, непосред­ственного внезапного усмотрения целостности и взаимосвязи в ранее разрозненном множестве объектов.
Этот перечень может быть продолжен. В сущности, едва ли не у каждого крупного философа и психолога имеется свое собствен­ное понимание И. В большинстве случаев эти понимания не ис­ключают друг друга.
И. как «прямое видение истины» не является чем-то сверхра­зумным. Она не идет в обход чувств и мышления и не составляет особого рода познания. Ее своеобразие состоит в том, что отдель­ные звенья процесса мышления проносятся более или менее бес­сознательно и запечатлевается только итог мысли — внезапно от­крывшаяся истина.
Существует давняя традиция противопоставлять И. логике. Не­редко И. ставится выше логики даже в математике, где роль стро­гих доказательств особенно велика. Чтобы усовершенствовать ме­тод в математике, полагал Шопенгауэр, необходимо прежде всего



[138]
отказаться от предрассудка — веры в то, будто доказанная истина выше интуитивного знания. Паскаль проводил различие между «ду­хом геометрии» и «духом проницательности». Первый выражает силу и прямоту ума, проявляющиеся в железной логике рассуж­дений, второй — широту ума, способность видеть глубже и про­зревать истину как бы в озарении. Для Паскаля даже в науке «дух проницательности» независим от логики и стоит неизмеримо выше ее. Еще раньше некоторые математики утверждали, что интуитив­ное убеждение превосходит логику, подобно тому как ослепи­тельный блеск Солнца затмевает бледное сияние Луны.
Неумеренное возвеличение И. в ущерб строгому доказательству неоправданно. Логика и И. не исключают и не подменяют друг друга. В реальном процессе познания они, как правило, тесно пе­реплетаются, поддерживая и дополняя друг друга. Доказательство санкционирует и узаконивает достижения И., оно сводит к мини­муму риск противоречия и субъективности, которыми всегда чре­вато интуитивное озарение. Логика, по выражению математика Г.Вейля, - это своего рода гигиена, позволяющая сохранить идеи здоровыми и сильными. И. отбрасывает всякую осторожность, ло­гика учит сдержанности. Только проведенное шаг за шагом логи­ческое доказательство делает завоевания И. объективно установ­ленным результатом.
Уточняя и закрепляя результаты И., логика сама обращается к ней в поисках поддержки и помощи. Логические принципы не яв­ляются чем-то заданным раз и навсегда. Они формируются в мно­говековой практике познания и преобразования мира и представ­ляют собой очищение и систематизацию стихийно складывающихся «мыслительных привычек». Вырастая из аморфной и изменчивой пралогической И., из непосредственного, хотя и неясного «виде­ния логического», эти принципы всегда остаются связанными с изначальным интуитивным «чувством логического». Не случайно строгое доказательство ничего не значит даже для математика, если результат остается непонятным ему интуитивно.
Логика и И. не должны противопоставляться друг другу, каж­дая из них необходима на своем месте. Внезапное интуитивное озарение способно открыть истины, вряд ли доступные последова­тельному и строгому логическому рассуждению. Однако ссылка на И. не может служить твердым и тем более последним основанием для принятия каких-то утверждений. И. приводит к интересным новым идеям, но она нередко порождает также ошибки, вводит в заблуждение. Интуитивные догадки субъективны и неустойчивы, они нуждаются в логическом обосновании. Чтобы убедить в инту-


[139]
итивно схваченной истине как других, так и самого себя, требу­ется развернутое рассуждение, доказательство (см.: Аргументация контекстуальная).
ИРРАЦИОНАЛЬНОЕ (от лат. irrationalis - неразумный, бессоз­нательный)
- находящееся на пределами разума, противореча­щее логике. Обычно противопоставляется рациональному как ра­зумному, целесообразному, обоснованному.
Понимание И. зависит от определения понятия рационального. Если рациональное определяется как соответствующее законам разума, т. е. законам логики, то И. можно назвать то, что нарушает законы логики. Напр., если признается истинной конъюнкция двух предложений «A&B» и признается истинным предложение «A», то это рационально. Если же, наряду с признанием истинности конъюнкции «А&В», признается ложность предложения «A», то данное рассуждение И.: в нем нарушено правило логики, соглас­но которому из истинности конъюнкции следует истинность каж­дого ее элемента. Можно дать рациональному более широкое оп­ределение - как соответствие не только законам логики, но и некоторым методологическим нормам, правилам, стандартам де­ятельности и т. п. Соответственно И. будет рассуждение или пове­дение, нарушающее эти нормы и правила.
Иногда рациональное определяют как целесообразное, т. е. как то, что приводит к намеченной цели. В этом случае И. будет все то, что не приближает нас к цели или даже делает цель еще более недостижимой. При таком понимании квалификация каких-то дей­ствий как рациональных или И. в значительной мере зависит от условий деятельности. Напр., в комнате душно, и вы хотите ее про­ветрить. Для этого вы открываете окно. Если на улице прохладно, то вы достигаете своей цели: свежий воздух ворвется в комнату и дышать станет легче. Но если на улице жарко, то, открыв окно, вы ухудшите положение. В одной ситуации было рационально открыть окно, в другой - И. (см.: Рациональность).
ИСКЛЮЧЕННОГО ТРЕТЬЕГО ЗАКОН, см.: Закон исключенного третьего.
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ
- метафорическое обозначе­ние области исследований, цель которых - создание технических систем, способных решать задачи невычислительного характера и выполнять действия, требующие переработки содержательной ин­формации и считающиеся прерогативой человеческого мозга. К числу таких задач относятся, напр., задачи на доказательство тео­рем, игровые задачи (скажем, при игре в шахматы), задачи по пере­воду с одного языка на другой, по сочинению музыки, распозна-



[140]
ванию зрительных образов, решению сложных творческих про­блем науки и общественной практики. Одной из важных задач И. и. является создание интеллектуальных роботов, способных автоном­но совершать операции по достижению целей, поставленных че­ловеком, и вносить коррективы в свои действия.
ИСТИНА
— мысль или высказывание, соответствующие своему предмету. Мысль соответствует своему предмету, если представля­ет его таким, каков он есть на самом деле, в реальности. Напр., мысль о том, что Иртыш есть приток Оби, соответствует своему предмету, ибо действительно Иртыш вливается в Обь; а мысль о том, что бананы растут на березе, искажает реальное положение дел, поэтому является ложью.
Вопрос об И. принадлежит сфере философии. Для логики важ­но иметь в виду следующее.
Реальность, относительно которой наши мысли оцениваются как истинные или ложные, не обязательно должна быть только физической реальностью, это может быть реальность художествен­ного вымысла или идеализированных объектов. Скажем, утвер­ждение «Отелло любил Дездемону» истинно, а утверждение «Гам­лет был женат» ложно в мирах, создаваемых текстом шекспировских пьес. Здесь следует обратить внимание на то, что понятие И. говорит о соответствии мысли своему объекту, но никак не касается природы этих объектов.
И. объективна в том смысле, что истинность или ложность некоторой мысли не зависит от воли и желания людей. Даже если все человечество принимает некоторую мысль, считает ее истин­ной, мысль может оказаться ложной, и наоборот. То, что некоторая мысль соответствует или не соответствует своему предмету, опре­деляется предметом, а не субъектом познания. Я могу горячо ве­рить в то, что на Луне живут разумные существа, при определенных условиях могу увлечь своей верой миллионы других людей, но, если в действительности на Луне нет разумных существ, эта мысль будет ложной.
Логика не занимается установлением истинности и ложности наших мыслей. Это дело конкретных наук. Однако понятие И. игра­ет в логике чрезвычайно важную роль: именно с его помощью определяются фундаментальные для логики понятия логического вывода и логического следования.
ИСТИННОСТНОЕ ЗНАЧЕНИЕ
- одна из возможных характери­стик высказывания с точки зрения соответствия его описываемо­му фрагменту действительности. Если допускается, что каждое выс­казывание является либо истинным, либо ложным (т. е. что оно


[141]
либо соответствует действительности, либо не соответствует ей), говорят, что высказывание имеет одно из двух значений истинно­сти. Данное допущение, именуемое двузначности (бивалентности) принципом, лежит в основе логики классической. В многозначной логике допускается, что высказывание может принимать одно из и (n>2) значений истинности. Так, в трехзначной логике, опира­ющейся, соответственно, на принцип трехзначности, высказыва­ние принимает одно из трех И. з.: истинно, ложно и неопределен­но; в разных системах этой логики И. з. «неопределенно» понимается по-разному.
ИСЧИСЛЕНИЕ
— основанный на четких правилах формальный аппарат оперирования со знаниями определенного вида, позволя­ющий дать точное описание некоторого класса задач, а для от­дельных подклассов этого класса - и алгоритм решения.
В математической логике понятие об И. подверглось уточнению и более строгой формализации. Логическое И. строится на базе не­которого формализеванного языка. Задается набор исход­ных символов, из которых с помощью четко определенных правил строятся формулы рассматриваемого И. Некоторые из этих формул выбираются в качестве аксиом, из которых с помощью правил пре­образования получают новые формулы, называемые теоремами. После того как к И. добавляется интерпретация, придающая значение ее исходным символам и формулам, И. превращается в язык, описыва­ющий некоторую предметную область (см.: Исчисление высказыва­ний, Исчисление классов, Исчисление предикатов и т. п.).


[143]

К
КАВЫЧКИ
— в грамматике естественного языка парный знак препинания (обычно ,, " или « »), используемый для выделения прямой речи или отдельных выражений, которые употребляются не в привычном смысле.
В логике К. используются для того, чтобы отличить автономное употребление выражений от обычного. Напр., в предложениях «Мос­ква расположена на Москве-реке» и «Москва состоит из шести букв» слово «Москва» в первом предложении употребляется обыч­но, а во втором — автонимно, т. е. в качестве имени самого себя. Чтобы избежать смешения обычного и автонимного употребле­ния выражений, используются К., т. наз. «кавычковые имена». Вто­рое предложение следует записать так: «"Москва" состоит из ше­сти букв». В естественном языке несложно различить обычное употребление выражений и их автонимное употребление. Однако в логике, когда приходится говорить о выражениях некоторого языка, возможна путаница, приводящая к ошибкам.
КАТЕГОРИЧЕСКОЕ СУЖДЕНИЕ
(в традиционной логике) -суждение, в котором предикат утверждается или отрицается отно­сительно субъекта без формулирования к.-л. условий и при этом исключаются к.-л. альтернативные предикаты. К.с. имеют вид: «S есть (не есть) Р» и относятся к классу простых суждений. К. с. обыч­но противопоставляются условным и разделительным суждениям.
КАТЕГОРИЯ (от греч. kategoria - высказывание, обвинение, при­знак)
— предельно общее фундаментальное понятие, отражающее наиболее существенные, закономерные связи и отношения реаль­ной действительности и познания. Будучи формами и устойчивы­ми организующими принципами процесса мышления, К. воспро-


изводят свойства и отношения бытия и познания во всеобщем и наиболее концентрированном виде.
Характеристику некоторых особенностей К. можно дать, опи­раясь на операцию обобщения понятий. Почти для каждого видо­вого понятия можно найти более широкое по объему родовое поня­тие, напр. «береза» — «дерево», «человек» - «млекопитающее», «медь» - «металл». Эти родовые понятия могут включаться в еще более широкие по объему понятия: «дерево» - «растение», «млеко­питающее» — «животное», «металл» - «вещество» и т. п. К К. отно­сятся предельно широкие по своему объему понятия, т. е. те, для которых нельзя найти более широкие родовые понятия. Как прави­ло, К. являются философские понятия — «бытие», «субъект», «сущ­ность», «качество», «количество», «материя», «сознание» и т. п.
В каждой конкретной науке имеется своя система К. В логике к числу наиболее общих и фундаментальных понятий относятся по­нятия логического вывода, суждения, умозаключения, индукции, дедук­ции и др. К. изменяются вместе с развитием нашего познания: обо­гащается их содержание, изменяются взаимосвязи между К., меняется их состав и т. п.
КАУЗАЛЬНАЯ МОДАЛЬНОСТЬ, см.: Онтологическая модальность.
КЛАСС, МНОЖЕСТВО (В ЛОГИКЕ И МАТЕМАТИКЕ)
- конеч­ная или бесконечная совокупность объектов, выделенная по об­щему для них признаку (свойству или отношению), мыслимая как нечто целое. Объекты, составляющие К., называются его элемента­ми. Примером К. (м.) могут быть следующие: «реки России», «чет­ные числа». Первый К. является конечным, второй - бесконечным. Элементами первого К. являются отдельные реки — Волга, Ока, Енисей и др. Элементами второго К. являются числа - 0, 2, 4, 6, 8 и т. д. до бесконечности. Элементами К. могут быть, в свою очередь, К. Так, элементами К. «типы животных» являются К. простейших жи­вотных, губок, кишечнополостных и т. д. К. бывают единичны­ми, общими и нулевыми (пустыми). Единичные К. состоят из одного элемента (напр., «самая большая река в Европе»); общие К. состоят из двух и более элементов (напр., «химический элемент», «машина»); нулевые К. не включают в свой состав ни одного эле­мента (напр., «круглый квадрат», «число меньше двух и больше трех»).
Объект определенной области принадлежит данному К., явля­ется его элементом, если он обладает признаками, по которым образован К. В противном случае он исключается из К. Так, если нам дана область натуральных чисел и мы хотим выделить те из них, которые являются элементами К. простых чисел, то в К.. про­стых чисел войдет, напр., число 7, т. к. оно обладает свойством

[144]
простых чисел («7 — простое число» — истина), а число 8 не войдет (т. к. «8 — простое число» — ложь). Образуя К. к.-л. объектов, мы начинаем их рассматривать лишь под углом зрения некоторых свойств, от иных же свойств абстрагируемся. Так, образуя К. квад­ратов, мы учитываем такие свойства плоских многоугольников, как «быть четырехугольником», «иметь равные углы», «иметь равные стороны». Площадь, длина сторон и т. п. не учитываются. Это озна­чает, что отдельные квадраты, составляющие К.квадратов, отож­дествляются нами, становятся неразличимыми в некоторых свой­ствах (см.: Абстракция).
Общее понятие о К. возникает как результат абстракции не толь­ко от природы его элементов, но и от их порядка.
КЛАССИФИКАЦИЯ
— многоступенчатое, разветвленное деле­ние логического объема понятия. Результатом К. является система соподчиненных понятий: делимое понятие является родом, но­вые понятия — видами, видами видов (подвидами) и т. д. Наибо­лее сложные и совершенные К. дает наука, систематизирующая в них результаты предшествующего развития к.-л. отраслей знания и намечающая одновременно перспективу дальнейших исследо­ваний. Блестящим примером научной К. является периодическая система элементов Д. И. Менделеева, фиксирующая закономер­ные связи между химическими элементами и определяющая мес­то каждого из них в единой таблице. Эта система позволила сде­лать подтвердившиеся вскоре прогнозы относительно неизвестных еще элементов. Большую роль в развитии биологии сыграла К. жи­вотных и растений К. Линнея. Хорошо известна К. элементарных частиц, даваемая современной физикой.
К. подразделяется на е с т е с т в е н н у ю и искусственную. В качестве основания первой берутся существенные признаки, из которых вытекают многие производные свойства упорядочива­емых объектов. Искусственная К. использует для упорядочива­ния объектов несущественные их признаки, вплоть до ссылки на начальные буквы имен этих объектов (алфавитные указатели, имен­ные каталоги в библиотеках и т. п.).
Было время, когда естественная К. объявлялась высшей целью изучения природы и венцом научного ее познания. В XX в. пред­ставление о роли К. в процессе познания заметно изменилось. Про­тивопоставление естественной и искусственной К. во многом утра­тило свою остроту. Далеко не всегда удается существенное четко отделить от несущественного, особенно в обществе и живой приро­де; кроме того, существенное в одном отношении может оказаться гораздо менее важным в другом отношении. Поэтому роль К., в



[145]
том числе естественной, не должна переоцениваться, тем более не должно преувеличиваться ее значение в области сложных и динамичных социальных объектов и явлений. Как стало очевид­ным еще в прошлом веке, абсолютно резкие разграничительные линии несовместимы с теорией развития.
КЛАССИЧЕСКАЯ ЛОГИКА, см.: Логика классическая.
КОНВЕНЦИЯ (от лат. conventio - соглашение)
- договор, согла­шение, условие. Разнообразные К. играют значительную роль в на­уке и в повседневной жизни. Спор, дискуссия, коллективное об­суждение к.-л. проблем всегда опираются на соглашение относительно значений используемых слов, терминов, выражений. При построении аксиоматических систем символической логики аксиомы часто принимаются конвенционально в зависимости от удобства, простоты или конкретных целей построения. Для описа­ния пространственных свойств объективного мира ученые часто по соглашению используют ту или иную систему геометрии.
КОННОТАЦИЯ (от лат. connotatio — добавочное значение)
— до­полнительные черты, оттенки, сопутствующие основному содержа­нию понятия, суждения. В обыденной речи и в художественном твор­честве к основному семантическому значению понятий и суждений часто добавляются дополнительные оттенки, служащие для выра­жений эмоционального или оценочного отношения говорящего к предмету речи. Напр., слова «военные» и «военщина» совпадают по своему семантическому значению, однако во втором слове при­сутствует негативный оттенок, которого нет в первом слове.
КОНСТРУКТИВНАЯ ЛОГИКА
- одно из направлений современ­ной логики, изучающее рассуждения о конструктивных объек­тах и процессах. Конструктивные объекты представляют собой или отдельные, ясно отличаемые друг от друга знаки, или последова­тельности таких знаков, получаемые посредством некоторого кон­структивного процесса, протекающего по четким дискретным пра­вилам. Примером конструктивного объекта могут служить легко отождествляемые и различаемые буквы к.-л. алфавита; конструк­тивный процесс — построение из них слов по однозначно опреде­ленным правилам. В конструктивном процессе используется аб­стракция потенциальной осуществимости, позволяющая отвлекаться от реальных конструктивных возможностей человека, связанных с ограниченностью его деятельности в пространстве и времени. Можно, напр., рассуждать о сколь угодно длинных, но ко­нечных формулах, которые реально никогда не смогут быть запи­саны. Вместе с тем в таком процессе не используется абстрак­ция актуальной бесконечности, когда невозможность



[146]
полного обозрения к.-л. бесконечного образования не учитывает­ся. Бесконечное множество, напр. множество всех натуральных чи­сел, нельзя рассматривать как единый, завершенный объект. Суще­ствование конструктивного объекта считается доказанным лишь в том случае, если указан способ потенциально осуществимого его построения (конструирования).
Ограничение рассуждений конструктивными объектами и про­цессами ведет к отказу от закона исключенного третьего в приме­нении к бесконечным множествам. Отвергаются также закон сня­тия двойного отрицания (см.: Закон двойного отрицания), закон Клавия, некоторые варианты косвенного доказательства и др.
Термином «К. л.» иногда обозначается интуиционистская логи­ка. Чаще под К. л. понимается логическая теория, совпадающая по классу доказуемых формул с интуиционистской логикой, но не обращающаяся к представлению об «изначальной интуиции» и использующая при задании смысла логических операций понятие алгоритма и некоторые особые положения о конструктивных про­цессах (А. А. Марков, Н. А. Шанин и др.).
КОНТЕКСТ (от лат. contextus — сцепление, соединение, связь)
— относительно законченный по смыслу отрывок текста или устной речи, в пределах которого наиболее точно и конкретно выявляется смысл и значение отдельного входящего в него слова, фразы, сово­купности фраз. В логике и методологии научного познания К. по­нимается как отдельное рассуждение, фрагмент научной теории или теория в целом. В дополнение к основному семантическому значению, которым обладает слово или предложение, взятые сами по себе, К. придает им добавочное значение, более того, он может существенно изменить это основное значение слов и предложе­ний. Поэтому в разных К. слова и предложения могут приобретать различные значения. Иногда К. целиком придает значение некото­рому термину. В таких случаях говорят о контекстуальном опреде­лении термина (см.: Определение контекстуальное). Вопрос о кон­текстуальном значении научных терминов привлекает широкое внимание в методологии научного познания в связи с анализом развития научного знания, переходом терминов из старой теории в новую и изменением их значений при таких переходах.
КОНТЕКСТУАЛЬНОЕ ОПРЕДЕЛЕНИЕ, см.: Определение контек­стуальное.
КОНТРАДИКТОРНАЯ ПРОТИВОПОЛОЖНОСТЬ (от лат. contradictorius — противоречащий)
— отношение между противо­речащими друг другу суждениями. В традиционной логике про­тиворечащими друг другу считаются общеутвердительные


[147]
и частноотрицательные суждения, имеющие один и тот же субъект и предикат («Все цветы красивы» и «Некоторые цветы не­красивы»), а также общеотрицательные и частноутвердительные суждения («Ни один цветок не красив» и «Некото­рые цветы красивы»).
К. п. характеризуется следующими особенностями: 1) суждения не могут быть одновременно истинными; 2) они не могут быть одновременно ложными; 3) из двух противоречащих друг другу суждений одно непременно истинно, а другое ложно, третьего не дано. Последнее свойство контрадикторных суждений широко ис­пользуется в процессах рассуждения и доказательства. Если нам удалось показать ложность некоторого суждения, то мы можем с уверенностью утверждать, что противоречащее ему суждение ис­тинно, и наоборот.
КОНТРАПОЗИЦИИ ЗАКОН
- общее название для ряда логи­ческих законов, позволяющих с помощью отрицания менять мес­тами основание и следствие (антецедент и консеквент) условного высказывания.
Один из этих законов, называемый иногда законом про­стой контрапозиции, звучит так: если первое влечет вто­рое, то отрицание второго влечет отрицание первого. Напр.: «Если верно, что число, делящееся на шесть, делится на три, то верно, что число, не делящееся на три, не делится также на шесть».
С использованием символики логической (р, q — некоторые высказывания; -> — импликация, «если, то»; ˜ — отрицание «неверно, что») данный закон представляется формулой:
(p->q)->(˜q->˜р),
если дело обстоит так, что если р, то q, то если не-q, то не-р. Другой К. з.:
(˜p->˜q)->(q->p).
если верно, что если не-р, то не-q, то если q, то р. Напр.: «Если верно, что рукопись, не оцененная рецензентом положительно, не публикуется, то верно, что публикуемая рукопись оценивается рецензентом положительно».
Еще два К. з.:
(p->˜q)->(q->˜p),
если дело обстоит так, что если р, то не-q, то если q, то не-р. Напр.: «Если квадрат не является треугольником, то треугольник не квадрат»;
(˜p->q)->(˜q->p), если верно, что если не-р, то q, то если не-q, то р. Напр.: «Если не



[148]
являющееся очевидным сомнительно, то не являющееся сомни­тельным очевидно».
Закон сложной контрапозиции представляется формулой (& —
конъюнкция, «и»):
(p&q->r)->(p&˜r->˜q),
если дело обстоит так, что если р и q, то r, то если р и не-r, то не-q. Напр.: «Если верно, что монотонная и ограниченная последо­вательность сходится, то монотонная и не сходящаяся последова­тельность неограниченна».
КОНТРАРНАЯ ПРОТИВОПОЛОЖНОСТЬ (от лат. contrarius - про­тивоположный)
— отношение между противными, или про­тивоположными, суждениями (см.: Логический квадрат).
КОНЦЕПТ (от лат. conceptus— понятие)
— содержание понятия, то же, что и смысл. В семантической концепции Р. Карнапа между языковыми выражениями и соответствующими им денотатами, т. е. реальными предметами, имеются еще некоторые абстрактные объекты - К.
КОНЪЮНКЦИЯ (от лат. conjunctio - союз, связь)
- логическая операция, с помощью которой два или более высказываний объе­диняются в новое сложное высказывание. Это новое высказыва­ние называется конъюнктивным высказыванием или просто К.
Символически конъюнктивная связка обозначается знаками « • », «&», «U». Если А, В, С... представляют простые высказывания, то конъюнктивное высказывание выглядит следующим образом: А&В или А&В&С и т. п. В обыденной речи К. соответствует союз «и», поэтому К. читается так: А и В. Напр.: «Пассажиры заняли свои места, и поезд тронулся».
Значение истинности сложного конъюнктивного высказыва­ния зависит от истинностных значений входящих в него простых высказываний и определяется на основе следующей таблицы ис­тинности:
АВА&В
иии
илл
лил
ллл

Эта таблица говорит о том, что конъюнктивное высказывание истинно только в одном случае, когда все входящие в него про­стые высказывания истинны. Напр., высказывание «Киев стоит на Днепре, и Киев — столица Украины» истинно, а высказывание


[149]
«Киев стоит на Днепре, и Киев - столица Белоруссии» ложно. Сле­дует иметь в виду, что К. учитывает только истинностные значения простых высказываний и не учитывает смысловые связи между ними. Поэтому К. может соединять высказывания, между которыми нет никакой содержательной связи. Напр., «Дважды два четыре, и снег бел» и т. п. Для К. справедлив закон коммутативности: А&В эквива­лентно В&А, хотя в высказываниях с союзом «и» этот закон дей­ствует далеко не всегда. Напр., если в высказывании «Подул ветер, и деревья закачались» поменять местами члены К., высказывание станет бессмысленным с точки зрения здравого смысла.
КОСВЕННОЕ ДОКАЗАТЕЛЬСТВО
- доказательство, в котором истинность тезиса устанавливается путем показа ошибочности противоположного ему допущения.
При прямом доказательстве задача состоит в том, чтобы найти убедительные аргументы, из которых логически вытекает тезис. В К. д. рассуждение идет как бы окольным путем. Прямые аргументы для выведения из них доказываемого положения не отыскиваются. Вме­сто этого формулируется антитезис, отрицание этого положе­ния, и тем или иным способом показывается его несостоятельность.
Поскольку К. д. использует отрицание доказываемого положе­ния, оно называется также доказательством от противно­го. Напр., врач, убеждая пациента, что тот не болен малярией, мо­жет рассуждать так: «Если бы действительно была малярия, имелся бы ряд характерных для нее симптомов, в частности общая слабость и озноб. Однако таких симптомов нет. Значит, нет и малярии».
К. д. проходит, таким образом, следующие этапы: выдвигается антитезис и из него выводятся следствия с намерением найти сре­ди них ложное; устанавливается, что в числе следствий действи­тельно есть ложное; делается вывод, что антитезис неверен; из лож­ности антитезиса делается заключение, что тезис является истинным.
В зависимости от того, как устанавливается ложность антите­зиса, можно выделить несколько вариантов К. д. Иногда ложность антитезиса удается установить простым сопоставлением вытека­ющих из него следствий с фактами, эмпирическими данными. Так, в приведенном примере рассуждение идет по схеме: если неверно первое, то второе; но второе неверно, значит, верно первое.
Нередко анализ самой логической структуры следствий антите­зиса позволяет сделать вывод, что он ошибочен. Так, если в чис­ле следствий встретились и утверждение, и отрицание одного и того же, можно сразу заключить, что антитезис неверен. Ложным будет он и в том случае, если из него выводится внутренне проти­воречивое высказывание о тождестве утверждения и отрицания.



[150]
Напр., для доказательства тезиса «Квадрат — это ромб с пря­мыми углами» выдвигается антитезис: «Неверно, что квадрат есть ромб с прямыми углами». Из последнего выводится как то, что у квадрата все углы прямые (т. к. быть квадратом значит иметь четы­ре прямых угла), так и то, что у квадрата углы не являются пря­мыми. Раз из антитезиса вытекает и утверждение, и отрицание одного и того же, значит, он неверен, а правильным является противоположное утверждение - тезис.
Рассуждение здесь идет в соответствии с законом косвенного доказательства: если из отрицания высказывания вытекает логи­ческое противоречие, само высказывание истинно.
Существует разновидность К. д., когда прямо не приходится ис­кать ложных следствий антитезиса. Согласно закону Клавия, если из отрицания высказывания вытекает это высказывание, оно являет­ся истинным. Напр., из отрицательного высказывания «Ни одно суждение не является отрицательным» вытекает: «Некоторые суж­дения являются отрицательными»; значит, истинно это утверди­тельное высказывание, а не исходное отрицательное.
К. д. — эффективное средство обоснования выдвигаемых поло­жений. Однако его специфика в определенной мере ограничивает сферу применения. Эта специфика состоит в том, что из антите­зиса, являющегося ложным, выводятся следствия до тех пор, пока не будет получено ложное утверждение или логическое противо­речие. Имея дело с К. д., приходится все время сосредоточиваться не на верном положении, справедливость которого необходимо обосновать, а на ошибочных утверждениях. Более серьезные воз­ражения против К.д. связаны с использованием в нем закона (сня­тия) двойного отрицания. Этот закон не признается универсаль­ным, неограниченно приложимым интуиционистской логикой.
КРУГ В ДОКАЗАТЕЛЬСТВЕ (лат. — circulus in demonstrando)
— ло­гическая ошибка в доказательстве, заключающаяся в том, что ис­тинность доказываемого положения (тезиса) обосновывается с помощью аргумента, истинность которого обосновывается с по­мощью доказываемого тезиса. Данную ошибку называют также «порочным кругом». В качестве примера можно привести доказа­тельство конечности и ограниченности Вселенной, приводивше­еся противниками учения Коперника. Защитники геоцентризма доказывали конечность Вселенной, опираясь на утверждение о том, что Вселенная в течение суток совершает полный оборот вокруг неподвижного центра, совпадающего с центром Земли. В свою очередь, истинность этого аргумента они доказывали, опира­ясь на утверждение о конечности Вселенной, т. к. при условии ее


[151]
бесконечности нельзя понять, каким образом бесконечная Все­ленная могла бы в течение одних суток совершить полный оборот около своего центра. Иными словами, тезис (положение о конеч­ности мира) доказывался посредством аргумента (суточное вра­щение мира вокруг центра), который сам доказывался при помо­щи доказываемого тезиса (положения о конечности мира).
В относительно коротких рассуждениях К. в д. сравнительно нетрудно обнаружить. Однако в доказательствах, включающих в себя длинные цепи умозаключений, круг может остаться незаме­ченным. Доказательство, содержащее в себе круг, не достигает своей основной цели — оно не обосновывает истинности доказыва­емого тезиса.
КРУГ В ОПРЕДЕЛЕНИИ
— логическая ошибка, связанная с на­рушением одного из правил определения и состоящая в том, что при определении некоторого понятия в определяющей части ис­пользуется понятие, которое, в свою очередь, определяется с помо­щью данного определяемого понятия. Напр., в определении «Вра­щение есть движение вокруг своей оси» будет допущена ошибка круга, если понятие «ось» само определяется через понятие «вра­щение»: ось есть прямая, вокруг которой происходит вращение. Частным случаем этой ошибки является тавтология — повторе­ние в определяющей части самого определяемого понятия, хотя, быть может, в несколько ином словесном выражении, напр.: «Фильтрование — процесс разделения с помощью фильтра» (см.: Определение).

[152]


Л
ЛЕММА (от греч. lemma — предположение)
- в математике вспо­могательное предложение, употребляемое при доказательстве од­ной или нескольких теорем. В логике — условно-разделительное, или лемматическое, умозаключение (см.: Дилемма).
«ЛЖЕЦА» ПАРАДОКС
- один из наиболее известных логиче­ских парадоксов. В простейшем его варианте человек произносит одну фразу: «Я лгу». Или говорит: «Высказывание, которое я сей­час произношу, является ложным». Или: «Это высказывание лож­но». Если высказывание ложно, то говорящий сказал правду и, зна­чит, сказанное им не является ложью. Если же высказывание не является ложным, а говорящий утверждает, что оно ложно, то его высказывание ложно. Оказывается, таким образом, что, если гово­рящий лжет, он говорит правду, и наоборот.
Традиционная лаконичная формулировка парадокса гласит: если лгущий говорит, что он лжет, то он одновременно лжет и говорит правду.
В ср. в. была распространенной такая формулировка «Л.» п.: «Ска­занное Платоном - ложно, — говорит Сократ. - То, что сказал Сократ, — истина, - говорит Платон». Возникает вопрос: кто из них высказывает истину, а кто — ложь?
Открытие «Л.» п. приписывается древнегреческому философу Евбулиду (IV в. до н. э.). Оно произвело громадное впечатление. Философ-стоик Хрисипп (ок. 281-208 до н. э.) посвятил ему три книги. Некто Филет Косский, отчаявшись разрешить парадокс, покончил с собой. Предание говорит, что известный древнегре­ческий логик Диодор Кронос (ум. ок. 307 до н. э.) уже на склоне лет дал обет не принимать пищу до тех пор, пока не найдет реше-
[153]


ние «Лжеца», и вскоре умер, ничего не добившись. В древности «Лжец» рассматривался как хороший пример двусмысленного выражения. В ср. в. «Л.» п. был отнесен к т. наз. «неразрешимым предложениям» и сделался объектом систематического анализа.
Особым вниманием «Л.» п. пользуется в современной логике. Нередко он именуется «королем логических парадоксов», ему по­священа обширная научная литература. И тем не менее, как и в случае многих других парадоксов, остается неясным, какие имен­но проблемы скрываются за данным парадоксом и как следует избавляться от него.
Чаще всего «Л.» п. считается характерным примером тех труд­ностей, к которым ведет смещение двух языков: языка предметно­го, на котором говорится о лежащей вне языка действительности, и метаязыка, на котором говорят о самом предметном языке. В повседневности нет различий между этими языками: и о дей­ствительности, и о языке говорится на одном и том же языке. Если язык и метаязык разграничиваются, утверждение «Я лгу» уже не может быть сформулировано.
Проблемы, связывавшиеся на протяжении веков с «Л.» п., ра­дикально менялись в зависимости от того, рассматривался ли он как пример двусмысленности, или же как выражение, внешне пред­ставляющееся осмысленным, но по своей сути бессмысленное, или же как образец смешения языка и метаязыка. И нет уверенности в том, что с этим парадоксом не окажутся связанными в будущем и другие проблемы (см.: Антиномия).
ЛОГИКА (от греч. logos — слово, понятие, рассуждение, разум), или: Формальная логика,
— наука о законах и операциях пра­вильного мышления. Согласно основному принципу Л., пра­вильность рассуждения (вывода) определяется только его логиче­ской формой, или структурой, и не зависит от конкретного содержания входящих в него утверждений. Различие между формой и содержанием может быть сделано явным с помощью особого язы­ка, или символики, оно относительно и зависит от выбора языка.
Отличительная особенность правильного вывода в том, что от истинных посылок он всегда ведет к истинному заключению. Та­кой вывод позволяет из имеющихся истин получать новые исти­ны с помощью чистого рассуждения, без обращения к опыту, интуиции и т. п. Неправильные выводы могут от истинных посы­лок вести как к истинным, так и к ложным заключениям.
Л. занимается не только связями высказываний в правильных выводах, но и многими иными проблемами: смыслом и значением выражений языка, различными отношениями между терминами


[154]
(понятиями), операциями определения и логического деления по­нятий, вероятностными и статистическими рассуждениями, па­радоксами и логическими ошибками и т. д. Но главные темы логи­ческих исследований - анализ правильности рассуждения, формулировка законов и принципов, соблюдение которых являет­ся необходимым условием получения истинных заключений в процессе вывода.
Правильным является, напр., рассуждение, следующее схеме: «Если есть первое, то есть и второе; есть первое, значит, есть и второе» (см.: Модус поненс). По этой схеме из высказываний «Если сейчас день, то светло» и «Сейчас день» вытекает высказывание «Сейчас светло». Какие бы конкретные истинные высказывания ни подставлялись в указанную схему, заключение обязательно бу­дет истинным.
В правильном рассуждении заключение вытекает из посылок с логической необходимостью, общая схема такого рассуждения вы­ражает логический закон. Рассуждать логически правильно — зна­чит рассуждать в соответствии с законами Л.
Л. не просто перечисляет некоторые схемы правильного рас­суждения. Она выявляет различные типы таких схем, устанавлива­ет общие критерии их правильности, выделяет исходные схемы, из которых по определенным правилам могут быть получены другие схемы данного типа, исследует проблему взаимной совместимости схем и т. д.
В современной Л. логические процессы изучаются путем их ото­бражения в языках формализованных, или логических, исчислений. Построение исчисления отличается тщательностью, с которой формулируются его синтаксические и семантические правила, от­сутствием исключений, характерных для естественного языка. Ис­следованием формального строения логических исчислений, пра­вил образования и преобразования входящих в них выражений занимается логический синтаксис. Отношения между исчисления­ми и содержательными областями, служащими их интерпретаци­ями или моделями, исследуются семантикой логической.
Современная Л. слагается из большого числа логических систем, описывающих отдельные фрагменты, или типы, содержательных рассуждений. Эти системы принято делить на Л. классическую, включающую классические Л. высказываний и Л. предикатов, и Л. неклассическую, в которую входят модальная Л., интуиционист­ская Л., многозначная Л., неклассические теории логического следо­вания, паранепротиворечивая Л., Л. квантовой механики и др. Каж­дая из этих Л. также включает, как правило, соответствующие Л.


[155]
высказываний и Л. предикатов. Таким образом, хотя Л. как наука едина, она слагается из множества более или менее частных сис­тем, ни одна из которых не может претендовать на выявление ло­гических характеристик мышления в целом. Единство Л. проявляет­ся прежде всего в том, что входящие в нее «отдельные» Л. пользуются при описании логических процессов одними и теми же методами исследования. Все они отвлекаются от конкретного содержания выс­казываний и умозаключений и оперируют только их формальным, структурным содержанием. В каждой применяется язык символов и формул, строящийся в соответствии с общими для всех систем принципами. И наконец, «сконструированная» Л. вызывает ряд воп­росов, характерных для любой системы: нет ли в ней противоре­чий, охватывает ли она все истины рассматриваемого рода и др. (см.: Непротиворечивость, Полнота, Разрешения проблема). Между разными логическими системами имеются определенные связи. Одни системы могут быть эквивалентны другим, или включаться в них, или быть их обобщением и т. д. Единство Л. проявляется также в том, что разные Л. не противоречат друг другу: законами одной из них не являются отрицания законов, принятых в другой.
История Л. насчитывает около двух с половиной тысячелетий и разделяется на два основных этапа. Первый начался с трудов Ари­стотеля (384-322 до н. э.) и продолжался до второй половины XIX - начала XX в., второй — с этого времени до наших дней. На первом этапе Л. развивалась очень медленно, это дало И. Канту по­вод заявить, что она является с самого начала завершенной наукой, не продвинувшейся после Аристотеля ни на один шаг. Ошибоч­ность такого представления была ясно показана в последние сто с небольшим лет, когда в Л. произошла научная революция и на смену традиционной Л. пришла современная Л., называемая также математической или символической Л. В основе последней — идеи Г. Лейбница (1646-1716) о возможности представить доказатель­ство как математическое вычисление. Д. Буль (1815-1864) истол­ковал умозаключение как результат решения логических равенств, в результате чего теория умозаключения приняла вид своеоб­разной алгебры, отличающейся от обычной алгебры лишь от­сутствием численных коэффициентов и степеней. С работ Г. Фреге (1848-1925) начинается применение Л. для исследования оснований математики. Значительный вклад в развитие Л. в даль­нейшем внесли Б. Рассел (1872-1970), А. Н. Уайтхед (1861-1947), Д. Гильберт (1862-1943) и др. В 30-е годы фундаментальные ре­зультаты получили К. Гёдель (1906-1978), А. Тарский (1901-1983), А.Чёрч(р. 1903).



[156]
На первых порах современная Л. ориентировалась почти всеце­ло на анализ только математических рассуждений. Это поддержи­вало иллюзию, что развитие Л. не зависит от эволюции теорети­ческого мышления и не является в к.-л. смысле отображением последней.
В 20-е годы XX в. предмет логических исследований существенно расширился. Начали складываться многозначная Л., предполага­ющая, что наши утверждения являются не только истинными или ложными, но могут иметь и другие истинные значения; модальная Л., рассматривающая понятия необходимости, возможности, слу­чайности и т. п.; деонтическая Л., изучающая логические связи нормативных высказываний, и др. Все эти новые разделы не были непосредственно связаны с математикой, в сферу логического ис­следования вовлекались уже естественные и гуманитарные науки.
В дальнейшем сложились и нашли интересные применения: Л. времени, описывающая логические связи высказываний о про­шлом и будущем; паранепротиворечивая Л., не позволяющая вы­водить из противоречий все что угодно; эпистемическая Л., изуча­ющая понятия «опровержимо», «неразрешимо», «доказуемо», «убежден», «сомневается» и т. п.; оценок Л., имеющая дело с поня­тиями «хорошо», «плохо», «безразлично», «лучше», «хуже» и т. п.; Л. изменения, говорящая об изменении и становлении нового; причинности Л., изучающая утверждения о детерминизме и при­чинности; парафальсифицирующая Л., не позволяющая отвергать положения, хотя бы одно следствие которых оказалось ложным; релевантная Л. и др. Экстенсивный рост Л. не завершился и сейчас. Основные ее ветви, или разделы, можно сгруппировать так:
о базисная Л., в которую входят классическая Л., модальная Л., многозначная Л., неклассические теории логического следования;
>> металогика, исследующая сами логические теории, их внут­реннюю структуру и связи с описываемой ими реальностью;
о разделы математического направления, включающие теорию доказательства, теорию множеств, теорию функций, Л. вероятно­стей, обоснование математики;
о разделы, ориентированные на приложение в естественных и гуманитарных науках, такие, как индуктивная Л., изучающая про­блематичные выводы, логические теории времени, причиннос­ти, норм, оценок, действия, решения и выбора и др.;
>> разделы, находящие применение при обсуждении опреде­ленных философских проблем: Л. бытия, Л. изменения, Л. части и целого, логические теории вопросов, знания, убеждения, вооб­ражения, стремления и т. п.


[157]
Границы между этими областями не являются четкими, одни и те же ветви Л. могут иметь одновременно отношение к филосо­фии и естествознанию, к математике и металогике и т. д.
Прояснение и углубление оснований современной Л. сопро­вождалось пересмотром и уточнением таких центральных ее по­нятий, как логическая форма, логический закон, доказательство, логическое следование и др.
Законы Л. долгое время представлялись абсолютными истина­ми, никак не связанными с опытом. Однако возникновение кон­курирующих логических теорий, отстаивающих разные множества законов, показало, что Л. складывается в практике мышления и что она меняется с изменением этой практики. Логические зако­ны - такие же продукты человеческого опыта, как и аксиомы евклидовой геометрии, тоже казавшиеся когда-то априорными. Именно постоянно повторяющаяся практика выявляла некото­рые общие и инвариантные отношения между вещами, вовлечен­ными в трудовую деятельность, и закрепляла их в сознании в виде некоторых логических структур, лежащих в основе формулирова­ния правил логики.
Доказательство, и в особенности математическое, принято было считать императивным и универсальным указанием, обязатель­ным для всякого непредубежденного ума. Развитие Л. показало, однако, что доказательства вовсе не обладают абсолютной, вне­временной строгостью и являются только опосредствованными средствами убеждения. Даже способы математической аргумента­ции на деле историчны и социально обусловлены. В разных логи­ческих системах доказательствами считаются разные последова­тельности утверждений, и ни одно доказательство не является окончательным.
Перемены, происшедшие в Л. в XX в., приблизили ее к реально­му мышлению и тем самым к человеческой деятельности, одной из разновидностей которой оно является.
Для правильного понимания предмета и задач формальной Л. важно четко представлять ее соотношение с диалектической Л. Ди­алектика как Л. исследует становление и развитие понятий и пред­ставлений, их отношения, переходы, противоречия. Диалектиче­ские принципы историзма, конкретности истины, единства абстрактного и конкретного, практики как критерия истины и т. д. направлены на познание закономерностей мышления, взятого в его движении и развитии, в последовательном постижении ре­альности. Формальная Л. главное внимание направляет на прояс­нение структуры готового знания, на описание его формальных свя-



[158]
зей и элементов. Диалектическая и формальная Л. - две разные науки, различающиеся как предметами своего исследования, так и методами.
Современная Л. находит применение во многих областях. В час­тности, она оказала влияние на развитие математики, прежде всего теории множеств, формальных систем, алгоритмов, рекурсивных функций; идеи и аппарат Л. используются в кибернетике, вычис­лительной технике, в электротехнике и др.
ЛОГИКА ВРЕМЕНИ, или: Временная логика,
— раздел современной модальной логики, изучающий логические связи вре­менных утверждений, т. е. утверждений, в которых временной па­раметр включается в логическую форму. Л. в. начала складываться в 50-е годы XX в. прежде всего благодаря работам англ. логика А. Н. Прайора, хотя первые попытки учесть роль временного фак­тора в логическом выводе относятся еще к античности (Аристо­тель, Диодор Кронос).
Задачей Л.в. является построение искусственных (формализо­ванных) языков, способных сделать более ясными и точными, а следовательно, и более плодотворными рассуждения о предметах и явлениях, существующих во времени.
Л. в. представляет собой множество логических систем (логик), распадающихся на А-л о г и к у и B-логику времени. Пер­вая ориентирована на временной ряд «прошлое — настоящее — будущее», вторая - на временной ряд «раньше - одновременно -позже».
В А-логике рассматриваются высказывания с «будет», «было», «всегда будет», «всегда было» и т. п. Понятия «будет» («было») и «всегда будет» («всегда было») взаимно определимы: «Будет A» («Было A») означает «Неверно, что всегда будет не-А» («Неверно, что всегда было не-А»). Напр., «Будет ветрено» означает то же, что «Неверно, что всегда будет безветренно».
В числе законов А-логики времени утверждения:
>> то, что всегда будет, будет; то, что всегда было, было (напр.: «Если всегда будет время, то оно будет»);
>> неверно, что наступит противоречивое событие; неверно, что было такое событие («Неверно, что было холодно и не холодно»);
>> если будет, что будет нечто, оно будет;
>> если неверно, что всегда было, что не всегда будет нечто, то оно имеет место сейчас;
>> будет, что нечто было, если и только если оно или есть сей­час, или будет, или уже было («Будет так, что шел снег, только если он или идет, или пойдет, или уже шел»);


[159]
>> всегда было, что всегда будет нечто, только если оно есть, всегда было и всегда будет («Всегда было, что всегда будет хоро­шая погода, в том и только том случае, если она есть, всегда была и всегда будет») и т. п.
Финским философом и логиком Г. X. фон Вригтом А-логика времени формулируется с использованием выражений «...и за­тем...» и «...и в следующей ситуации...». «A и затем В» означает «Сейчас А и будет В», что может пониматься также как «A изменя­ется (переходит) в B». Л.в. может, таким образом, истолковываться и как логика изменения.
В терминах временных понятий могут быть определены модаль­ные понятия «необходимо» и «возможно»:
>> необходимым является то, что всегда было, есть и всегда бу­дет («Пространство необходимо, только если оно всегда было, есть и всегда будет»);
>> возможно то, что или было, или имеет место, или будет («Воз­можно, что птицы улетают на юг, только если они уже улетели, улетают сейчас или улетят в будущем»).
В B-логике времени рассматриваются высказывания с «рань­ше», «позже» и «одновременно». Первые два из этих понятий вза­имно определимы: «A раньше В» означает «В позже A». Одновре­менные события могут быть определены как такие, что ни одно из них не раньше другого.
Среди законов B-логики утверждения:
>> ничто не раньше самого себя;
>> если первое раньше второго, то неверно, что второе раньше первого;
>> если первое раньше второго, а второе одновременно с треть­им, то первое раньше третьего и т. п.
Понятие «раньше» неопределимо через «было», «есть» и «будет»; раньше одно другого могут быть и два прошлых, и два будущих события. В свою очередь, временные оценки, включающие ссылку на «настоящее», несводимы к утверждениям с «раньше». А-логика и B-логика времени являются, таким образом, двумя самостоя­тельными, несводимыми друг к другу ветвями Л. в.
А-логика времени нашла приложения при обсуждении некото­рых философских проблем, в анализе грамматических времен и др. B-логика использовалась при аксиоматизации определенных раз­делов физики, биологии, при обсуждении проблемы непротиво­речивого описания движения и др.
Временные ряды «прошлое - настоящее - будущее» и «рань­ше - одновременно - позже» несводимы друг к другу. Они неза-



[160]
висимы в широких пределах и представляют собой две точки зре­ния на мир, два способа описания одних и тех же вещей и собы­тий, дополняющие друг друга. Первый ряд употребляется по пре­имуществу в гуманитарных науках, второй - в естественных. Можно сказать, что первые понятия служат для описания становле­ния мира, вторые — для описания его бытия. Поскольку времен­ные ряды несводимы друг к другу, возникает вопрос, не является ли один из них более фундаментальным. Согласно распространен­ной точке зрения, в интерсубъективном, безличностном языке науки неправомерно употребление «было - есть - будет», пред­полагающих ссылку на «субъективное», постоянно меняющее свое положение «настоящее». С другой стороны, мир без «стрелы вре­мени» неисторичен, он как бы задан сразу, и все события лежат в одной временной плоскости.
К этому спору о допустимости использования в науке времен­ных оценок с изменяющимся истинностным значением имеет пря­мое отношение и Л. в.
ЛОГИКА ВЫСКАЗЫВАНИЙ, или: Пропозициональная логика,
— раздел логики, формализующий употребление логичес­ких связок «и», «или», «не», «если, то» и т. п., служащих для образова­ния сложных высказываний из простых. Высказывание называется простым, если оно не включает в себя другие высказывания, в противном случае оно называется с л о ж н ы м. В Л. в. простые выс­казывания рассматриваются в отвлечении от их внутренней (субъектно-предикатной) структуры. Та или иная истинностная оценка высказывания именуется его истинностным значением.
В логике классической предполагается, что простое высказыва­ние является либо истинным, либо ложным (см.: Двузначности принцип) и что истинностное значение сложного высказывания зависит только от истинностных значений входящих в него про­стых высказываний и характера их связи.
Так, соединение двух высказываний с помощью связки «и» дает сложное высказывание (именуемое конъюнкцией), являюще­еся истинным, только когда оба составляющие его высказывания истинны. Сложное высказывание, образованное с помощью связ­ки «или» (дизъюнкция), истинно, если и только если хотя бы одно из двух входящих в него высказываний истинно. Сложное выска­зывание, образованное с помощью «не» (отрицания), истинно, если только исходное высказывание ложно. Сложное высказывание, полученное из двух высказываний с помощью связки «если, то» (импликация), истинно в трех случаях: оба входящие в него выска­зывания истинны, оба они ложны, первое из этих высказываний


[161]
(следующее за словом «если») ложно, а второе (следующее за сло­вом «то») истинно; импликация является ложной только когда первое из составляющих ее высказываний истинно, а второе ложно.
Возможны и другие способы образования сложных высказыва­ний. Всего в классической двузначной логике четыре способа об­разования сложного высказывания из одного высказывания и ше­стнадцать способов образования сложного высказывания из двух высказываний.
Язык Л. в. включает бесконечное множество переменных: р, q, r,..., p1, q1, r1, ..., представляющих высказывания, и особые символы для логических связок : & — конъюнкция («и»), v - дизъюнкция («или»), ˜ - отрицание («не» или «неверно, что»), -> — имплика­ция («если, то»). Роль знаков препинания обычного языка играют скобки. Понятие формулы в Л. в. определяется так: отдельная переменная является формулой; если A и В — формулы, то (А&В), (AvB), ˜A и (A->B) также формулы.
Формулам Л. в., образованным из переменных и связок, в есте­ственном языке соответствуют предложения. Напр., если р есть высказывание «Сейчас ночь», q — высказывание «Сейчас темно» и r — высказывание «Сейчас ветрено», то формула (p->(qvr)) представляет высказывание «Если сейчас ночь, то сейчас темно или ветрено», формула ((q&.r)->p) - высказывание «Если сейчас темно и ветренно, то сейчас ночь», формула (˜q->˜p) — высказы­вание: «Если неверно, что сейчас темно, то сейчас не ночь» и т. п. Подставляя вместо переменных другие высказывания, получим другие переводы указанных формул на обычный язык.
Каждой формуле Л. в. можно поставить в соответствие таблицу истинности, указывающую зависимость истинностного значения формулы от истинностных значений входящих в нее переменных. Напр., формула (˜q->˜p) принимает значение «ложно» только в случае ложности q и истинности р.
Формула Л. в. называется тождественно-истинной, или тавтологией, если и только если она принимает значение «истин­но» при всех распределениях истинностных значений входящих в нее простых высказываний. Формула, принимающая при всех рас­пределениях значение «ложно», называется противоречием. Тавто­логии выражают логические законы. К тавтологиям относятся, в ча­стности, формулы:
(р->р) — закон тождества, ˜(р&˜р) — закон непротиворечия,
(pv˜p) — закон исключенного третьего, (p->q)->(˜q->˜p) - закон контрапозиции.



[162]
Множество тавтологий бесконечно.
Л. в. может быть представлена также в форме логического исчис­ления, в котором задается способ доказательства некоторых выс­казываний (формул), называемых теоремами. Исчисление может быть формализовано с помощью аксиоматического метода. При этом указываются формулы, принимаемые в качестве аксиом, и задаются правила вывода, позволяющие получать из аксиом теоре­мы. Аксиоматическое исчисление высказываний строится таким образом, чтобы класс теорем совпадал с классом тавтологий, т. е. чтобы каждая теорема была тавтологией и каждая тавтология — теоремой (см.: Полнота). По отношению к аксиоматическому по­строению встают также вопросы о его непротиворечивости и неза­висимости принятых аксиом и правил вывода.
Наряду с классической Л. в., предполагающей, что всякое выс­казывание является истинным или ложным, существуют много­образные неклассические Л. в. В числе последних — многозначные Л. в., интуиционистская Л. в. и др.
ЛОГИКА ДЕДУКТИВНАЯ, см.: Дедукция.
ЛОГИКА ИЗМЕНЕНИЯ
- раздел современной логики, занима­ющийся исследованием логических связей высказываний об из­менении и становлении материальных или идеальных объектов. Л.и. относится к логике неклассической; ее задача — построение искусственных (формализованных) языков, способных сделать бо­лее ясными и точными рассуждения об изменении объекта — пе­реходе его от одного состояния к другому, о становлении объекта, его формировании. В Л. и. ничего не говорится о конкретных харак­теристиках изменения и становления. Она только предоставляет совершенный с точки зрения синтаксиса и семантики язык, по­зволяющий дать строгие утверждения об изменении объекта, вскрыть основания и следствия этих утверждений, выявить их воз­можные и невозможные комбинации. Использование искусствен­ного языка при обсуждении проблем изменения объекта не есть подмена этих онтологических проблем логическими, сведение эм­пирических свойств и зависимостей к логическим.
Разработка Л. и. идет по двум направлениям: построение специ­альных Л. и. и истолкование определенных систем логики времени как логических описаний изменений. При первом подходе обычно дается «одномоментная» характеристика изменяющегося объекта, при втором изменение рассматривается как отношение между дву­мя последовательными состояниями объекта.
К первому направлению относится, в частности, логика на­правленности. Язык логики направленности богаче, чем язык


[163]
логики классической; он включает не только термины «существует» и «не существует», но также термины «возникает», «исчезает», «уже есть», «еще есть», «уже нет», «еще нет» и т. п. С помощью этих терминов формулируются законы логики направленности:
>> существовать — это то же, что начинать исчезать, и то же, что переставать возникать;
>> не существовать - то же, что начинать возникать, и то же, что прекращать исчезать;
>> становление — прекращение несуществования, а исчезнове­ние - возникновение несуществования;
>> уже существует — значит существует или возникает и т. п.
Логика направленности допускает четыре типа существования объектов: бытие, небытие, возникновение (становление) и ис­чезновение. Относительно всякого объекта верно, что он или су­ществует, или не существует, или возникает, или исчезает. Вместе с тем объект не может одновременно существовать и не существо­вать, существовать и возникать, не существовать и исчезать, возни­кать и исчезать и т. п. Иными словами, четыре типа существования исчерпывают все возможные способы существования и являются взаимно несовместимыми. Логика направленности позволяет вы­разить в логически непротиворечивой форме гегелевское утвер­ждение о противоречивости всякого движения и изменения. Ут­верждение «Предмет движется в данный момент в данном месте» эквивалентно утверждению «В рассматриваемый момент предмет находится и не находится в данном месте».
Примером второго подхода может служить логика време­ни финского философа и логика Г. X. фон Вригта (р. 1916). Ее исходное выражение «A и в следующей ситуации В» может интер­претироваться как «Состояние А изменяется в состояние В» («А-мир переходит в B-мир»), что дает Л. и. В логике времени доказуе­мы такие теоремы:
>> всякое состояние либо сохраняется, либо возникает, либо ис­чезает;
>> при изменении состояние не может одновременно сохра­няться и исчезать, сохраняться и возникать, возникать и исчезать;
>> изменение не может начинаться с логически противоречи­вых состояний и не может вести к таким состояниям и т. п.
Примеры утверждений, доказуемых в различных системах Л. и., показывают, что она не является самостоятельной теорией из­менения и не может претендовать на то, чтобы быть таковой. Фор­мально-логический анализ изменения объекта преследует узкую цель - отыскание средств, позволяющих отчетливо зафиксиро-



[164]
вать логические связи утверждений об изменении того или иного объекта.
Вместе с тем Л. и. имеет важное философское значение, по­скольку тема изменения (становления) еще с античности стоит в центре острых философских дискуссий. Л. и. позволяет, кроме про­чего, прояснить отношение формальной логики к концепции внут­ренне противоречивой сущности становления.
ЛОГИКА КВАНТОВОЙ МЕХАНИКИ
- логическая теория, цель которой — описание логических связей высказываний об объектах, исследуемых квантовой механикой. Переворот, произведенный в физическом мышлении квантовой механикой, был настолько ра­дикальным, что возникла идея особой «логики микромира», от­личной от обычной «логики макромира». В середине 30-х годов была построена первая Л. к. м., положившая начало еще одному направлению логики неклассической. Позднее немецкий философ и логик Г. Рейхенбах (1891-1953) предложил трехзначную логику без закона исключенного третьего, призванную устранять «причин­ные аномалии», возникающие при попытке применять обычное причинное объяснение к квантовым явлениям.
К настоящему времени построены десятки логических систем, стремящихся выявить своеобразие рассуждений в квантовой ме­ханике. Эти «логики микромира» существенно отличаются друг от друга как законами, так и способами обоснования. Чаще всего в этих логических системах отказываются от закона коммутативно­сти для конъюнкции («и») и дизъюнкции («или») (выражение «А и В» не считается равносильным выражению «В и А», а «А или В» — равносильным «В или A»), от закона дистрибутивности конъюнк­ции относительно дизъюнкции и др.
В первый период своего развития Л. к. м. встретила как критику, так и одобрение. Длительная полемика не внесла, однако, яснос­ти в вопрос, действительно ли квантовая механика руководству­ется особой логикой. Если даже это так, надо признать, что ис­следования в данном направлении не оказали воздействия на саму механику. Вместе с тем Л. к. м. нашла интересные приложения в некоторых других областях.
ЛОГИКА КЛАССИЧЕСКАЯ
- раздел современной (математичес­кой, символической) логики, включающий классическую логику высказываний и классическую логику предикатов. Л.к. опирается на двузначности принцип, в соответствии с которым всякое высказы­вание является или истинным, или ложным.
У истоков Л. к. стоят, наряду со многими другими исследователями, Д. Буль (1815-1864), А. де Морган (1806-1871), Ч. Пирс (1839-1914).


[165]
В их работах была постепенно реализована идея перенесения в ло­гику тех методов, которые обычно применяются в математике. Пос­ледний шаг в математизации логики в прошлом веке был сделан Г. Фреге (1848-1925). Уже в этом веке важный вклад в развитие Л. к. внесли Б. Рассел (1872-1970), А. Уайтхед (1861-1947), Г. Гиль­берт (1862-1943) и др.
Л. к. ориентировалась главным образом на анализ математичес­ких рассуждений. С этим связаны многие ее особенности, нередко расценивающиеся теперь как недостатки. В частности, формальным аналогом условного высказывания в Л.к. является импликация мате­риальная, для которой верны положения: истинное высказывание имплицируется любым высказыванием, ложное высказывание им­плицирует каждое высказывание и другие парадоксы импликации.
Критика Л. к. началась в начале XX в. и велась в разных направ­лениях. Результатом ее явилось возникновение новых разделов со­временной логики, составляющих в совокупности логику неклас­сическую. Л. к. остается тем не менее ядром современной логики, сохраняющим свою теоретическую и практическую значимость. Явившись тем образцом, от которого отталкивались разнообраз­ные неклассические системы, Л. к., как правило, оказывается в оп­ределенном смысле предельным и притом наиболее простым слу­чаем последних. Многие из них могут быть представлены как расширения Л.к., обогащающие ее выразительные средства.
ЛОГИКА КЛАССОВ
- раздел математической логики, соответ­ствующий узкому исчислению одноместных предикатов, которые заменяются объемами, классами. Л. к. соответствует и силлогистике Аристотеля. Иногда Л. к. рассматривается как формализованная теория множеств, в других случаях - как расширение логики выс­казываний. Если в логике высказываний отвлекаются от связей меж­ду субъектом и предикатом высказывания, то в Л. к. эти связи учи­тываются. В число классов в Л. к. включается и пустой класс (0), содержащий нулевое множество элементов, и универсальный класс (1), включающий все объекты рассматриваемой области. С класса­ми можно производить операции пересечения, объединения и допол­нения. К алфавиту логики высказываний в Л.к. добавляются пере­менные а, b, с, ... для классов; знаки, обозначающие операции с классами; постоянные термы 0 и 1 и знаки для обозначения от­ношений между классами. Далее дается индуктивное определение терма и класса. Вводятся отношение включения класса в класс (аb) (а включается в класс b), отношение равенства двух клас­сов (а=b). Оба эти отношения могут быть определены через отно­шение принадлежности элемента классу (аIb).


[166]

Элементарные формулы в Л. к. имеют вид: иIv, u=v, где и и v — термы. Если формула Р является истинной, то это означает, что она истинна для любых классов области, являющихся значениями переменных, входящих в формулу Р. Если она истинна в любых областях, то она тождественно-истинна. Так, формула (a C b I a) гласит, что всякий элемент, содержащийся в обоих классах а и b, содержится и в классе а. Эта формула истинна не только для лю­бых классов а и b данной области D, но и для всяких классов любой области D.
Таблицы истинности, соответствующие возможным значени­ям для термов (u C v), (u E v), u', (и E v), (u= v), будут совпадать соответ­ственно с таблицами конъюнкции, дизъюнкции, отрицания, имплика­ции, эквивалентности. Четыре Аристотелевы формы элементарных высказываний — общеутвердительного А, частноутвердительного I, общеотрицательного Е, частноотрицательного О (см.: Сужде­ние) — могут быть соответственно выражены так: и I v («Все и суть v»); ˜(и I v') («Некоторые и суть v», т. е. «Неверно, что все и суть не-v»); (иIv') («Никакое и не есть v», т. е. «Всякое и есть не -v»); ˜(иEv) (Некоторые и не суть v», т. е. «Неверно, что все и суть v»).
ЛОГИКА КОМБИНАТОРНАЯ (от лат. combinare — соединять, соче­тать)
— одно из направлений в математической логике, занимаю­щееся анализом понятий, которые в рамках классической мате­матической логики принимаются без дальнейшего изучения (напр., понятия «переменная», «функция», «правила подстановки» и т. д.). В классической математической логике пользуются правилами двух родов. Первые формулируются просто и используются без всяких ограничений. Таково, напр., правило модус поненс. Оно формули­руется так: если даны предложения «Если A, то B» и «A», то из них может быть выведено предложение «B». Это правило доступно для одноактного автоматического выполнения. Другие правила (напр., правило подстановки) формулируются сложно и пред­полагают ряд ограничений и оговорок. Одной из задач Л. к. явля­ется создание таких формальных систем, где не будет встречаться правил, подобных правилу подстановки.
ЛОГИКА МНОГОЗНАЧНАЯ, см.: Многозначная логика.
ЛОГИКА НАУЧНОГО ПОЗНАНИЯ, или: Логика науки,
-применение идей, методов и аппарата логики в анализе научно­го познания. Развитие логики всегда было тесно связано с прак­тикой теоретического мышления и прежде всего с развитием на­уки. Конкретные рассуждения дают логике материал, из которого она извлекает то, что именуется логической формой, законом и т. д. Теории логической правильности оказываются в конечном
[167]


счете очищением, систематизацией и обобщением практики мыш­ления.
Современная логика с особой наглядностью подтверждает это. Она активно реагирует на изменения в стиле и способе научного мышления, на осмысление его особенностей в методологии на­уки. Сфера приложений логики в изучении систем научного зна­ния непрерывно расширяется. В конце XIX — начале XX в. логика почти всецело ориентировалась на исследование математического рассуждения, и эта связь с математикой была настолько тесной, что до сих пор в имени «математическая логика» прилагательное «математическая» иногда истолковывается как указывающее не только на своеобразие методов новой логики, но и на сам ее пред­мет. В 20-е годы этого века предмет логических исследований на­учного знания существенно расширился. Начали складываться та­кие разделы логики, как многозначная логика, модальная логика, теория логического следования, деонтическая логика и др. Были предприняты попытки систематического построения индуктивной логики. Все эти новые разделы не были непосредственно связаны с математикой, в сферу логического исследования вовлекалось уже естественнонаучное и гуманитарное знание.
В 30—40-е годы Л. н. п. интенсивно разрабатывалась в рамках философии неопозитивизма, сделавшей логический анализ языка науки основным средством борьбы с «дурной метафизикой» и по­рождаемыми ею «псевдопроблемами». Неопозитивизм принял идею о безоговорочной применимости математической (современ­ной) логики не только к дедуктивным наукам, но и к опытному знанию и резко противопоставил свою «логику науки» традици­онному философскому и методологическому анализу познания. Претенциозная неопозитивистская программа сведения филосо­фии науки к логическому анализу ее языка потерпела крах. При­чина его не в принципиальной неприменимости современной логики к опытному знанию, а в порочных философcко-методоло­гических установках, связанных с фетишизацией формальных ас­пектов познания, абсолютизацией языка и формальной логикой. Особенности неопозитивистской методологии — изоляционизм, от­каз от исследования научного знания в динамике, наивный индуктивизм, эмпирический фундаментализм и редукционизм — фаталь­ным образом сказались не только на самой этой методологии, но и на направляемом ею логическом анализе научного знания. Неудач­ными оказались, в частности, попытки чисто формальными сред­ствами охарактеризовать индукцию, определить понятие естествен­нонаучного закона, диспозиционного предиката, объяснения,



[168]
контрфактического высказывания, осуществить сведение теоре­тических терминов к эмпирическим и др. Неопозитивистское рас­ширительное истолкование возможностей Л. н. п. было преодолено только в конце 50-х - начале 60-х годов, когда стало очевидно, что задачи, которые выдвигались перед нею неопозитивизмом, плохо поставлены и не имеют решения. Борьба неопозитивизма против «псевдопроблем» традиционной философии и теории по­знания во многом вылилась в бесплодные дискуссии по поводу псевдопроблем самой неопозитивистской логики науки.
Сейчас логический анализ научного знания активно ведется в целом ряде как давно освоенных, так и новых областей. Самым общим образом их можно обозначить так:
>> методология дедуктивных наук;
>> применение логического анализа к опытному знанию;
>> применение логического анализа к оценочно-нормативному знанию;
>> исследование приемов и операций, постоянно используемых во всех сферах научной деятельности (объяснение, понимание, клас­сификация и т. д.).
Использование логики в анализе научного познания означает ее рост не только вширь, но и вглубь, хотя последний процесс из-за сопровождающих его споров менее заметен. Прояснение и углубление оснований логики сопровождается пересмотром и уточ­нением таких центральных ее понятий, как логическая форма, логи­ческий закон, доказательство, логическое следование и др.
Начиная с 50-х годов этого века к логической форме оказались отнесенными такие непривычные для традиционной логики по­нятия, как «было», «будет», «раньше», «позже» и «одновремен­но», «хорошо», «плохо» и «безразлично», «знает» и «полагает», «возникает» и «исчезает», «уже есть» и «еще есть» и т. д. Сама логическая форма сделалась относительной: она зависит не только от исследуемого языкового выражения, но и от принятой системы анализа, от того формализованного языка, на который оно «переводится».
Возникновение конкурирующих систем логики показало, что законы логики не являются истинами, никак не связанными с практикой мышления, и зависят от области, к которой они прила­гаются. Так, при рассуждении о бесконечных совокупностях объек­тов не всегда применим закон исключенного третьего, принципы косвенного доказательства и др. Рассуждение о недостаточно опре­деленных или изменяющихся во времени объектах также требует особой логики и т. д. Более того, на разных этапах развития науч-



[169]
ной теории находят применение разные множества логических законов. Так, в условиях формирующейся теории ограничена при­менимость закона противоречия, законов, позволяющих выводить любые следствия из противоречий и отвергать положения, хотя бы одно следствие которых оказалось ложным (паранепротиворечивая логика и парафалъсифицирующая логика). Обнаружилась, та­ким образом, «двойная гибкость» человеческой логики. Она мо­жет меняться не только в зависимости от области обсуждаемых объектов, но и в зависимости от уровня теоретического осмысле­ния этой области.
Приложения логики показали, что доказательство не обладает абсолютной, вневременной строгостью и является только куль­турно опосредствованным средством убеждения. Даже математи­ческое доказательство на деле исторично и социально обусловле­но. В разных логических системах доказательствами считаются разные последовательности утверждений и ни одно доказатель­ство не является окончательным.
В стандартном определении доказательства используется поня­тие истины. Доказать некоторое утверждение — значит логически вывести его из других являющихся истинными положений. Но многие утверждения не связаны с истиной: оценки, нормы, со­веты, клятвы, декларации и т. п. Очевидно, что они тоже могут быть элементами логически последовательных рассуждений и до­казательств. Встает, таким образом, вопрос о существенном расширении понятия доказательства. Им должны охватываться не толь­ко описания, способные иметь истинностное значение, но и все те многообразные утверждения, которые не являются описаниями и не могут быть сведены к ним.
Стандартный курс современной логики начинается определе­нием высказывания как предложения, являющегося истинным или ложным. Поскольку оценки, нормы и т. п. очевидным образом не имеют истинностного значения, данное определение можно по­нимать так, что все, излагаемое после него, не приложимо к оце­ночным, нормативным и им подобным выражениям.
Обычное понимание логического следования существенным образом опирается на понятие истины: из множества посылок A логически следует высказывание В, если и только если при любой интепретации, при которой истинны все высказывания из A, истинно также высказывание В. Это можно истолковать так, что между оценками, нормами, как и между всеми иными выражениями, ли­шенными истинностного значения, невозможно отношение логи­ческого следования. Очевидно, однако, что оценочные, норматив-



[170]
ные и им подобные высказывания способны быть посылками и заключениями логически корректных рассуждений. Это означает, что «высказывание», «логическое следование» и др. центральные понятия логики должны быть определены в терминах, отличных от «истины» и «лжи». Намечается выход логики за пределы «царства истины», в котором она находилась до сих пор. Понимание ее как науки о приемах получения истинных следствий из истинных по­сылок должно уступить место более широкой концепции логики.
Под влиянием приложений логики и прежде всего ее прило­жений в анализе научного знания существенно изменились пред­ставления об отношении логики к мышлению и языку. Согласно господствовавшей в 30-е годы точке зрения, правила логики пред­ставляют собой продукт произвольной конвенции и выбор их, как и выбор правил игры, ничем не ограничен. В силу этого все искусственные языки, имеющие ясную логическую структуру, рав­ноправны, и ни один из них не лучше и не хуже другого. Это — т. наз. принцип терпимости, выдвинутый в конце 20-х го­дов К. Менгером и активно пропагандировавшийся позднее Р. Карнапом. Данный принцип отрывает логику от обычного мышления и обычного языка. Разумеется, мышление не копирует мир своей внутренней структурой, но это не означает, что они никак не свя­заны и что логика — только своеобразная интеллектуальная игра, правила которой точны, но произвольны. Правила игры определя­ют способы обращения с вещами, правила логики — с символами. Искусственные языки логики имеют предметное, семантическое измерение, которого лишены игры. Нарушающий правила игры всту­пает в конфликт с соглашениями, нарушающий же правила логи­ки находится в конфликте с истиной и добром, стандарты которых не являются конвенциональными. Логика как инструмент позна­ния связана с действительностью и своеобразно отображает ее. Это проявляется в обусловленности развития логики развитием чело­веческого познания, в историческом изменении логических форм, в успешности практики, опирающейся на логическое мышление.
Перемены, происшедшие в логике, низвели ее с заоблачных вы­сот непогрешимой абстракции. Они приблизили логику к реальному мышлению и тем самым к человеческой деятельности, одной из разновидностей которой оно является. Это, несомненно, усложнило современную логику, лишило ее прежней твердости и категорич­ности. Но этот же процесс насыщения реальным содержанием при­дал ей новый динамизм и открыл перед нею новые перспективы.
Если не принимать во внимание давно сформировавшуюся ме­тодологию дедуктивных наук, существенный вклад в которую вне-



[171]
ела логика, можно сказать, что Л .н.п. не достигла пока особо впечат­ляющих успехов. Тем не менее есть определенное продвижение и есть перспектива. Уже сейчас можно сделать вывод о плодотворнос­ти крепнущих связей логики с естественными и гуманитарными науками как для методологии этих наук, так и для самой логики.
ЛОГИКА НЕКЛАССИЧЕСКАЯ
- совокупность логических тео­рий, возникших в известной оппозиции к логике классической и являющихся во многом не только критикой последней и попыт­кой ее усовершенствования, но также ее дополнением и дальней­шим развитием идей, лежащих в основе современной логики.
Начавшаяся в конце XIX — начале XX в., критика классической логики привела к возникновению целого ряда новых, некласси­ческих разделов математической (символической) логики. В ряде слу­чаев оказалось, что реализованные при этом идеи активно обсуж­дались еще в античной и средневековой логике.
Л. Брауэр (1881—1961) подверг сомнению неограниченную при­менимость в математических рассуждениях классических законов исключенного третьего, (снятия) двойного отрицания, косвенного до­казательства. Одним из результатов анализа таких рассуждений явилось возникновение интуиционистской логики, сформулирован­ной в 1930 г. А. Гейтингом (1888) и не содержащей указанных законов. Одновременно с Л. Брауэром идею неуниверсальности закона исключенного третьего отстаивал рус. логик Н. А. Васильев (1880-1940).
В 1912 г. К. И. Льюис (1883—1964) обратил внимание на пара­доксы импликации, характерные для формального аналога услов­ного высказывания в классической логике — импликации материальной. В дальнейшем он разработал первую неклассическую теорию логического следования, в основе которой лежало понятие строгой импликации. К настоящему времени предложен це­лый ряд теорий, претендующих на более адекватное, чем даваемое классической логикой, описание логического следования и ус­ловной связи. Наибольшую известность из них получила релеван­тная логика.
Классическая логика исходит из предположения, что всякое высказывание является или истинным, или ложным (двузначности принцип). В 20-е годы XX в. Я. Лукасевичем (1878-1956) и Э. Постом (1897—1954) были построены многозначные логики, допускающие более двух истинностных значений.
На рубеже 20-х годов К. И. Льюисом и Я. Лукасевичем были построены первые модальные логики, рассматривающие понятия необходимости, возможности, случайности и т. п. Тем самым в со-



[172]
временной логике была возрождена тема модальностей, которой активно занимались еще Аристотель и средневековые логики.
В середине 20-х годов появилась первая работа Э. Малли по деон­тической логике, исследующей логические связи нормативных выс­казываний. К этому же времени относится первая попытка Э. Гус­серля (1859—1938) развить оценок логику.
В 30-е годы Д. фон Нейманом (1903-1957) и Г. Биркгофом была опубликована первая работа по логике квантовой механики.
Особенно интенсивно Л. н. продолжала расширяться после вто­рой мировой войны. С. Яськовским (1906-1965) была построена «логика дискуссии», явившаяся прототипом паранепротиворечивой логики, на возможность которой еще раньше указывали Н. А. Васи­льев и Я. Лукасевич; с работ А. Н. Прайора началось развитие логи­ки времени; С. Халлденом и Г. X. фон Вригтом (р. 1916) были пред­ложены развитые логические теории сравнительных оценок (предпочтений логика); Г. X. фон Вригтом построены логика измене­ния и логика действия; А. Берксом — логика причинности и т. д.
Экстенсивный рост Л. н. не завершился и сейчас. В последние десятилетия существенно упрочились ее основы и усовершенство­вались ее методы. Это касается прежде всего модальной логики и теории логического следования.
Л. н. с трудом поддается определению, т. к. ее ветви рассматри­вают различные типы рассуждений. В целом задача Л. н. - более полно описать те элементы логической формы рассуждений, ко­торые упускаются из виду классической логикой.
Между неклассическими разделами логики существуют слож­ные и многообразные связи. Так, интуиционистская и модальная логики могут быть истолкованы как определенного рода много­значные логики (а именно: как бесконечнозначные логики). В рам­ках модальной логики может быть определено понятие логического следования, в свою очередь в терминах неклассических имплика­ций — определены модальные понятия и т. д.
В настоящее время Л. н. является наиболее интенсивно развивающейся частью логики, нашедшей важные приложения в филосо­фии, математике, кибернетике, физике, языкознании и т. д.
ЛОГИКА НОРМ, см.: Деонтическая логика.
ЛОГИКА ОТНОШЕНИЙ
- раздел логики, изучающий свойства высказываний об отношениях между объектами различной при­роды. Элементарными высказываниями об отношениях являются высказывания вида akb, т. е. объект а находится в отношении k к объекту b, напр.: «а брат b», «а тяжелее b» и т. п. В зависимости от числа объектов, связанных тем или иным отношением, различают



[173]
двухместные, или бинарные, отношения, трехместные, или тернарные, отношения, напр.: «a находится между b и с»; и вообще n-местные, или n-арные, отношения. Особое значение имеют бинарные отношения, посредством которых определяют такие важнейшие понятия логики и математики, как «функция» и «операция». Вводя для бинарных отношений теоретико-множе­ственные операции объединения (суммы), пересечения (произведения) и дополнения, получают «алгебру отноше­ний», роль единицы в которой играют отношения эквивалентно­сти (равенства, тождества). Отношения эквивалентности обладают следующими свойствами:
а) рефлексивностью: для всякого х верно, что xkx, т. е. каждый объект находится в данном отношении к самому себе;
б) симметричностью: из xky следует ykx;
в) транзитивностью: из xky и ykz следует xkz.
Опираясь на различные свойства отношений, можно из одних высказываний об отношениях выводить другие высказывания. Напр., отношение «быть братом» симметрично, поэтому из выс­казывания «а брат b» можно сделать вывод о том, что «b брат а». В естественном языке трудность подобных выводов состоит в том, чтобы установить, обладает ли рассматриваемое отношение необ­ходимым для вывода свойством. Напр., можно ли из высказывания «а теплее b» сделать вывод о том, что «b теплее а»? Нет, нельзя, т. к. отношение «быть теплее» не является симметричным. Но оно яв­ляется транзитивным, потому из высказываний «а теплее b» и «b теплее с» можно вывести высказывание «а теплее с».
Значительный вклад в разработку Л.о. внес рус. логик С. И. Поварнин (1870—1952). В современной математической логике отно­шения выражаются посредством многоместных предикатов, напр.: «Брат (а, b)», «Больше (а, b)» и т. п. Поэтому Л. о. в настоящее время разрабатывается как часть логики предикатов.
ЛОГИКА ПРЕДИКАТОВ, или: Функциональная логика, теория квантификации, кванторная логика,
- основ­ной раздел современной (математической, символической) логики, в котором описываются выводы, учитывающие внутреннюю (субъектно-предикатную) структуру высказываний. Л. п. является расши­ренным вариантом логики высказываний.
В Л. п. — в дополнение к средствам логики высказываний -вводятся логические операторы" («для всех») и $ («для некото­рых» или «существует»), называемые кванторами общности и существования соответственно. Для выявления субъектно-пре­дикатной структуры высказываний вводится бесконечный пере-



[174]
чень индивидных переменных: х, у, z, ..., х1, у1, zl, ..., представляющих различные объекты, и бесконечный перечень предикатных переменных: Р, Q, R, ..., Р1, Q1, Л1, ..., представляющих свойства и отношения объектов. Индивидные переменные принимают значения в произвольной (непустой) области; наряду с этими переменными могут вводиться инди­видные константы, или имена собственные.
Запись ("х)Р (х) означает «Всякий х обладает свойством Р»; ($х)Р(х) - «Некоторые х обладают свойством Р»; ($x)Q(xy) - «Су­ществует х, находящийся в отношении Q с у» и т. п. Индивидная переменная, входящая в область действия квантора по этой пере­менной, называется связанной; переменная, не являющаяся связанной, называется свободной. Так, во всех трех приведен­ных формулах переменная х связана, в последней формуле пере­менная у свободна. Подлинной переменной является только сво­бодная переменная: вместо нее можно подставить одно из ее значений и получить осмысленное выражение. Связанные пере­менные называются фиктивными.
Формула Л. п. называется общезначимой, если она истинна в каждой интерпретации. Тавтология логики высказываний явля­ется частным случаем общезначимой формулы. В Л. п., в отличие от логики высказываний, нет эффективного процесса, позволя­ющего для произвольно взятой формулы решить, является она общезначимой или нет.
Для Л. п. доказан ряд важных теорем, характеризующих ее ос­новные свойства (см.: Непротиворечивость, Полнота, Разрешимость теории).
ЛОГИКА ТРАДИЦИОННАЯ, см.: Традиционная логика.
ЛОГИКА ЭПИСТЕМИЧЕСКАЯ (от греч. episteme - знание)
- раз­дел модальной логики, исследующий логические связи высказыва­ний, включающих такие понятия, как «полагает» («убежден»), «со­мневается», «отвергает», «знает», «доказуемо», «неразрешимо», «опровержимо» т. п.
Знание отличается от убеждения, или веры: знание всегда истинно, убеждение же может быть как истинным, так и ложным. Этому различию соответствует различие между двумя вариантами Л. э.: логикой знания и логикой убеждений. Каждая из этих «логик» слагается из логических систем, различающихся не только зако­нами, но и исходными понятиями. Иногда к Л. э. относят лишь логику убеждений.
Одна из первых логик знания была сформулирована австрий­ским математиком и логиком К. Гёделем (1906-1978). Исходным


[175]
термином ее является «доказуемо»; в числе ее законов положе­ния:
· >> если высказывание доказуемо, оно истинно (доказать можно только истину, доказательств лжи не существует);
· >> логические следствия доказуемого также являются доказу­емыми;
· >> если нечто доказуемо, то доказуемо, что оно доказуемо;
· >> логическое противоречие недоказуемо и т. п.
Другим примером логики знания может служить логика исти­ны, устанавливающая такие законы, как:
· >> если высказывание истинно, то неверно, что его отрицание также истинно («Если истинно, что Земля вращается, то неверно, что истинно, будто она не вращается»);
· >> конъюнкция истинна, если и только если оба входящих в нее высказывания истинны («Истинно, что холодно и идет снег, толь­ко если истинно, что холодно, и истинно, что идет снег»), и т. п.
В логике убеждений в качестве исходного обычно принимается понятие «полагает» («убежден», «верит»), через него определяют­ся понятия «сомневается» и «отвергает»:
· >> субъект сомневается в чем-то, если только он не убежден ни в этом, ни в противоположном;
· >> субъект отвергает нечто, если только он убежден в противо­положном.
Среди законов логики убеждений положения:
· >> субъект полагает, что первое и второе, если и только если он полагает, что первое, и полагает, что второе («Субъект верит, что Марс - планета и что Луна - планета, только если он верит, что Марс — планета, и верит, что Луна — планета»);
· >> нельзя одновременно верить и сомневаться, быть убежден­ным и отвергать, сомневаться и отвергать;
· >> субъект или убежден, что дело обстоит так-то, или сомневает­ся в этом, или отвергает это («Субъект или убежден, что Венера — звезда, или сомневается в этом, или отвергает это»);
· >> невозможно быть убежденным одновременно в ч.-л. и в про­тивоположном («Нельзя верить как в то, что астрология наука, так и в то, что она не является наукой») и т. п.
Для понятий «знает», «истинно», «доказуемо» верно, что логи­ческие следствия известного также известны, истинного — истин­ны, доказуемого — доказуемы. Аналогичный принцип для понятия «убежден», кажущийся противоинтуитивным, получил название парадокса логического всеведения. Он утверждает, что человек убежден во всех логических следствиях, вытекающих из



[176]
принимаемых им положений. Напр., если человек уверен в пяти постулатах геометрии Евклида, то, значит, принимает и всю эту геометрию, поскольку она вытекает из них. Но это не так. Согла­шаясь с постулатами, человек может не знать доказательства тео­ремы Пифагора и потому сомневаться в том, что она верна.
Л.э. находит интересные приложения в теории познания и в методологии науки, в лингвистике, психологии и др.
ЛОГИСТИКА — в начале XX в. название формальной логики, изу­чаемой математическими методами, в частности с использовани­ем аксиоматизации и формализации. Слово первоначально озна­чало искусство вычисления или обычную арифметику. Г. Лейбниц употреблял его для обозначения «исчисления умозаключений», которое он пытался развить.
Термин вышел из употребления, уступив место терминам мате­матическая логика, символическая логика или логика современная.
ЛОГИЦИЗМ — концепция, сводящая математику к логике. Со­гласно Л., логика и математика соотносятся между собой как час­ти одной и той же науки: математика может быть получена из чистой логики без введения дополнительных основных понятий или дополнительных допущений. Под логикой при этом понима­ется теория дедуктивного рассуждения (см.: Дедукция).
Л. восходит к идее Г. Лейбница (1646—1716) о «сводимости ма­тематики к логике». Во второй половине прошлого века немецкий логик Г. Фреге (1848-1925) сформулировал арифметику чисто ло­гически, но, столкнувшись с парадоксами, признал свою попытку безнадежной. В дальнейшем тезис Л. развивали англ. философы и логики Б. Рассел (1872-1970) и А. Уайтхед (1861-1947).
Против идеи, что математические понятия можно свести к ло­гическим понятиям с помощью явных определений и затем выве­сти математические теоремы из логических аксиом, обычно выд­вигаются следующие возражения. Прежде всего, для сведения математики к логике приходится принимать аксиому беско­нечности, предполагающую существование бесконечных мно­жеств. Сам Б. Рассел вынужден был признать, что она не является собственно логической. Далее, вывод математики из логики в ка­кой-то степени содержит круг. Всегда имеются необоснованные предпосылки, которые должны быть приняты на веру или интуи­тивно. Можно попытаться уменьшить их число, но нельзя изба­виться от них совсем. Различение, что из этих предпосылок отно­сится к математике, а что - к логике, лежащей в ее основе, носит субъективный и по существу произвольный характер. И наконец, в 1931 г. К. Гёдель показал, что все системы аксиоматически постро-


[177]
енной арифметики существенно неполны: их средствами невоз­можно доказать некоторые содержательные истинные арифмети­ческие утверждения. Основной тезис Л. следует, таким образом, признать опровергнутым.
Это не означает, что Л. был совершенно бесплодным. Его сто­ронники добились определенных успехов в прояснении основ математики. В частности, было показано, что математический сло­варь сводится к неожиданно краткому перечню основных поня­тий, которые принадлежат, как принято считать, словарю чистой логики. Вся существующая математика была сведена к сравнительно простой и унифицированной системе исходных, принимаемых без доказательства положений, или аксиом, и правил вывода из них следствий, или теорем.
Однако в целом Л. оказался утопической концепцией.
ЛОГИЧЕСКАЯ МАШИНА — механическое, электромеханическое или электронно-вычислительное устройство, предназначенное для полуавтоматического или автоматического решения широкого круга математических и логических задач, для управления техно­логическими и производственными процессами, для оптимальных экономических расчетов, для обработки массивов информации, которые мозг человека не в состоянии охватить, для моделирова­ния форм человеческого мышления.
Попытки создать механические устройства для осуществления арифметических операций уходят в далекую древность. Первую логическую машину построил Раймунд Луллий (1235—1315). Его машина состояла из семи вращающихся вокруг одного центра кругов. На каждом из них были написаны слова, выражающие раз­личные понятия, напр. «человек», «знание», «количество» и т. п., и логические операции, напр. «равенство», «противоречие» и т. п. Вра­щая круги, можно было получать разнообразные сочетания поня­тий. С помощью своей машины Луллий получал из заданных посы­лок силлогистические выводы. В первой половине XVII в. французский математик Б. Паскаль (1623-1662) сконструировал машину для вы­полнения арифметических операций. Идея машинизации процес­сов умозаключения была теоретически развита немецким фило­софом и ученым Г. Лейбницем (1646-1716) в работе «Об искусстве комбинаторики». Первой подлинно Л. м. считается «демонстра­тор» Ч. Стенхопа (1753-1816), с помощью которого проверялись не только традиционные, но и т. наз. «числовые» силлогизмы. «Де­монстратор» решал элементарные задачи традиционной логики.
Научные основы для создания современных Л. м. были заложе­ны благодаря развитию математической логики и кибернетики, а


[178]
техническая возможность их создания была обеспечена прогрес­сом в области электроники и автоматики. В 1944 г. в США была построена автоматическая вычислительная машина «Марк-1», имев­шая электромагнитное реле и перфоленту, на которой записыва­лись числа и указывались операции с ними. В 1945 г. Дж. фон Ней­ман предложил помещать закодированную программу вычислений в запоминающее устройство машины, что значительно расши­рило диапазон ее возможностей. С середины 50-х годов начали со­здаваться информационно-логические машины, способные хранить значительные записи информации, выбирать из них необходимые данные и производить не только математическую обработку ин­формации, но и логические операции. Л. м. последующих поколе­ний способны осуществлять миллиарды операций в секунду, раз­личать простые рисунки, самообучаться, понимать простые фразы на естественном языке и решать самые разнообразные задачи во многих областях науки, техники, управления и т. д.
Принципиальная схема Л. м. включает следующие основные ком­поненты: 1. Входное устройство, преобразующее внешнюю инфор­мацию в последовательность электрических импульсов. 2. Выходное устройство, преобразующее электрические сигналы в последова­тельность воспринимаемых человеком знаков. 3. Запоминающее ус­тройство, хранящее информацию и часто называемое просто «па­мятью» машины. Различают оперативную память, емкость которой сравнительно невелика, но отличается быстродействием, и дол­говременную, внешнюю память, с большим объемом, но мень­шим быстродействием. 4. Арифметическое устройство, осуществ­ляющее математические и логические действия. 5. Блок управления, обеспечивающий автоматическое выполнение программы, введен­ной в машину.
Все более широкое использование Л. м. позволяет человеку решать все более сложные задачи, освобождает его от рутинных мыслительных операций и делает человеческий труд все более творческим.
ЛОГИЧЕСКАЯ ПРАВИЛЬНОСТЬ — соответствие законам и пра­вилам формальной логики. Обычно проводят различие между ис­тинностью и правильностью человеческого мышления. Понятие истины характеризует мышление в его отношении к дей­ствительности: мысль, предложение истинны, если они соответ­ствуют действительности. Понятие правильности характеризует мышление в его отношении к законам и правилам логики: рас­суждение правильно, если в нем соблюдены все необходимые пра­вила логики.


[179]
Различие между истинностью и правильностью отчетливо про­является в тех случаях, когда формально правильное рассуждение приводит к ложному выводу. Напр., рассмотрим умозаключение:
Все металлы — твердые тела. Ртуть не является твердым телом.
Ртуть не является металлом.
Это умозаключение построено в форме простого категориче­ского силлогизма, причем оно отвечает соответствующим прави­лам, т. е. правильно. Однако вывод является ложным. Это обуслов­лено ложностью первой посылки. Если рассуждение построено неправильно, то даже из истинных посылок мы можем получить как истину, так и ложь. Напр.:
Все тигры — полосаты.
Это животное - полосато.
Это животное — тигр.
Выводное суждение может быть как истинным, так и ложным, в зависимости от того, кто перед нами — полосатый тигр или полоса­тая зебра. Для того чтобы выводное знание было безусловно истин­ным, требуется, чтобы наше рассуждение опиралось на истинные посылки и было правильным. Правильность рассуждений можно кон­тролировать, гораздо сложнее устанавливается истинность знания. Уче­ные прошлого часто приходили к ложным выводам не потому, что рассуждали неправильно, а потому, что посылки их были ложными.
ЛОГИЧЕСКАЯ ФОРМА — способ связи содержательных частей рассуждения (доказательства, вывода и т. п.). В соответствии с ос­новным принципом логики, правильность рассуждения зависит только от его формы и не зависит от его конкретного содержания. Само название «формальная логика» подчеркивает, что эта логи­ка интересуется только формой рассуждения. Л. ф. представляется посредством логических констант и переменных. Логические кон­станты, подобные «и», «или», «если, то» и т. д., не имеют само­стоятельного содержания, но с их помощью из одних содержа­тельных выражений могут быть получены новые содержательные выражения. Переменные, входящие в Л. ф., представляют выра­жения, обладающие самостоятельным содержанием: высказыва­ния, имена (см.: Символы собственные и несобственные).
Напр., высказывания «Все лошади едят овес» и «Все реки впа­дают в море» различны по своему содержанию, причем первое истинно, а второе ложно. Отвлекаясь от содержания высказыва-



[180]
ний, можно заменить их части переменными S и Р. Получим, что данные высказывания имеют одну и ту же логическую форму: «Все S есть Р». Содержательно разные высказывания «Если есть огонь, то есть дым» и «Если математика - наука, то она устанавливает зако­ны» также имеют одинаковую логическую форму: «Если А, то В».
Следующие два вывода, различающиеся своим содержанием, совпадают по своей логической форме: «Если сейчас день, то свет­ло. Сейчас день. Следовательно, светло» и «Если 13 - простое чис­ло, оно делится только на себя и на единицу. 13 - простое число. Следовательно, 13 делится только на себя на и на единицу». Заме­нив высказывания, входящие в данные выводы, переменными, получаем, что в обоих случаях рассуждение идет по одной и той же схеме: «Если А, то В. А. Следовательно, В». Это — схема пра­вильного рассуждения: какие бы конкретные высказывания ни подставлялись вместо A и В, если посылки истинны, заключение также будет истинным (см.: Логическая правильность).
Различие между Л. ф. и содержанием не является абсолютным. То, что в одном случае считается относящимся к форме, в другом может оказаться содержательным компонентом рассуждения, и наоборот.
Интерес логики к Л. ф. не означает отвлечение ее от всякого содержания. Сама Л. ф. обладает определенным абстрактным со­держанием, его иногда называют «формальным», чтобы отличить от «конкретного содержания». Скажем, форма «Все S есть Р» ука­зывает, что у всякого предмета, обозначаемого буквой S, есть при­знак, обозначаемый буквой Р.
Понятие Л. ф. является центральным в логике. С ним связаны понятия логического закона, правила вывода, логического следова­ния и др.
ЛОГИЧЕСКИЕ КОНСТАНТЫ, или: Логические постоян­ные, — термины, относящиеся к логической форме рассуждения (доказательства, вывода) и являющиеся средством передачи чело­веческих мыслей и выводов, заключений в любой области. К Л. к. относятся такие слова, как «не», «и», «или», «есть», «каждый», «некоторый» и т. п. Л. к. не имеют самостоятельного содержания. Сами по себе они ничего не описывают и ничего не обозначают. Вместе с тем они позволяют из одних содержательных выражений получать другие. Установление точного смысла Л. к. и выяснение самых общих законов, относящихся к ним, — одна из основных задач логики (см.: Логическая форма, Символы собственные и несоб­ственные, Символика логическая).
ЛОГИЧЕСКИЕ ОПЕРАЦИИ - операции, посредством которых из простых высказываний образуются сложные, из простых тер-


[181]
минов — сложные, из высказываний — термины, из терминов — высказывания и т. д.
К Л. о., позволяющим из одних высказываний получать другие высказывания, относятся конъюнкция («и», символически &), дизъ­юнкция («или», v), импликация («если, то», ->), эквивалентность («если и только если», =), отрицание («неверно, что», ˜) и др. Так, если даны два произвольных высказывания A и В, из них с помощью конъюнкции получается сложное высказывание A & В, которое истинно, только когда A и B истинны; с помощью дизъ­юнкции получается сложное высказывание A v В, истинное, ког­да хотя бы одно из входящих в него высказываний истинно, и т. п. (см.: Логика высказываний).
ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ АВТОМАТИКИ - устройства, реа­лизующие некоторые простые логические функции и функцио­нальные преобразования в машинах, самостоятельно работающих по заданной программе. Наиболее распространенным логическим элементом, применяемым в схемах управления автоматических ус­тройств, является электромеханическое реле, реагирующее на оп­ределенные значения и изменения величин к.-л. параметра. На­пряжение на его катушке является входным сигналом, состояние контактов реле (замкнутость или разомкнутость) — выходным сигналом.
Логические элементы являются одной из важнейших частей электронно-вычислительных машин. Они подразделяются на эле­менты, реализующие логическое отрицание, — схема «НЕ»; эле­менты, реализующие логическую конъюнкцию, — схема «И»; эле­менты, реализующие логическую дизъюнкцию, — схема «ИЛИ», и элементы, реализующие комбинированные логические опе­рации. В сущности смысл работы логических элементов заключа­ется в том, чтобы пропускать или не пропускать сигнал по той или иной цели, усиливать поступивший сигнал или не усили­вать и т. п. Набор логических элементов позволяет электронно-вычислительной машине осуществлять преобразования инфор­мации в соответствии с преобразованиями формул в алгебре логики.
ЛОГИЧЕСКИЙ АНАЛИЗ - применение средств математической логики для обсуждения и решения философских и методологи­ческих проблем. Выражение проблемы в формальном языке при­дает ей точность и определенную ясность, что иногда способно облегчить поиск ее решения. При этом часто оказывается, что формальное выражение проблемы не вполне адекватно ее содер­жательному пониманию. Тогда мы пытаемся улучшить это выра­жение и сделать его более адекватным. Одновременно происхо-



[182]
дит и более глубокое содержательное уяснение анализируемой проблемы. Напр., когда А. Тарский строит точное формальное определение понятия истины, он применяет понятие истины к предложениям. Это дает повод поставить вопрос о том, чему мы приписываем понятие истины — предложениям или суждениям. Обсуждение этого вопроса позволяет более глубоко понять при­роду суждения и предложения.
Основы метода Л. а. были заложены в трудах немецкого мате­матика и логика Г. Фреге и англ. логика и философа Б. Рассела. Однако широкое распространение он получил в трудах предста­вителей логического позитивизма, которые провозгласили, что ос­новной задачей философии является Л. а. языка науки. Несмотря на значительные успехи в решении отдельных проблем, достигну­тые Р. Карнапом, К. Гемпелем, К. Рейхенбахом и др., представители логического позитивизма в общем не смогли использовать все эв­ристические возможности метода Л. а., т. к. в силу своих гносеоло­гических установок ограничивали базис этого метода средствами экстенсиональной логики. В настоящее время метод Л. а. часто ис­пользуется на различных этапах философско-методологического исследования: для более четкой постановки проблем, для выявле­ния скрытых допущений той или иной точки зрения, для уточне­ния и сопоставления конкурирующих концепций, для их более строгого и систематического изложения и т. п. Следует лишь по­мнить об ограниченности этого метода и опасностях, связанных с его применением. Точность выражений, к которым приводит метод Л. а., часто сопровождается обеднением содержания. Простота и ясность формального выражения некоторой проблемы иногда может порождать иллюзию решения там, где еще требуются даль­нейшие исследования и дискуссии. Трудности формального пред­ставления и заботы о его адекватности могут увести нас от обсуж­дений собственно философской или методологической проблемы и заставить заниматься техническими вопросами, лишенными фи­лософского смысла. Между прочим, так и случилось со многими методологическими проблемами логического позитивизма. Если же помнить об этом и рассматривать формальное выражение философско-методологической проблемы не как конечный резуль­тат, а как вспомогательное средство более глубокого философско­го анализа, как некоторый промежуточный этап в ходе философского исследования, то такие формальные выражения иногда могут оказаться полезными (см.: Логика научного познания). ЛОГИЧЕСКИЙ ЗАКОН, или: Закон л о г и к и, - выражение, содержащее только логические константы и переменные и явля-


[183]
ющееся истинным в любой (непустой) предметной области. При­мером Л. з. может служить любой закон логики высказываний (ска­жем, непротиворечия закон, закон исключенного третьего, закон де Моргана, закон косвенного доказательства и т. п.) или логики предикатов.
Л. з. принято называть также (логической) тавтологией. В об­щем случае логическая тавтология — выражение, остающееся ис­тинным, независимо от того, о каких объектах идет речь, или «всегда» истинное выражение. Напр., в выражение «Неверно, что р и не-р», представляющее непротиворечия закон, вместо пере­менной р должны подставляться высказывания. Все результаты таких подстановок («Неверно, что 11 - простое число и вместе с тем не является простым» и т. п.) являются истинными высказы­ваниями. В выражение «Если для всех х верно, что х есть Р, то не существует х, не являющийся Р», представляющее закон логики предикатов, вместо переменной х должно подставляться имя объекта из любой (непустой) предметной области, а вместо пе­ременной Р — некоторое свойство.
Все результаты таких подстановок представляют собой истин­ные высказывания («Если для всех людей верно, что они смерт­ны, то не существует бессмертного человека», «Если каждый ме­талл пластичен, то нет непластичных металлов» и т. п.).
Понятие Л. з. непосредственно связано с понятием логического следования: заключение логически следует из принятых посылок, если оно связано с ними логическим законом. Напр., из посылок «Если р, то q» и «Если q, то r» логически следует заключение «Если р, то r», поскольку выражение «Если (если р, то q, и если q, то r), то (если р, то r)» представляет собой транзитивности закон (скажем, из посылок «Если человек отец, то он родитель» и «Если человек родитель, то он отец или мать» по этому закону логи­чески вытекает следствие «Если человек отец, то он отец или мать»).
Современная логика исследует логические законы только как элементы систем таких законов. Каждая из логических систем содержит бесконечное множество Л. з. и представляет собой аб­страктную знаковую модель, дающую описание какого-то опре­деленного фрагмента, или типа, рассуждений. Напр., бесконеч­ное множество систем, обладающих существенной общностью и объединяемых в рамках модальной логики, распадается на эпис­темическую логику, деонтическую логику, оценок логику, логику вре­мени и др.
В современной логике построены логические системы, не со­держащие закона непротиворечия (паранепротиворечивая логика),



[184]
закона исключенного третьего, закона косвенного доказательства (интуиционистская логика) и т. д.
ЛОГИЧЕСКИЙ КВАДРАТ (квадрат противоположностей) - ди­аграмма, служащая для мнемонического запоминания некото­рых логических соотношений между общеутвердительными (A), общеотрицательными (Е), частноутвердительными (I) и частноотрицательными суждениями (О). Логический квадрат пока­зан на рисунке. Противоречащие, контрадикторные суждения (А и О; Е и I) не могут быть одновременно истинными и ложными: если одно из них истинно, то другое ложно. Так, если суждение «Все металлы являются электропроводными» (A) истинно, то суж­дение «Некоторые металлы не являются электропроводными» ложно. Если суждение «Некоторые металлы не являются твер­дыми» (О) истинно, то суждение «Все металлы являются твер­дыми» (А) ложно.
Противные суждения (A и Е), в отличие от противоречащих, могут оба оказаться ложными, но не могут быть оба истинными. Так, суждения «Все студенты являются шахматистами» (A) и «Ни один студент не является шахматистом» (Е) оба ложны. При ис­тинности же одного из них второе является ложным. Так, если суждение «Все кенгуру являются млекопитающими» (A) истин­но, то суждение «Ни один кенгуру не является млекопитающим» (Е) ложно. Подпротивные суждения (I и О) не могут быть одно­временно ложными. Так, если суждение «Некоторые металлы не являются электропроводными» (О) ложно, то суждение «Неко­торые металлы являются электропроводными» (I) (т. е. «Суще­ствуют металлы, которые электропроводны») является истин­ным. Подпротивные суждения могут оказаться и оба истинными. Таковы суждения «Некоторые металлы являются твердыми» (O)


и «Некоторые металлы не являются твердыми» (О).
Суждения, находящиеся в отно­шении подчинения (A, I и Е, О), от­личаются, напр., тем важным свой­ством, что при истинности общих суждений соответствующие им час­тные также являются истинными. Так, истинность суждения «Все газы являются сжимаемыми» (A) влечет истинность подчиненного ему суж­дения (I) «Некоторые газы являют­ся сжимаемыми».


[185]
ЛОГИЧЕСКИЙ ПОЗИТИВИЗМ - основное направление нео­позитивизма. Возникло в 20-х годах XX в. под влиянием идей австрийского философа Л. Витгенштейна, который в своем глав­ном произведении раннего периода «Логико-философский трак­тат» (1921 г., русский перевод 1958 г.) опирался на логическую систему, построенную Б. Расселом и А. Уайтхедом. В исчислении выс­казываний у нас имеется набор атомарных предложений, обладаю­щих следующими свойствами: 1) каждое атомарное предложение является либо истинным, либо ложным; 2) атомарные предложе­ния независимы друг от друга, т. е. истинность или ложность одного из них никак не влияет на истинность или ложность других атомар­ных предложений. Из атомарных предложений с помощью логи­ческих связок — отрицания, конъюнкции, дизъюнкции, импликации и т. п. — можно строить более сложные, молекулярные предложе­ния, которые, в свою очередь, с помощью тех же связок можно объединять в еще более сложные предложения и т. д. Так возникает иерархия все более сложных молекулярных предложений.
В «Логико-философском трактате» Витгенштейн онтологизирует эту логическую структуру: он представляет мир как совокуп­ность атомарных и молекулярных фактов, построенную точно так­же, как строится язык исчисления высказываний. Атомарные фак­ты никак не связаны друг с другом, поэтому в мире нет никаких закономерных связей. Если действительность представляет собой лишь комбинации фактов, то наука должна быть комбинацией предложений, отображающих факты и их различные сочетания. Все, что претендует на выход за пределы этого «одномерного» мира фактов, все, что апеллирует к связи фактов или к глубинным сущ­ностям, должно быть изгнано из науки как ненаучная, бессмыс­ленная болтовня. Средством очищения науки от бессмысленных предложений является логический анализ языка науки.
Представители Л. п. развили эти идеи Витгенштейна в гносео­логическом направлении. Их теория познания опиралась на следу­ющие принципы.
1. Всякое знание есть знание о том, что дано человеку в чув­ственном восприятии.
2. То, что дано нам в чувственном восприятии, мы можем знать с абсолютной достоверностью.
3. Все функции знания сводятся к описанию.
Из этих основных принципов теории познания Л. п. вытекают некоторые другие его особенности. Сюда относится прежде всего отрицание традиционной философии, или «метафизики». Филосо­фия всегда стремилась сказать что-то о том, что лежит за ощуще-



[186]
ниями, стремилась вырваться из узкого круга субъективных пере­живаний.
Логический позитивист либо отрицает существование мира вне чувственных переживаний, либо считает, что о нем ничего нельзя сказать. В обоих случаях философия оказывается ненужной. Един­ственное, в чем она может быть хоть сколько-нибудь полезна, — это анализ научных высказываний. Поэтому философия отожде­ствляется с логическим анализом языка. С отрицанием филосо­фии тесно связана терпимость Л. п. к религии. Если все разговоры о том, что представляет собой мир, объявлены бессмысленными, а вы тем не менее хотите говорить об этом, то безразлично, счита­ете ли вы мир идеальным или материальным, видите в нем воп­лощение Бога или населяете его демонами, — все это в равной степени не имеет к науке никакого отношения, а является сугубо личным делом каждого.
В основе науки, по мнению логических позитивистов, лежат про­токольные предложения, выражающие чувственные пережива­ния субъекта. Истинность этих предложений абсолютно досто­верна и несомненна. Совокупность истинных протокольных пред­ложений образует твердый эмпирический базис науки. Для ме­тодологии Л. п. характерно резкое разграничение эмпириче­ского и теоретического уровней знания. Однако первона­чально логические позитивисты полагали, что все предложения науки — подобно протокольным предложениям— говорят о чув­ственно данном. Поэтому каждое научное предложение можно свести к протокольным предложениям, подобно тому как любое молекулярное предложение экстенсиональной логики может быть разложено на составляющие его атомарные предложения. Досто­верность протокольных предложений передается всем научным предложениям, поэтому наука состоит только из достоверно ис­тинных предложений.
С точки зрения Л. п., деятельность ученого в основном должна сводиться к двум процедурам: 1) установление протокольных пред­ложений; 2) изобретение способов объединения и обобщения этих предложений. Научная теория мыслилась в виде пирамиды, в вер­шине которой находятся основные понятия, определения и акси­омы; ниже располагаются предложения, выводимые из аксиом; вся пирамида опирается на совокупность протокольных предложений, обобщением которых она является. Прогресс науки выражается в построении таких пирамид и в последующем слиянии небольших пирамидок, построенных в некоторой конкретной области науки, в более крупные пирамиды, которые, в свою очередь, сливаются в


[187]
еще более крупные и т. д. до тех пор, пока все научные теории и области не сольются в одну громадную систему — единую унифи­цированную науку. В этой примитивно-кумулятивной модели раз­вития не происходит никаких потерь или отступлений: каждое установленное протокольное предложение навечно ложится в фундамент науки; если некоторое предложение обосновано с по­мощью протокольных предложений, то оно прочно занимает свое место в пирамиде научного знания.
Методологическая концепция Л. п. столкнулась с необходимо­стью решать многочисленные проблемы, вставшие перед ней в связи с той моделью науки, которую она сконструировала. Попытки ре­шить первоначальные проблемы породили новые проблемы, а ре­шение последующих проблем натолкнулось на новые трудности, и в конце концов методология Л. п. развалилась под грузом тех про­блем и трудностей, которые она же и породила. Для сопоставления ее с реальной историей научного познания дело так и не дошло.
Вместе с тем последующее развитие философии науки суще­ственно опиралось на те — как положительные, так и отрицатель­ные — результаты, которые были получены Л. п. в его анализе структуры научного знания, языка науки, различных видов выс­казываний, входящих в научные теории, логических взаимоотно­шений между ними и т. д.
ЛОГИЧЕСКИЙ СИНТАКСИС - раздел семиотики, исследующий формальные свойства знаковых систем. Семиотику принято раз­делять на три части: синтаксис, семантику и прагматику. Син­таксис исследует формальные отношения между знаками. Се­мантика занимается изучением отношений языка и его выра­жений к обозначенным объектам и выражаемому ими значению. Прагматика обращает внимание на употребление языковых выражений, на отношения языка к его носителям. Л. с. отличается тем, что исследует синтаксические свойства не естественных, а формальных, логических языков, поэтому его относят обычно не к семиотике, а к металогике.
С точки зрения синтаксиса, формальная система представляет собой набор исходных символов, из которых по определенным правилам могут быть построены разнообразные формулы, из кото­рых выделяется класс правильно построенных формул. Правила построения формул называются правилами образования. К ним добавляются правила преобразования: аксиомы и правила получения одних формул из других. Правила образования и преобразования формул относятся к числу синтаксических пра­вил. Синтаксические свойства формальных систем выражаются в


[188]
таких понятиях, как «доказательство», «непротиворечивость систе­мы аксиом», «полнота», «независимость аксиом» и т. п. В качестве языка, на котором описываются синтаксические свойства формаль­ных систем, используется фрагмент обычного естественного языка. Однако он, в свою очередь, также может быть формализован.
ЛОГИЧЕСКОГО АНАЛИЗА ФИЛОСОФИЯ - течение в современ­ной западной философии, сводящее философию к логическому ана­лизу языка средствами символической логики. Предмет Л. а. ф. — язык науки и формальные языки логики и математики. Возникно­вение Л. а. ф. связано с интенсивным процессом математизации на­уки и развитием методов формализации. По сути дела ее нельзя рассматривать как определенное философское направление или философскую систему. Метод логического анализа использовал­ся самыми разными философами — Б. Расселом, Л. Витгенштей­ном, Р. Карнапом, К. Поппером, А. Папом, У. Куайном и т. д. Ос­новная идея Л. а. ф. заключается в том, что любую осмысленную философскую или методологическую проблему можно решить сред­ствами символической логики. Для этого рассматриваемую пробле­му нужно формализовать, т. е. описать на формальном логическом языке, а затем, используя логические методы, найти точный ответ. Однако многочисленные попытки решать философские проблемы таким путем показали, что, во-первых, далеко не все философские проблемы могут быть формализованы, а во-вторых, при формали­зации содержание проблемы настолько обедняется, что их реше­ние формальными средствами оказывается философски неинтерес­ным. В настоящее время даже сторонники метода логического ана­лиза признают, что он может быть лишь вспомогательным сред­ством при обсуждении философских проблем, но отнюдь не сред­ством их решения (см.: Логический анализ, Логический позитивизм).
ЛОГИЧЕСКОЕ ПРОТИВОРЕЧИЕ, см.: Противоречие.
ЛОГИЧЕСКОЕ СЛЕДОВАНИЕ - отношение, существующее меж­ду посылками и обоснованно выводимыми из них заключениями. Л.с. относится к числу фундаментальных, исходных понятий логи­ки, точного универсального определения не имеет; в частности, описание его с помощью слов «выводимо», «вытекает» и т. п. со­держит неявный круг, поскольку последние являются синонима­ми слова «следует». Понятие Л. с. обычно характеризуется через связи с другими логическими понятиями, и прежде всего через понятия логического закона и модели.
Из высказывания А логически следует высказывание В, когда импликация «Если A, то В» является частным случаем закона логи­ки. Напр., из высказывания «Если натрий — металл, он пластичен»


[189]
логически вытекает высказывание «Если натрий непластичен, он не металл», поскольку импликация, основанием которой являет­ся первое высказывание, а следствием — второе, представляет со­бой частный случай логического контрапозиции закона.
Иное, семантическое определение логического следова­ния: из посылок A1, ..., Аn логически следует высказывание В, если не может быть так, что высказывания A1, ..., Аn истинны, а высказывание В ложно (т. е. если В истинно в любой модели, в которой истинны A1, ..., Аn).
Отличительной чертой Л. с. является, таким образом, то, что оно ведет от истинных высказываний только к истинным. Если выво­ды, относимые к обоснованным, дают возможность переходить от истины к лжи, то установление между высказываниями отноше­ния Л.с. теряет всякий смысл, и логический вывод превращается из формы разворачивания и конкретизации знания в средство, стирающее грань между истиной и заблуждением.
В современной логике проблема адекватного описания Л. с. воз­никла в связи с тем, что логика классическая дает слишком широ­кое его описание, в ряде моментов не согласующееся с интуитив­ным представлением о следовании одних высказываний из других. В частности, согласно этой логике, из противоречия логически сле­дует любое высказывание, логически истинное высказывание сле­дует из любого и т. п. (см.: Импликация материальная, Парадоксы импликации).
Усовершенствованные описания Л. с. не содержат правил, по­зволяющих перейти от истинных посылок к ложному заключению. Они удовлетворяют, кроме того, ряду дополнительных условий. Выдвижение этих условий объясняется стремлением дать такое описание Л. с., при котором существование между высказывания­ми этого отношения зависело бы не только от истинностного зна­чения высказываний (как в классической логике), но и от их смыс­ловой связи. Поскольку «связь по смыслу» понимается по-разному, существуют различные неклассические теории Л. с. С их помощью решается задача исключения нежелательных, или парадоксаль­ных, правил следования и показано, что нет привилегирован­ной логической системы, являющейся единственно правильным описанием Л. с. Дальнейшая задача формально-логического ана­лиза данного отношения состоит в разработке единой логичес­кой теории, взаимосвязанными фрагментами которой оказались бы уже построенные и иные возможные теории Л. с.
ЛОГИЧЕСКОЕ УДАРЕНИЕ — ударение, характеризующее смыс­ловую нагрузку компонентов суждения. В некоторых учениях о суж-



[190]
дении в традиционной логике, принадлежавших психологическому направлению, основная смысловая нагрузка в простых атрибу­тивных суждениях относилась к предикату суждения: именно в предикате суждения фиксировалась новая информация о предме­те. Суждение при этом истолковывалось как некоторый ответ на запрос мысли, выраженный в соответствующем вопросительном предложении (см.: Вопрос). Так, в суждении «Андреев пишет пись­мо» в зависимости от контекста, т. е. в зависимости от того, на какой вопрос оно отвечает, различные компоненты суждения бу­дут выполнять роль предиката. Если суждение является ответом на вопрос: «Что делает Андреев?», то предикатом будет «пишет пись­мо». Если же нам известно, что некий человек пишет письмо, и нас интересует, кто пишет письмо, то предикатом будет «Андре­ев» («Пишущий письмо есть Андреев»).
ЛОГОС (греч. logos) — термин древнегреческой философии, оз­начающий одновременно «слово» (или «предложение», «выска­зывание», «речь») и «смысл» (или «понятие», «суждение», «осно­вание»). Этот термин был введен в философию Гераклитом (ок. 544 — ок. 483 до н. э.), который называл Л. вечную и всеобщую необходимость, устойчивую закономерность. В последующем раз­витии человеческой мысли значение этого термина неоднократно изменялось, однако до сих пор, когда говорят о Л., имеют в виду наиболее глубинную, устойчивую и существенную структуру бы­тия, наиболее существенные закономерности развития мира.
ЛОЖЬ, см. Истинностное значение.
[191]


М
МАТЕМАТИЧЕСКАЯ ЛОГИКА
— одно из названий современной формальной логики, пришедшей во второй половине XIX — на­чале XX в. на смену традиционной логике. В качестве другого назва­ния современного этапа в развитии науки логики используется также термин логика символическая. Определение «математичес­кая» подчеркивает сходство новой логики с математикой, осно­вывающееся прежде всего на применении особого символическо­го языка, аксиоматического метода, формализации.
М. л. исследует предмет формальной логики методом построе­ния специальных формализованных языков, или исчислений. Они позволяют избежать двусмысленной и логической неясности ес­тественного языка, которым пользовалась при описании правиль­ного мышления традиционная логика. Новые методы дали логике такие преимущества, как большая точность формулировок, воз­можность изучения более сложных с точки зрения логической формы объектов. Многие проблемы, исследуемые в М. л., вообще невозможно было сформулировать с использованием только тра­диционных методов.
Иногда термин «М. л.» употребляется в более широком смыс­ле, охватывая исследование свойств дедуктивных теорий, имену­емое металогикой или метаматематикой.
МАТЕРИАЛЬНАЯ СУППОЗИЦИЯ, см.: Суппозиция.
МЕТАМАТЕМАТИКА
— раздел математической логики, изучаю­щий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов.
М. рассматривает формализованную теорию как множество не­которых конечных последовательностей символов, называемых фор-



[192]
мулами и термами, к которым добавляется множество операций, производимых над этими последовательностями. Формулы и тер­мы, получаемые с помощью простых правил, служат заменой пред­ложениям и функциям содержательной математической теории. Операции над формулами соответствуют элементарным шагам де­дукции в математических рассуждениях. Формулы, соответствую­щие аксиомам содержательной теории, выступают в качестве ак­сиом формализованной теории. Формулы, которые могут быть выведены из аксиом посредством принятых операций, соответ­ствуют теоремам содержательной теории.
Множество формул и множество термов, рассматриваемые как множества конечных последовательностей с операциями, в свою очередь, могут быть объектами математического исследования. В ранний период развития математической логики использовались в основном простые методы, исключались все нефинитные. Лиде­ром этого направления был Д. Гильберт, полагавший, что с по­мощью простых методов М. удастся доказать непротиворе­чивость фундаментальных математических теорий. Однако тео­ремы К. Гёделя показали, что программа Гильберта неосуществи­ма. Использование финитных методов для исследования форма­лизованных теорий является естественным в силу их очевидного финитного характера. Но на практике ограничение методов дока­зательства элементарными методами значительно усложняет ма­тематические исследования. Поэтому для более глубокого проник­новения в сущность формализованных теорий современная М. широко использует более сложные, нефинитные методы.
Множество термов любой формализованной теории является ал­геброй, и множество всех формул также является алгеброй. После естественного отождествления эквивалентных формул множество всех формул становится решеткой (структурой), а именно: булевой ал­геброй, псевдобулевой алгеброй, топологической булевой алгеброй и т. п. - в зависимости от типа логики, принимаемой в теории. Эти алгебры, в свою очередь, связаны с понятием поля множеств и то­пологического пространства. С этой точки зрения представляется ес­тественным применение в М. методов алгебры, теории решеток (струк­тур), теории множеств и топологии. В М. широко используется также гёделевский метод арифметизации и теория рекурсивных функций.
М. исследует вопросы непротиворечивости и полноты форма­лизованных теорий; независимость аксиом; проблему разреши­мости; вопросы определимости и погружения одних теорий в дру­гие; дает точное определение понятия доказательства для различ­ных формализованных теорий и доказывает теоремы о дедукции;


[193]
изучает проблемы интерпретации формальных систем и их раз­личные модели; устанавливает разнообразные отношения между формализованными теориями и т. п.
МЕТАТЕОРИЯ (от греч. meta - после, за, позади)
- теория, изу­чающая язык, структуру и свойства некоторой другой теории. Тео­рия, свойства которой исследуются в М., называется предмет­ной, или объектной, теорией. Наиболее развиты М. логики и математики (в металогике и метаматематике). Объектом исследова­ния М. обычно оказывается не содержание объектной теории, а ее формальные свойства, поэтому она предварительно формализуется и представляется в виде формального исчисления. В М. можно вы­делить две части: синтаксис, изучающий структурные и де­дуктивные свойства исследуемой теории; семантику, рассматри­вающую вопросы, связанные с интерпретацией изучаемой теории.
МЕТАФОРА (от греч, metaphora - перенос, образ)
- перенесе­ние свойств одного предмета (явления или аспекта бытия) на другой по принципу их сходства в к.-л. отношении или по контра­сту, напр.: «говор волн», «нос самолета», «свинцовые тучи» и т. п. В отличие от сравнения, где присутствуют оба члена сопоставле­ния, М. — это скрытое сравнение, в котором слова «как», «как будто», «словно» и т. п. опущены, но подразумеваются. В М. различ­ные признаки — то, чему уподобляется предмет, и свойства самого предмета — представлены не в их качественной раздельности, как в сравнении, а сразу даны в новом нерасчлененном единстве. Обладая неограниченными возможностями в сближении или неожиданном уподоблении самых разных предметов и явлений, по существу по-новому осмысливая предмет, М. позволяет вскрыть, обнажить, про­яснить его внутреннюю природу.
В науке М. - необходимое средство научного творчества. Практи­чески всякое новое научное понятие появляется как некая М., ста­новясь точным понятием лишь с течением времени. Напр., «свето­вая волна» — это М., уподобляющая свет колебаниям волн на по­верхности воды; «электрический ток» - тоже М., приравнивающая электричество к потоку воды, и т. п. Часто новое явление обознача­ется старым термином, относящимся к известным явлениям, и в течение некоторого времени этот термин выступает в качестве М., в которой отображаются свойства различных явлений.
МЕТАЯЗЫК (от греч. meta - после, за, позади)
- язык, сред­ствами которого исследуются и описываются свойства другого язы­ка, называемого предметным, или объектным. Напр., когда мы на­чинаем изучать иностранный язык, знакомиться с его выражения­ми, с его грамматической структурой, системой времен, падежей



[194]
и т. п., мы пользуемся для описания свойств этого пока еще не известного нам языка своим родным языком, который и выступа­ет в данном случае в качестве М.
Смешение объектного языка и М. приводит к противоречиям и парадоксам (см.: «Лжеца» парадокс). В естественном языке явного различия между объектным и М. нет: мы пользуемся одним и тем же языком и для того, чтобы говорить о внеязыковых объектах, и для того, чтобы говорить о самом языке. Только интуиция помогает нам избежать путаницы и противоречий. Однако всегда существует опасность того, что неразличение объектного и М. приведет к про­тиворечию. Поэтому в науке, в частности в металогике и метама­тематике, проводится четкое разделение этих двух языков. К М. обычно предъявляются следующие требования: 1) в нем должны быть средства для описания синтаксических свойств объектного язы­ка, в частности средства для построения выражений объектного языка; 2) М. должен быть настолько богат по своим выразительным возможностям, чтобы для каждого выражения объектного языка в нем существовала формула, являющаяся переводом этого выраже­ния; 3) логический словарь М. должен быть по крайней мере столь же богат, как и логический словарь объектного языка; 4) в М. должны быть дополнительные переменные, принадлежащие к более высокому типу, чем переменные объектного языка, и т. д.
МЕТОД (от греч. methodos — путь, способ исследования, обуче­ния, изложения)
— совокупность приемов и операций познания и практического преобразования действительности; способ достиже­ния определенных результатов в познании и практике. Применение того или иного М. детерминируется целью познавательной или прак­тической деятельности, предметом изучения или действия и усло­виями, в которых осуществляется деятельность.
Существует множество классификаций М. познания. В частности, выделяют частные специальные М. отдельных конкретных наук, напр. М. механики, оптики, термодинамики, химического анализа, критический анализ источников как М. исторической науки, срав­нительный М. в языкознании и т. п. Наряду с М. конкретных наук существуют также общенаучные М.,т. е. М., используемые об­ширным классом наук или даже всеми науками. К числу таких М. обычно относят наблюдение, измерение, эксперимент, индуктив­ный М., М. гипотез, М. формальной логики и т. п. И наконец, наиболее общими М., применимыми как в познании, так и в прак­тике, являются философские М., напр. метафизический и диалек­тический М., М. восхождения от абстрактного к конкретному, ана­лиз и синтез, идеализация и абстракция, сравнение и т. п. Наряду с


[195]
указанной классификацией широким распространением пользуется также разделение М. науки на эмпирические и теорети­ческие М. познания.
Всякий М. опирается на определенное знание об объектах позна­ния или практического действия. Поэтому иногда М. называют на­учные принципы и теории; напр., вариационные принципы меха­ники — принцип возможных перемещений, принцип наименьшего действия, принцип Д'Аламбера и т. п. — выступают в качестве М. изучения равновесия и движения несвободной механической систе­мы. Материалистическую диалектику часто также называют всеоб­щим М. познания и действия. Возможно, в этом случае лучше гово­рить о методологической функции законов и теорий науки, прин­ципов философии. Учение о М. называется методологией.
МЕТОДОЛОГИЧЕСКАЯ АРГУМЕНТАЦИЯ
- обоснование отдель­ного утверждения или целостной концепции путем ссылки на тот несомненно надежный метод, с помощью которого получено обо­сновываемое утверждение или отстаиваемая концепция. М.а. являет­ся частным случаем аргументации теоретической.
Представления о сфере М.а. менялись от одной эпохи к другой. Существенное значение придавалось ей в Новое время, когда счи­талось, что именно методологическая гарантия, а не соответствие фактам как таковое сообщает суждению его обоснованность. Совре­менная методология науки скептически относится к мнению, что строгое следование методу способно само по себе обеспечить истину и служить ее надежным обоснованием. Возможности М.а. очень раз­личны в разных областях знания. Ссылки на метод, с помощью кото­рого получено конкретное заключение, довольно обычны в есте­ственных науках, крайне редки в гуманитарных науках и почти не встречаются в практическом и тем более художественном мышлении.
Методологизм, сутью которого является преувеличение значе­ния М.а. и даже отдание ей приоритета перед другими способами теоретической аргументации, таит в себе опасность релятивизации научного и иного знания. Если содержание знания определяется не независимой от него реальностью, а тем, что мы должны или хо­тим увидеть в ней, а истинность определяется соблюдением методо­логических канонов, то из-под знания ускользает почва объектив­ности. Никакие суррогаты, подобные интерсубъективности, обще­принятости метода, его успешности и т. п., не способны заменить истину и обеспечить достаточно прочный фундамент для принятия знания. Методологизм сводит научное мышление к системе устояв­шихся, по преимуществу технических способов нахождения нового знания. Результатом является то, что научное мышление произволь-



[196]
но сводится к изобретаемой им совокупности технических при­емов. Согласно принципу эмпиризма, только наблюдения или эксперименты играют в науке решающую роль в процессе приня­тия или отбрасывания научных высказываний. В соответствии с этим принципом М. а. может иметь только второстепенное значение и никогда не способна поставить точку в споре о судьбе конкретного научного утверждения или теории. Общий методологический прин­цип эмпиризма гласит, что различные правила научного метода не должны допускать «диктаторской стратегии». Они должны исклю­чать возможность того, что мы всегда будем выигрывать игру, ра­зыгрываемую в соответствии с этими правилами: природа должна быть способна хотя бы иногда наносить нам поражение.
Методологические правила расплывчаты и неустойчивы, они всегда имеют исключения. В частности, индукция, играющая осо­бую роль в научном рассуждении, вообще не имеет ясных правил. Научный метод несомненно существует, но он не представляет собой исчерпывающего перечня правил и образцов, обязательных для каждого исследователя. Даже самые очевидные из этих правил могут истолковываться по-разному. «Правила научного метода» меняются от одной области познания к другой, посколь­ку существенным содержанием этих «правил» является неко­дифицируемое мастерство, т. е. умение проводить конк­ретное исследование и делать обобщения.
Научный метод не содержит правил, не имеющих или в принци­пе не допускающих исключений. Все его правила условны и могут нарушаться даже при выполнении их условия. Любое правило мо­жет оказаться полезным при проведении научного исследования, так же как любой прием аргументации может оказать воздействие на убеждения научного сообщества. Но из этого не следует, что все реально используемые в науке методы исследования и приемы ар­гументации равноценны и безразлично, в какой последовательнос­ти они используются. В этом отношении «методологический кодекс» вполне аналогичен моральному кодексу.
М. а. является, таким образом, вполне правомерной, а в науке, когда ядро методологических требований устойчиво, необходимой. Однако методологические аргументы не имеют решающей силы даже в науке. Прежде всего, методология гуманитарного познания не на­столько ясна, чтобы на нее можно было ссылаться. Иногда даже утверждается, что в науках о духе используется совершенно иная методология, чем в науках о природе. О методологии практического и художественного мышления вообще трудно сказать что-нибудь конкретное. Далее, методологические представления ученых явля-


[197]
ются в каждый конкретный промежуток времени итогом и выво­дом предшествующей истории научного познания. Методология науки, формулируя свои требования, опирается на историю на­уки. Настаивать на безусловном выполнении этих требований зна­чило бы возводить определенное историческое состояние науки в вечный и абсолютный стандарт. Каждое новое исследование явля­ется не только, применением уже известных методологических правил, но и их проверкой. Исследователь может подчиниться ста­рому методологическому правилу, но может и счесть его непри­емлемым в каком-то конкретном новом случае. История науки включает как случаи, когда апробированные правила приводили к успеху, так и случаи, когда успех был результатом отказа от какого-то установившегося методологического стандарта. Ученые не только подчиняются методологическим требованиям, но и кри­тикуют их и создают как новые теории, так и новые методологии.
МЕТОДОЛОГИЯ НАУКИ
- часть науковедения, исследующая структуру научного знания, средства и методы научного познания, способы обоснования и развития знания. Систематическое решение методологических проблем дается в методологической концепции, которая создается на базе определенных гносеологических принци­пов. Выработка общего понимания природы человеческого позна­ния, законов и стимулов его развития принадлежит философии, и это философское понимание знания оказывает решающее влияние на формирование представлений о научном знании.
На методологическую концепцию оказывают влияние не только философские принципы. Поскольку методологическая концепция является теорией строения и развития научного знания, постольку она — в той или иной степени — ориентируется также на науку и ее историю. Конечно, современная наука слишком обширна для того, чтобы все ее области можно было в равной мере принять во внима­ние. Поэтому каждая методологическая концепция основное внима­ние уделяет отдельным научным дисциплинам или даже отдельным теориям, которые с точки зрения этой концепции являются наибо­лее важными или образцовыми. Таким образом, несмотря на то, что у всех методологических концепций предмет один — наука и ее история, они могут различаться между собой не только потому, что вдохновляются разными философскими представлениями, но и тем, что ориентируются на разные области науки.
Следует указать еще на один фактор влияющий на методологи­ческую концепцию, — предшествующие и сосуществующие с ней концепции. Каждая новая концепция возникает и развивается в сре­де, созданной ее предшественницами. Взаимная критика конкури-



[198]
рующих концепций, проблемы, поставленные ими, решения этих проблем, способы аргументации, господствующие в данный мо­мент интересы — все это оказывает неизбежное давление на но­вую методологическую концепцию. Она должна выработать соб­ственное отношение ко всему предшествующему материалу: при­нять или отвергнуть существующие решения проблем, признать обсуждаемые проблемы осмысленными или отбросить некоторые из них как псевдопроблемы, развить критику существующих кон­цепций и т. д. Учитывая, что методологическая концепция нахо­дится под влиянием, с одной стороны, философии, а с другой стороны — всегда ориентирована на те или иные области научно­го познания, легко понять, почему в этой области существует громадное разнообразие различных методологических концепций.
Самостоятельной областью исследований М. н. становится в се­редине XIX в. Расширение круга методологических проблем свя­зано с исследованиями Больцано, Маха, Пуанкаре, Дюэма. С конца 20-х годов XX в. наибольшее влияние в М.н. приобрела концепция логического позитивизма (Шлик, Карнап, Фейгль и др.), которая исходила в понимании природы научного знания из субъективно-идеалистических воззрений Маха и логического атомизма Рассела и Витгенштейна. Логический позитивизм рассматривал науку как систему утверждений, в основе которой лежат особые «протоколь­ные» предложения, описывающие чувственные переживания и вос­приятия субъекта. Основную задачу М.н. логические позитивисты усматривали в логическом анализе языка науки с целью устране­ния из него псевдоутверждений, к которым они относили прежде всего утверждения философского характера. Концепция логическо­го позитивизма оказалась в резком противоречии с развитием на­уки и была подвергнута серьезной критике, в частности и со сторо­ны философов-марксистов.
С конца 50-х годов в центре внимания М. н. оказываются пробле­мы анализа развития науки. Появляются концепции, претендую­щие на описание развития научного знания в целом или в отдель­ные периоды. Значительное влияние приобретают методологические концепции Поппера, теория научных революций Куна, историчес­кая модель развития научного знания Тулмина, концепция научно-исследовательских программ Лакатоса и т. п. Для этих концепций характерны тесная связь с историей науки и критическое отноше­ние к неопозитивистской модели науки.
В современной М. н. на первый план выдвигаются следующие проблемы: анализ структуры научных теорий и их функций; поня­тие научного закона; процедуры проверки, подтверждения и опро-


[199]
вержения научных теорий, законов и гипотез; методы научного исследования; реконструкция развития научного знания. Несмот­ря на то что методологические исследования осуществляются на основе самых разнообразных философских школ и направлений, их результаты часто не зависят от философской ориентации ис­следователя и представляют общезначимую ценность.
МНОГОЗНАЧНАЯ ЛОГИКА
- совокупность логических систем, опирающихся на принцип многозначности. В классической двузначной логике выражения при интерпретации принимают только два значе­ния — «истинно» и «ложно», в М. л. рассматриваются и другие зна­чения, напр. «неопределенно», «возможно», «бессмысленно» и т. п. В зависимости от множества истинностных значений различают конечнозначные и бесконечнозначные логики. М. л.явля­ется одним из интенсивно развивающихся разделов логики неклас­сической.
Проблема содержательно ясной интерпретации многозначных систем — наиболее сложная и спорная в М. л. Об этом выразительно говорит, в частности, обилие интерпретаций, предложенных для самой старой из этих систем — трехзначной логики Я. Лукасевича. В соответствии с одной из ее интерпретаций, высказывания должны делиться не просто на истинные и ложные, а на истин­ные, ложные и парадоксальные. Значение «парадоксально» припи­сывается высказываниям типа «Данное утверждение является лож­ным», т. е. тем высказываниям, из допущения истинности которых вытекает их ложность, а их допущения ложности — истинность.
Промежуточное значение истолковывалось и как «бессмыслен­но». К бессмысленным относятся высказывания типа «Наполеон — наибольшее натуральное число» и т. п. Это значение истолковы­валось и как «неизвестно» или «неопределенно». Неопределенное высказывание — это высказывание, относительно которого в силу к.-л. (возможно, меняющихся от случая к случаю) оснований нельзя сказать, что оно истинно или ложно. К неопределенным могут от­носиться, в частности, высказывания, истинностное значение ко­торых является разным в разные моменты времени («Идет дождь»), высказывания с различного рода переменными и т. д.
Эти примеры показывают, что одна и та же многозначная си­стема может иметь разные интерпретации, причем «неестествен­ность» некоторых из них вовсе не означает, что столь же «неесте­ственной» будет и каждая иная интерпретация.
М. л. не отрицает двузначную логику. Напротив, первая позволя­ет более ясно понять основные идеи, лежащие в основе второй, и является в определенном смысле ее обобщением. В большинстве М. л.



[200]
отсутствуют отдельные законы двузначной логики. В принципе мож­но построить М. л., в которой не имеет места любой наперед за­данный закон двузначной логики. С другой стороны, М. л. таковы, что их законами являются утверждения, не имеющие аналогов в классической логике.
Эти факты не препятствуют, однако, рассмотрению М. л. как своеобразного обобщения двузначной логики. Некоторые утвержде­ния, являющиеся логическими законами при допущении двух зна­чений истинности, перестают быть законами при введении некото­рых дополнительных значений. Но в этом случае законами М. л. не оказываются и отрицания соответствующих двузначных законов. Напр., в интуиционистской логике не имеют места не только зако­ны исключенного третьего и приведения к абсурду, но и отрицания этих законов.
Ни двузначность, ни многозначность не являются прирожден­ными свойствами человеческого мышления. Решение одних проблем может быть получено в рамках двузначной логики, рассуждение о других может оказаться более успешным, если опирается на тот или иной вариант М. л. Вопрос же о том, какой является формальная логика как особая наука, с точки зрения числа допускаемых значе­ний истинности не имеет смысла. Логика никогда не исчерпывалась и тем более не исчерпывается сейчас одной-единственной логичес­кой системой. Вопрос о числе допускаемых значений истинности может возникнуть только при построении отдельных логических систем и при решении отдельных логических проблем. Логика же как совокупность всего огромного числа существующих конкрет­ных логических систем не является, очевидно, ни двузначной, ни многозначной.
М. л. существует около полувека. Многие ее проблемы пока не решены или недостаточно исследованы. Тем не менее уже к настоя­щему времени М. л. нашла большое число приложений, интерес­ных в теоретическом или практическом отношении. Прежде всего открытие М. л. заставило по-новому взглянуть на саму науку логи­ку, ее предмет и используемые ею методы. Оно с особой вырази­тельностью подчеркнуло тот факт, что классическая двузначная логика не является единственно мыслимой и возможной и что современная логика слагается из множества внутренне разнород­ных логических систем.
Многозначные системы более богаты, чем двузначная логика: в первых имеются функции, невыразимые во второй. Так, если в двузначной логике имеются только четыре разные функции от од­ного аргумента, то в трехзначной логике их уже соответственно


[201]
двадцать семь. Это послужило основой попыток определить в рам­ках М. л. такие понятия, которые, будучи взяты сами по себе, не кажутся достаточно ясными и которые неопределимы в двузнач­ной логике. Речь идет прежде всего о модальных понятиях «необ­ходимо», «возможно», «случайно» и т. п.
Многозначные системы использовались при построении логики квантовой механики, описывающей логическую структуру языка этой физической теории.
В информационно-поисковых системах, являющихся системами записи, хранения и обработки данных, используется обычно есте­ственный язык. Выявление логической структуры инормационного поиска и построение общей теории его имитации логическими сред­ствами требует языка формализованного. Было высказано предпо­ложение, что для информационного поиска, в процессе которого нередко встречается ситуация неопределенности, целесообразно ис­пользовать М. л.
МНОГОЗНАЧНОСТИ ПРИНЦИП, см.: Принцип многозначности.
МНОГОЗНАЧНОСТЬ
— характеристика выражения, имеющего в разных контекстах разное значение. Напр., слово «закон» может оз­начать как регулярность, имеющую место в природе или обществе, так и утверждение о такой регулярности, сформулированное в языке науки. С М. связана одна из основных трудностей понимания гово­рящими друг друга. Подавляющее большинство слов обычного язы­ка многозначно. Так, словарь современного русского литературного языка указывает семнадцать разных значений глагола «стоять»; сло­во «жизнь» имеет более тридцати значений и т. д. Между одними значениями трудно найти ч.-л. общее, между другими трудно про­вести различие.
М. как естественная и неотъемлемая черта естественного языка сама по себе не является недостатком. Но она таит в себе потенци­альную возможность логической ошибки. В процессе общения всегда предполагается, что в конкретном рассуждении смысл входящих в него слов не меняется. Если речь идет, допустим, о новом как не­знакомом, пока не будет оставлена данная тема, слово «новый» должно обозначать «незнакомый», а не «следующий» или «совре­менный». Логическая ошибка, связанная с подменой значения сло­ва, называется эквивокацией. Допускается она, напр., в рассужде­нии: «В грамматике достаточно знать только имена существитель­ные, т. к. глагол, наречие, прилагательное и т. д. - все это существительные».
Многозначными могут быть не только отдельные слова, но и части фраз, и целые фразы. Напр., высказывание «Часть программы





[202]
полностью не была выполнена» может означать, что эта часть ока­залась полностью невыполненной, но может означать, что она была выполнена неполностью. Логическая ошибка, связанная с подменой одного значения высказывания другим возможным его значением, именуется амфиболией.
МНОЖЕСТВ ТЕОРИЯ
— математическая теория, изучающая точ­ными средствами проблему бесконечности. Предмет М. л. — свойства множеств (совокупностей, классов, ансамблей), гл. обр. бес­конечных.
Множество A есть любое собрание определенных и различи­мых между собой объектов, мыслимое как единое целое. Эти объек­ты называются элементами или членами множества A. Если элемент х принадлежит множеству A, то это обозначается так: хI А; если же х не есть элемент A, то это обозначается так: хIА. Если каждый элемент множества A принадлежит множеству В, то это записывается так: А I В. Множество A называется в этом случае подмножеством множества В, а отношение «I» — отно­шением включения множеств. Множество, не содержащее ни одного элемента, называется пустым и обозначается символом 0. В приложениях М. т. часто рассматривают подмножества некоторого фиксированного множества, которое называют универсальным множеством и обозначают символом U. Важнейшими принципами М. т. являются принцип экстенсиональности и принцип свертывания (абстракции). Согласно принципу экстенсиональ­ности, два множества A и В равны только в том случае, если они состоят из одних и тех же элементов. Согласно принципу свертыва­ния, любое свойство Р определяет некоторое множество А, эле­ментами которого являются объекты, обладающие свойством Р.
Объединение множеств A и В обозначается через AEB. Объе­динение A и В есть множество всех предметов, которые являются элементами множества А или множества В, т. е. х принадлежит объединению А E В, если х принадлежит хотя бы одному из мно­жеств А и В.
Пересечение множеств A и В обозначается через ACB. Пере­сечение A и В есть множество всех предметов, являющихся элемен­тами обоих множеств A и В, т. е. х принадлежит пересечению ACB, если х принадлежит как множеству A, так и В.
Разность множеств А — В есть множество элементов A, не принадлежащих В.
Дополнением множества A (обозначается A') называется множество элементов универсального множества U, не принадле­жащих A, т. е. U - А.
[203]
Для любых подмножеств A, В и С универсального множества U справедливы следующие важные равенства:


Некоторые из перечисленных равенств имеют специальные на­звания: 7 и 7' — законы идемпотентности, 9 и 9' — законы погло­щения, 10 и 10' — законы де Моргана.
Классическая М. т. исходит из признания применимости к бес­конечным множествам принципов логики. В развитии М. т. в начале XX в. выявились трудности, связанные с обнаружением парадоксов — противоречий, к которым приводит применение законов фор­мальной логики к бесконечным множествам. Дальнейшая разра­ботка М. т. была связана с уточнением понятия множества и устра­нением парадоксов.
МОДАЛЬНАЯ ЛОГИКА
— раздел неклассической логики, в ко­тором исследуются логические связи модальных высказы­ваний, т. е. высказываний, включающих модальности. М. л. слага­ется из ряда направлений, каждое из которых занимается модаль­ными высказываниями определенного типа. Так, теория логических модальностей изучает логическое поведение высказываний, вклю­чающих модальные понятия «логически необходимо», «логически возможно», «логически случайно». Логика эпистемическая исследует высказывания, содержащие разного рода теоретико-познавательные понятия: «верифицируемо», «непроверяемо», «фальсифицируемо», «полагает», «сомневается», «отвергает» и т. п. Деонтическая логика изучает логические связи нормативных высказываний. Оценок логика занимается аксиологическими модальностями, логика времени — вре­менными модальностями и т. д.
Модальные понятия разных типов имеют общие формальные свойства. Так, независимо от того, к какой группе относятся эти понятия, они определяются друг через друга по одной и той же схеме. Нечто возможно, если противоположное не является необхо­димым; разрешено, если противоположное не обязательно; допус-



[204]
кается, если нет убеждения в противоположном. Случайно то, что не является ни необходимым, ни невозможным. Безразлично то, что не обязательно и не запрещено. Неразрешимо то, что недока­зуемо и неопровержимо, и т. п.
Подобным же образом сравнительные модальные поня­тия разных групп определяются по одной и той же схеме: «первое лучше второго» равносильно «второе хуже первого», «первое рань­ше второго» равносильно «второе позже первого», «первое при­чина второго» равносильно «второе следствие первого» и т. д.
В каждом направлении М. л. доказуема своя версия принципа модальной полноты, являющегося модальным аналогом за­кона исключенного третьего. В теории логических модальностей прин­цип полноты утверждает, что каждое высказывание является или необходимым, или случайным, или невозможным; в деонтической логике — что всякое действие или обязательно, или нормативно без­различно, или запрещено; в логике оценок — что всякий объект явля­ется или хорошим, или оценочно безразличным, или плохим и т. д.
В каждом направлении М. л. есть и своя версия принципа модальной непротиворечивости, являющегося модаль­ным аналогом закона непротиворечия: высказывание не может быть как обязательным, так и запрещенным; объект не может быть и хорошим, и плохим, и т. д.
Модальные понятия, относящиеся к разным группам, имеют разное содержание. При сопоставлении таких понятий (напр., «не­обходимо», «доказуемо», «убежден», «обязательно», «хорошо», «все­гда») складывается впечатление, что они не имеют ничего общего. Однако М.л. показывает, что это не так. Модальные понятия разных групп выполняют одну и ту же функцию: они уточняют устанавли­ваемую в высказывании связь, конкретизируют ее. Правила их упот­ребления определяются только этой функцией и не зависят от со­держания высказываний. Поэтому данные правила являются еди­ными для всех групп понятий и имеют чисто формальный характер.
В последние десятилетия М.л. бурно разрастается, включая в свою орбиту все новые группы модальных понятий. Существенно усовершенствованы способы ее обоснования. Это придало М.л. но­вый динамизм и поставило ее в центр современных логических исследований (см.: Логика изменения, Предпочтений логика, При­чинности логика).
МОДАЛЬНОСТЬ (от лат., modus — мера, способ)
— оценка выска­зывания, данная с той или иной точки зрения. Модальная оценка выражается с помощью понятий «необходимо», «возможно», «до­казуемо», «опровержимо», «обязательно», «разрешимо» и т. п.


[205]
О предмете S можно просто сказать, что он имеет свойство Р. Но можно, сверх того, уточнить, является ли эта связь S и Р необ­ходимой или же она случайна, всегда ли S будет Р или нет, хорошо ли, что S есть Р, или плохо, доказано ли, что S есть Р, или это только предполагается и т. д. Результатами таких уточнений будут модальные высказывания разных типов. Общая их форма: М (S есть Р) или М (S не есть Р); вместо М в эту форму могут подставляться различные понятия, определяющие тип связи субъекта и предика­та. Напр., из немодального высказывания «Цезий — металл» можно образовать модальные высказывания «Возможно, что цезий — ме­талл», «Хорошо, что цезий — металл», «Немыслимо, чтобы цезий был металлом», «Доказано, что цезий — металл» и т. д. Модальной оценке могут быть подвергнуты не только связи предметов и при­знаков, но и связи других типов. Напр., из сложного высказывания «Если металлический стержень нагреть, он удлинится» можно по­лучить модальные высказывания «Необходимо, что если металли­ческий стержень нагреть, он удлинится», «Всегда будет так, что металлический стержень удлиняется, если его нагреть» и т. п.
Одно и то же высказывание может стать объектом нескольких последовательных модальных оценок с одной или разных точек зре­ния («Хорошо, что доказано, что цезий — металл»).
Логические связи модальных высказываний являются объек­том исследования модальной логики. Из разнообразных возможных типов модальных оценок она выбирает немногие, наиболее инте­ресные.
В современной модальной логике исследуются следующие груп­пы модальных понятий:
>> логические М. (абсолютные: «логически необходимо», «ло­гически случайно», «логически возможно», «логически невозмож­но»; сравнительные: «логически влечет», «есть логическое следствие»);
>> физические (онтологические, каузальные) М. (абсолют­ные: «физически необходимо», «физически случайно», «физически невозможно», «физически возможно»; сравнительные: «есть причи­на», «есть следствие», «не является ни причиной, ни следствием»);
>> теоретико-познавательные (эпистемические) М. (от­носящиеся к знанию: «доказуемо», «опровержимо», «неразреши­мо»; относящиеся к убеждению: «убежден», «сомневается», «отвер­гает», «допускает»; связанные с истинностной характеристикой, абсолютные: «истинно», «ложно», «неопределенно»; сравнитель­ные: «вероятнее», «менее вероятно», «равновероятно»);
>> деонтические (нормативные) М. («обязательно», «нор­мативно безразлично», «запрещено», «разрешено»);



[206]
>> аксиологические (оценочные) М. (абсолютные: «хоро­шо», «аксиологически безразлично», «плохо»; сравнительные: «луч­ше», «равноценно», «хуже»);
>> временные М. (абсолютные: «было», «есть», «будет»; срав­нительные: «раньше», «одновременно», «позже»).
Логические М. изучались еще Аристотелем (384—322 до н. э.) и средневековыми логиками. Детальное исследование других групп М. началось в 50-е годы нашего века, хотя первые упоминания о них относятся еще к поздней античности и средним векам (см.: Аксио­логические М., Деонтические М., Логика времени, Логика измене­ния, Эпистемическая логика, Предпочтений логика, Причинности логика).
МОДЕЛЬ (от лат. modulus — мера, образец, норма)
— а) в самом широком смысле — любой мысленный или знаковый образ модели­руемого объекта (оригинала). К их числу относятся гносеологиче­ские образы (воспроизведение, отображение исследуемого объек­та или системы объектов в виде научных описаний, теорий, фор­мул, систем упражнений и т. п.), схемы, чертежи, графики, планы, карты и т. д.; б) специально создаваемый или специально подби­раемый объект, воспроизводящий характеристики изучаемого объекта. Большую роль в современной науке играют т.наз. знако­вые М., позволяющие в виде формул, уравнений, графиков и т. п. отображать существенные отношения между изучаемыми предме­тами, явлениями, различные процессы. Пример знаковой М. — дифференциальное уравнение в математике, описывающее (мо­делирующее) протекание во времени к.-л. физического процесса. Знаковые М. широко используются в информатике при создании соответствующих программ для ЭВМ; к их числу принадлежат М., воспроизводящие решение сложных задач, специфических для деятельности человеческого мозга и имеющих творческий характер (М., относимые в информатике к искусственному ин­теллекту). Между М. и изучаемым объектом (оригиналом), кото­рый может представлять собой весьма сложную систему, должно существовать сходство в каких-то физических характеристиках, или в структуре, или в функциях (см.: Моделирование).
В математической логике под М. понимается интерпретация к.-л. логико-математических предложений и их систем. В разрабатыва­емой в математической логике теории М. под М. понимается про­извольное множество элементов с определенными на нем функ­циями и предикатами (см.: Семантика логическая). Понятие М. яв­ляется одним из центральных и сложных понятий теории познания, поскольку оно опирается на понятие отражения, истины, сход-


[207]
ства, различия, правдоподобия и т. п.; роль его в методологии науки огромна.
МОДЕЛЬ СЕМАНТИЧЕСКАЯ
- система значений, приписыва­емых выражениям некоторого формализованного языка, то же, что интерпретация. Логические системы часто строятся в виде фор­мального исчисления, принимающего во внимание лишь внешний вид формул и символов. Исчисление превращается в язык после того, как его символом придано некоторое значение и указана область объектов, к которой относятся его выражения и формулы. После этого мы можем говорить об истинности и ложности фор­мул исчисления. М. с. как раз и называют систему значений или область объектов, которые превращают формулы логического ис­числения в истинные или ложные утверждения.
МОДУС (лат. modus - мера, способ, образ, вид)
- философский термин, обозначающий свойство предмета, присущее ему только в некоторых состояниях и зависящее от окружения предмета и тех связей, в которых он находится. М. противопоставляется атрибу­ту— неотъемлемому свойству предмета, без которого он не может ни существовать, ни мыслиться.
В логике М. - разновидность некоторой общей схемы рассуж­дения. Чаще всего говорят о М., или формах, силлогизма (пра­вильных и неправильных). К М., скажем, гипотетического силло­гизма относятся М. поненс и М. толленс, к М. дизъюнктивного сил­логизма — М. толлендо поненс и М. понендо толленс.
МОДУС ПОНЕНДО ТОЛЛЕНС (лат. modus ponendo tollens)
- тер­мин средневековой логики, обозначающий следующие схемы рас­суждения:
Либо A, либо В; А.

и
Либо A, либо В; В.

Неверно В.
Неверно A.


Здесь A и В — некоторые высказывания; «либо A, либо В» и «A» — посылки; «неверно, что B» («не-В») — заключение; горизонталь­ная черта стоит вместо слова «следовательно». Другая запись:
Либо A, либо В. А. Следовательно, не-В. Либо A, либо В. В. Следовательно, не-А.
Посредством этих схем от утверждения двух взаимоисключа­ющих альтернатив и установления того, какая из них имеет мес­то, осуществляется переход к отрицанию второй альтернативы: либо первое, либо второе, но не оба вместе; есть первое, значит, второго нет. Напр.:



[208]
Достоевский родился либо в Москве, либо в Петербурге.
Он родился в Москве.______
Неверно, что Достоевский родился в Петербурге.
Дизъюнкция, входящая в М. п. т., является исключающей, она означает: истинно первое или истинно второе, но не оба вместе. Такое же рассуждение, но с неисключающей дизъюнкцией (пер­вое или второе, но возможно, что и первое, и второе), логически неправильно. От истинных посылок оно может вести к ложному заключению. Напр.:
На Южном полюсе был Амундсен или был Скотт.
На Южном полюсе был Амундсен.
Неверно, что там был Скотт.
Обе посылки истинны: и Амундсен, и Скотт достигли Южного полюса, заключение же ложно. Правильным является умозаклю­чение:
На Южном полюсе первым был Амундсен или Скотт.
На этом полюсе первым был Амундсен._______
Неверно, что там первым был Скотт.
МОДУС ПОНЕНС (лат. modus ponens)
— термин средневековой логики, обозначающий правило вывода и соответствующий ему логический закон.
Правило вывода М. п., обычно называемое правилом от­деления (иногда гипотетическим силлогизмом), по­зволяет от утверждения условного высказывания и утверждения его основания (антецедента) перейти к утверждению следствия (консеквента) этого высказывания:
Если А, то В; А.
В.

Здесь A и В — некоторые высказывания, «если А, то В» и «A» — посылки, «B» - заключение; горизонтальная черта стоит вместо слова «следовательно». Другая запись:
Если А, то В. А. Следовательно, В.
Благодаря этому правилу от посылки «если А, то В», используя посылку «A», мы как бы отделяем заключение «B». Напр.:
Если у человека повышенная температура, он болен.
У человека повышенная температура.
Человек болен.


[209]
Это правило постоянно используется в наших рассуждениях. Впервые оно было сформулировано, насколько можно судить, учеником Аристотеля Теофрастом еще в III в. до н. э.
Соответствующий правилу отделения логический закон с исполь­зованием символики логической формулируется так (р, q — некоторые высказывания; & — конъюнкция, «и»; -> импликация, «если, то»):
((p->q)&p)->q,
если верно, что если р, то q, и р, то верно q. Напр.: «Если при дожде земля мокрая и идет дождь, то земля является мокрой».
Рассуждение по правилу М.п. идет от утверждения основа­ния истинного условного высказывания к утверждению его след­ствия. Это логически корректное движение мысли иногда пута­ется со сходным, но логически неправильным ее движением от утверждения следствия истинного условного высказывания к утверждению его основания. Напр., правильным является умо­заключение:
Если висмут — металл, он проводит электрический ток.
Висмут — металл. _______________
Висмут проводит электрический ток.
Но внешне сходное с ним умозаключение
Если висмут — металл, он проводит электрический ток.
Висмут проводит электрический ток.
Висмут — металл.
логически некорректно. Рассуждая по последней схеме, можно прийти от истинных посылок к ложному заключению. Напр.:
Если у человека повышенная температура, он болен.
Человек болен.________________________
У него повышенная температура.
Многие болезни, как известно, протекают без повышения темпе­ратуры; из наличия болезни нельзя заключать о повышении тем­пературы. Истинность посылок не гарантирует истинности заклю­чения.
Против смешения правил М. п. с указанной неправильной схе­мой предостерегает совет: от подтверждения основания к под­тверждению следствия рассуждать допустимо, от подтверждения следствия к подтверждению основания — нет.
МОДУС ТОЛЛЕНДО ПОНЕНС (лат. modus tollendo ponens)
- тер­мин средневековой логики, обозначающий разделительно-кате-



[210]
горическое умозаключение: первое или второе; не первое; значит, второе. Первая посылка умозаключения - разделительное (дизъ­юнктивное) высказывание; вторая — категорическое высказыва­ние, отрицающее один из двух членов дизъюнкции; заключением является другой ее член:
А или В; неверно A.
В.



Или:

A или В; неверно В.
А.


Здесь A и В — некоторые высказывания, черта стоит вместо слова «следовательно». Другая форма записи:
А или В. Не-А. Следовательно, В.
А или В. Не-В. Следовательно, A.
Напр.:
Множество является конечным или оно бесконечно.
Множество не является конечным.__________
Множество бесконечно.
Иногда эту схему рассуждения именуют дизъюнктивным силлогизмом.
С использованием символики логической умозаключение форму­лируется так (v — дизъюнкция, «или»; ˜ — отрицание, «неверно, что»):
A v B, ˜ A.
В.

Или:
a v b, ˜ b
А.

В современной логике М.т. п. называется также правилом удаления дизъюнкции.
МОДУС ТОЛЛЕНС (лат. modus tollens)
- термин средневековой логики, обозначающий следующую схему рассуждения:
Если A, то В; неверно В.
Неверно А.

Здесь A и В — некоторые высказывания; «если А, то В» и «неверно, что В» («не-В») - посылки; «неверно, что A» («не-A») — заключе-


[211]
ние; горизонтальная черта стоит вместо слова «следовательно». Другая запись:
Если А, то В. Не-В. Следовательно, не-А.
Посредством этой схемы от утверждения условного высказы­вания и отрицания его следствия (консеквента) осуществляется переход к отрицанию основания (антецедента) данного выска­зывания. Напр.:



Если гелий — металл, он электропроводен.
Гелий неэлектропроводен.
Гелий — не металл.


МЫШЛЕНИЕ
— активный процесс отражения объективного мира в понятиях, суждениях, научных теориях, гипотезах и т. п., име­ющий опосредованный, обобщенный характер, связанный с реше­нием нетривиальных задач; высший продукт особым образом орга­низованной материи — человеческого мозга. М. опосредствовано: а) ощущениями и восприятиями, на базе которых формируется мыс­лительный акт; б) прошлым опытом, благодаря чему внешние при­чины (объекты познания) отражаются в голове человека через по­средство внутренних условий (накопленного ранее опыта); в) по­знанием чувственно воспринимаемого, непосредственно наблюда­емого, на основе анализа которого человек отражает в М. такие стороны действительности, которые не даны ему в непосредствен­ном опыте (напр., с помощью М. человек формирует понятия о причинной связи, точке, бесконечности и т. п., которые не даны ему в непосредственном опыте). Обобщенный характер М. (см.: Обоб­щение) в своей развитой форме специфичен лишь для человека. Обоб­щенность М. выявляется в способности человека познавать общие характеристики предметов в единичном, осуществлять переходы от менее общего к более общему (см.: Тождество), формировать об­щие понятия, общие суждения (см.: Суждение), законы, нормы, научные теории и т. п. Способность к решению нетривиальных за­дач означает, что М., как и процесс трудовой деятельности, лежа­щий в основе формирования мыслительной деятельности, являет­ся целеустремленным, активным, связанным с открытием нового, с принятием соответствующих решений, с подчинением ближай­шей цели конечному результату, с изобретением и применением различных мыслительных средств для достижения этого результата.
Механизмы М. исследуются различными науками: психологией, физиологией высшей нервной деятельности, логикой, кибернети­кой и др. Характерным для логико-гносеологических исследований М. является изучение его в связи с проблемами адекватного отраже-



[212]
ния изучаемых объектов в мысли, в связи с задачами достижения истины в процессе познания, в связи с теми приемами и проце­дурами, правильное использование которых является необходи­мым условием достижения верного, истинного знания. Важной задачей философско-гносеологических исследований М. является изучение его исторического развития, его форм как средств по­знания, социальных детерминаций познания. М. неразрывно свя­зано с мозгом, но не может быть полностью объяснено физиоло­гией высшей нервной деятельности. М. - продукт не только био­логической эволюции человека, но и его развития как обществен­ного существа. М. возникло в процессе коллективной трудовой деятельности людей. Оно имеет общественную природу и по осо­бенностям своего возникновения, и по способу функционирова­ния. М. человека осуществляется в теснейшей связи с речью; его результаты фиксируются в языке. М. свойственны такие процес­сы, как абстракция, анализ и синтез, формулирование задач и поиски их решения, идеализация, усмотрение в изучаемых объек­тах неочевидных сходств и различий, обобщение, формирование понятий различных уровней абстракции и обобщенности, объяс­нение и обоснование полученных в ходе изучения действительно­сти результатов, выдвижение гипотез и т. п. Важной формой обес­печения способности М. к опосредствованному отражению дей­ствительности является использование умозаключений, на основе которых, опираясь на приобретенный опыт и правила логики, мы можем получать новые знания. Научные теории являются кон­центрированной фиксацией знаний о тех или иных сторонах, ас­пектах изучаемой действительности и отправной точкой для ее дальнейшего исследования. В последнее время важный вклад в наше понимание механизмов М. вносит кибернетика.
[213]


Н
НАУКА
— одна из сфер человеческой деятельности, функцией которой является производство и систематизация знаний о при­роде, обществе и сознании. Н. включает в себя деятельность по производству знания. Термин «Н.» употребляется также для обо­значения отдельных областей научного познания — физики, хи­мии, биологии и т. п.
Предпосылками возникновения Н. являются общественное раз­деление труда, отделение умственного труда от физического и пре­вращение познавательной деятельности в специфический род за­нятий первоначально небольшой, но постоянно растущей группы людей. Отдельные элементы научного знания появились еще в Древ­нем Китае, Индии, Египте, Вавилоне. Однако возникновение Н. относят к VI в. до н. э., когда в Древней Греции появляются первые теоретические системы, противостоящие религиозно-мифологичес­ким представлениям. Особым социальным институтом Н. становит­ся в XVII в., когда в Европе возникают первые научные общества и академии, начинают выходить первые научные журналы. На ру­беже XIX—XX вв. возникает новый способ организации Н. — круп­ные научные институты и лаборатории с мощной технической ба­зой. Если до конца XIX в. Н. играла вспомогательную роль по отно­шению к производству, то в XX в. развитие Н. начинает опережать развитие техники и производства, складывается единая система «Н.— техника — производство», в которой Н. принадлежит ведущая роль. В настоящее время Н. пронизывает все сферы общественной жизни: научные знания и методы необходимы и в материальном произ­водстве, и в экономике, и в политике, и в сфере управления, и в системе образования. Н. оказывает революционизирующее влия-



[214]
ние на все стороны общественной жизни, являясь движущей си­лой научно-технической революции.
Научные дисциплины, образующие в своей совокупности сис­тему Н. в целом, разделяются на три группы: естественные, общественные и технические Н. Между этими группами нет резких границ. Многие дисциплины занимают промежуточное положение между этими группами или возникают на их стыке. Кро­ме того, в последние десятилетия значительное развитие получи­ли междисциплинарные и комплексные исследования, объеди­няющие представителей весьма далеких дисциплин и использу­ющие методы разных Н. Все это делает проблему классификации Н. весьма сложной. Однако указанное выше разделение Н. все-таки во многих отношениях полезно, т. к. выражает важное раз­личие между ними по предмету изучения: естественные Н. ис­следуют природные явления и процессы, общественные Н. изу­чают общество и человека, технические Н. исследуют особенности искусственных, созданных человеком устройств.
По их отношению к практике Н. и научные исследования при­нято разделять на фундаментальные и прикладные. Ос­новными целями фундаментальных Н. являются познание сущно­сти явлений, открытие законов, управляющих течением наблюда­емых процессов, обнаружение глубинных структур, лежащих в основе эмпирических фактов. В методологических исследованиях под Н., как правило, имеется в виду именно фундаментальная Н. Однако в последние десятилетия все большее место в Н. занимают прикладные исследования, непосредственной целью которых яв­ляется применение результатов фундаментальных Н. для решения технических, производственных, социальных задач. Ясно, что раз­витие фундаментальных Н. должно опережать рост прикладных ис­следований, подготавливая для последних необходимую теорети­ческую основу.
Попытки выработать точное определение Н., научного знания, научного метода, определение, которое позволило бы отделить Н. от других форм общественного сознания и видов деятельности — от искусства, философии, религии, — не увенчались успехом. И это вполне естественно, ибо в процессе исторического развития границы между Н. и не-наукой постоянно изменяются: то, что вчера было не-наукой, сегодня обретает статус Н.; то, что мы сегодня считаем Н., завтра может быть отброшено как псевдона­ука. Однако некоторые черты Н., отличающие ее от других форм общественного сознания, все-таки можно указать. Напр., от искус­ства Н. отличается тем, что дает отображение действительности не в образах, а в абстракциях, в понятиях, стремится к их логической


[215]
систематизации, дает обобщенное описание явлений и т. д. В отли­чие от философии, Н. стремится к открытию новых фактов, к проверке, подтверждению или опровержению своих теорий и за­конов, использует наблюдение, измерение, эксперимент как ме­тоды познания и т. п. По отношению к религии Н. отличается тем, что старается ни одного положения не принимать на веру и пери­одически возвращается к критическому анализу своих оснований. Тем не менее Н., искусство и философию объединяет творческое отношение к действительности и ее отображению, элементы на­учного знания проникают в искусство и философию, и точно так же элементы искусства и философии являются неустранимым ком­понентом научного творчества.
Различные стороны Н. изучаются целым рядом особых дисцип­лин: историей науки, логикой науки, социологией науки, психо­логией научного творчества и т. п. С середины XX в. начала форми­роваться особая область, стремящаяся объединить все эти дис­циплины в комплексное исследование Н. — науковедение.
«НЕ ВЫТЕКАЕТ», «НЕ СЛЕДУЕТ» (лат. поп sequitur)
— логическая ошибка в доказательстве некоторого тезиса, заключающаяся в том, что между аргументами доказательства и его тезисом от­сутствует логическая связь, вследствие чего аргументы не обосно­вывают истинности доказываемого тезиса.
Ошибка «Н. с.» часто встречается в повседневных рассуждениях и спорах. Многие люди полагают, что если они связали некоторые суждения словами «таким образом», «итак», «следовательно» и т. п., то они тем самым задали логическую связь между ними, т. е. построили последовательное рассуждение. Однако часто в таких рассуждениях вместо подлинной логической связи имеется про­сто грамматическая связь предложений.
Всякая ошибка в демонстрации доказательства, связанная с нарушением логических правил, приводит к ошибке «Н. с.».
«НЕДОКАЗАННОЕ ОСНОВАНИЕ» ДОКАЗАТЕЛЬСТВА
- логичес­кая ошибка, заключающаяся в том, что в число аргументов дока­зательства включается положение, которое само нуждается в до­казательстве (см.: Предвосхищение основания).
НЕЗАВИСИМОСТЬ (в логике и математике)
— невыводимость предложения некоторой теории из данного множества ее предло­жений, напр. из системы ее аксиом. Система аксиом называется независимой (неизбыточной), если каждая входящая в нее аксиома невыводима из других аксиом. Если какую-то аксиому можно вывести из остальных, ее можно исключить из списка ак­сиом, при этом исходная теория не изменится, класс доказуемых в ней предложений останется тем же.



[216]
Зависимая система аксиом содержит лишние аксиомы и в этом смысле является менее совершенной, чем независимая.
Требование Н. распространяется и на правила вывода аксиоматической теории. Исходное правило вывода независимо, если оно не может быть получено в качестве производного правила в системе, из которой оно исключено. Можно также сказать, что аксиома или правило вывода независимы, если существует теоре­ма, которая не может быть доказана без этой аксиомы или этого правила вывода.
Н. имеет по преимуществу эстетическую и дидактическую цен­ность. Исследование Н. способствует, как правило, лучшему по­ниманию строения изучаемой теории и ее возможностей.
Исторически первым доказательством Н. было доказательство невыводимости пятого постулата Евклида о параллельных из ос­тальных его постулатов.
Требование Н. может быть распространено не только на аксиомы и правила вывода аксиоматических теорий, но и на исходные их термины (понятия). Термин независим, если он неопределим через остальные исходные термины. Теория с неизбыточным исходным словарем не содержит лишних понятий и является в этом отноше­нии более совершенной, чем теория с зависимыми понятиями.
Зависимость некоторой аксиомы от остальных показывается путем вывода ее из них. Н. аксиомы можно доказать, найдя свой­ство, присущее всем другим аксиомам и не присущее рассматри­ваемой.
НЕКЛАССИЧЕСКАЯ ЛОГИКА, см.: Логика неклассическая.
НЕОБХОДИМОСТЬ (логическая)
— одна из модальных характе­ристик высказывания (наряду с «возможностью», «случайностью» и «независимостью»); необходимым является высказывание, от­рицание которого логически невозможно.
Обычно говорят, что высказывание логически необходимо, если его истинность может быть установлена независимо от опыта или на чисто логических основаниях. Н. логическая является, таким образом, более сильным видом истины, чем случайная, или фак­тическая, истинность. Напр., высказывание «Снег бел» фактичес­ки истинно, но для подтверждения его истинности необходимо эмпирическое наблюдение. Высказывания же «Снег есть снег», «Бе­лое — это белое» необходимо истинны: для установления их ис­тинности не нужно обращаться к опыту, достаточно знать значе­ния входящих в них слов.
Нечто необходимо, если оно не может быть иным, чем оно есть. В зависимости от того, на какое основание опирается утвер­ждение о Н., можно выделить три ее вида: логическую Н.,


[217]
физическую Н., называемую также онтологической или кау­зальной, нормативную Н., именуемую также моральной или оценочной. Н. логическая связана с логическим законом: логически необходимо то, что вытекает из законов логики (отрицание чего несовместимо с законами логики). Физически необходимо то, от­рицание чего нарушает законы природы. Нормативно необходи­мым (т. е. обязательным) является то, отрицание чего противоре­чит законам или нормам, установленным в обществе. Н. логиче­ская уже физической Н.: все логически необходимое является также необходимым физически, но не наоборот. Иначе говоря: законы логики есть и законы природы, но не наоборот. Если, напр., пла­нета вращается, то она вращается, - это следствие закона логики и вместе с тем необходимая истина физики. Но то, что у планет эллиптические орбиты, - закон физики, но не логики: логически возможно, чтобы орбиты планет были круговыми. Физическая Н. не сводится к логической, а нормативная — к физической. Нельзя, скажем, принципы механики свести к законам логики, а прин­ципы этики - к законам биологии.
Н. логическая изучается модальной логикой в связи с понятиями возможности, случайности и др. В число законов, устанавливае­мых этой ветвью логики, входят, в частности, утверждения: о из Н. высказывания вытекает его истинность (но не наоборот); о логические следствия необходимого также необходимы; >> высказывание и его отрицание не могут быть вместе необхо­димыми, и т. п.
Н. логическая может быть определена через возможность логи­ческую: высказывание необходимо, когда его отрицание невоз­можно. Напр.: «Необходимо, что снег идет или не идет» означает «Невозможно, что снег идет и не идет». В свою очередь возможность определима через Н.: высказывание возможно, когда его отрица­ние не является необходимым. Скажем, «Возможно, что кадмий металл» означает «Неверно, что необходимо, что кадмий не явля­ется металлом». Взаимная определимость Н. и возможности дает право каждое рассуждение о Н. перефразировать в рассуждение о возмож­ности, и наоборот. При построении модальной логики в качестве исходного обычно принимается одно из понятий - «необходимо» или «возможно», второе определяется через него.
Логическая невозможность высказывания определяется как Н. логическая его отрицания. Логическая случайность высказывания означает, что ни оно само, ни его отрицание не являются логи­чески необходимыми.
НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ (в логике и мате­матике)
- условия, устанавливающие зависимость истинности



[218]
к.-л. утверждения А от наличия условий, фиксируемых в другом утверждении Я Необходимыми условиями истинности ут­верждения А называются условия, без соблюдения которых А не может быть истинным. Достаточными называются такие ус­ловия, при наличии (выполнении, соблюдении) которых утвер­ждение А является истинным. Условия могут быть необходимы­ми, но недостаточными, достаточными, но не необходимыми, необходимыми и достаточными.
Так, делимость числа п на 2 есть необходимое, но недостаточ­ное условие его делимости на 6 (т. е. необходимое, но недостаточ­ное условие истинности утверждения: «Число п делится на 6»). Это условие является необходимым потому, что без его наличия число п не будет делиться на 6. Это условие не является достаточ­ным потому, что при его наличии число п не обязательно будет делиться на 6. Наоборот, делимость числа п на 6 будет достаточ­ным, но не необходимым условием его делимости на 2, потому что при его наличии число п всегда будет делиться на 2. Это усло­вие не является необходимым, потому что, если число не делит­ся на 6, оно не обязательно не делится на 2. Условие же делимо­сти числа и на 2 и на 3 есть необходимое и достаточное условие его делимости на 6: если не соблюдено условие, то утверждение «Число n делится на 6» будет ложным (условие является необхо­димым); если же условие соблюдено, то утверждение «Число п делится на 6» будет истинным (условие является достаточным).
НЕПОСРЕДСТВЕННОЕ УМОЗАКЛЮЧЕНИЕ (в традиционной логике)
— умозаключение из одной посылки. К числу Н. у. относят­ся обращение суждений, превращение суждений, противопоставле­ние предикату, некоторые умозаключения по логическому квад­рату, напр. от истинности общих суждений (А и Е) к истинности соответствующих частных суждений (I и О) и др.
Иногда Н. у. ограничиваются умозаключениями из простых ат­рибутивных суждений, иногда же в их число включаются и умо­заключения из суждений с отношениями, и умозаключения из сложных суждений (см.: Суждение). В последнем случае к числу Н.у. относятся и такие умозаключения из одной посылки, как, напр., умозаключения из суждений вида xRy, где R — симметрич­ное отношение. Так, из посылки а = b можно получить заключе­ние b = а; к их числу можно отнести и контрапозицию условного суждения (см.: Контрапозиции законы). Так, из суждения «Если число п делится на 6, то оно делится и на 2» можно сделать зак­лючение «Если число п не делится на 2, то оно не делится на 6».
НЕПРАВИЛЬНОЕ УМОЗАКЛЮЧЕНИЕ, см.: Умозаключение.


[219]
НЕПРЕДИКАТИВНОЕ ОПРЕДЕЛЕНИЕ
- определение, с помощью которого некоторые объекты вводятся через множества, включа­ющие эти объекты в качестве своих элементов. Напр.: «Верхней границей множества действительных чисел называется самое боль­шое число этого множества, т. е. число, которое больше любого числа этого множества». В этом определении Dfd («верхняя грани­ца множества действительных чисел»), т. е. определяемое, вклю­чается в множество действительных чисел Dfn как самое большое число этого множества — определяющее - и тем самым участвует в формировании этого множества. Такие определения дол­жны рассматриваться как определения с «порочным кругом»: Dfd определяется в них через Dfn, куда включается Dfd. Тем не менее они используются в науке. В целях «оправдания» они особым обра­зом интерпретируются. Одним из таких «оправданий» является пред­ложенная Б. Расселом аксиома сводимости, согласно которой для Н. о. должны существовать иные способы задания множеств, в ко­торые определяемый объект включается в качестве элемента неза­висимо от его определения. Так, согласно Б. Расселу, приведенное выше определение является правильным, поскольку множество действительных чисел независимо от определения может быть экземплифицировано множеством точек на отрезке прямой (О, 1).
Если мы имеем дело с определениями, где множество, через которое определяется Dfd не формируется данным определени­ем, а существует независимо от него, и если задача определения состоит в том, чтобы выделить некоторый элемент из нашего множества и при этом специфицировать его, — никакого пороч­ного круга не возникает. Так, определяя Марс как планету Сол­нечной системы, четвертую по порядку от Солнца, мы не совер­шаем порочного круга, поскольку множество планет Солнечной системы существует независимо от нашего определения и мы лишь выделяем из этого множества планету Марс. Такие определения рассматриваются обычно как определения через род и видовое отличие (см.: Определение классическое).
НЕПРОТИВОРЕЧИВОСТЬ
- свойство предложений некоторой теории (в случае аксиоматической теории — системы ее аксиом), заключающееся в невыводимости из них противоречия. Если отри­цание какого-то предложения может быть доказано в теории, то о самом предложении говорится, что оно опровержимо в ней. Не­противоречивость теории означает, что никакое предложение не может быть в ней и доказано, и вместе с тем опровергнуто.
Требование Н. является обязательным требованием к научной и, в частности, логической теории. Противоречивая теория завело-


[220]
мо несовершенна: наряду с истинными положениями она вклю­чает также ложные, в ней что-то одновременно и доказывается, и опровергается.
Во многих теориях имеет место закон Дунса Скота. В этих усло­виях доказуемость противоречия означает, что становится «дока­зуемым» все что угодно и понятие доказательства теряет смысл. Применительно к таким теориям требование Н. равносильно ус­ловию, что в теории имеется хотя бы одно недоказуемое выска­зывание. Н. одной теории может быть доказана через другую тео­рию, Н. которой гарантирована. Однако такое доказательство об­ладает лишь относительной убедительностью. Для простых теорий, таких, как исчисление высказываний, доказательство Н. не пред­ставляет труда. В более сложных теориях оно обычно сводится к интерпретации в терминах теории множеств. Для сложных тео­рий, напр. арифметики и самой теории множеств, отыскание под­ходящей теории, которая сама была бы непротиворечивой и вме­сте с тем могла бы использоваться для доказательства их Н., пред­ставляется задачей скорее всего безнадежной. Это указывает на нетривиальность проблемы Н., ее трудность и глубину.
В реальных, достаточно сложных научных теориях, в том числе в теориях самой логики, могут встречаться противоречия. В связи с этим в последние десятилетия большое внимание привлекают логические системы, в которых из противоречия невыводимо про­извольное высказывание. Обнаружение противоречия в опира­ющейся на такую систему теории не означает, что в ней становит­ся доказуемым все что угодно (см.: Паранепротиворечивая логика).
НЕПРОТИВОРЕЧИЯ ЗАКОН
— логический закон, согласно ко­торому высказывание и его отрицание не могут быть одновременно истинными. Закон говорит о противоречащих друг другу высказы­ваниях, т. е. высказываниях, одно из которых является отрицанием другого. Отсюда иное название закона — закон противоре­чия, подчеркивающее, что закон отрицает противоречие, объяв­ляет его ошибкой и тем самым требует непротиворечивости.
Противоречат друг другу, напр., высказывания: «Фобос — спутник Марса» и «Фобос не является спутником Марса», «Кентавры существуют» и «Кентавры не существуют» и т. п. Большинство неверных толкований Н. з. и большая часть попыток оспорить его приложимость если не во всех, то хотя бы в отдельных областях связаны с неправильным пониманием логического отрицания, а значит, и логического противоречия.
Нет, в частности, противоречия в утверждении «Листва опала и не опала», подразумевающем, что некоторые деревья уже сбро-


[221]
сили листву, а другие нет, в утверждении «Человек и ребенок, и старик», выражающем идею, что один и тот же человек в начале своей жизни — ребенок, а в конце ее - старик, и т. п.
Введя понятия истины и лжи, Н. з. можно сформулировать так: никакое высказывание не является одновременно истинным и ложным. Истина и ложь - две несовместимые характеристики высказывания. Истинное высказывание соответствует действи­тельности, ложное не соответствует ей. Закон отрицает, что одно и то же высказывание может соответствовать реальному положе­нию вещей и одновременно не соответствовать ему.
Иногда Н. з. формулируют таким образом: из двух противореча­щих друг другу высказываний одно является ложным. Эта форму­лировка подчеркивает опасность, связанную с противоречием. Тот, кто допускает противоречие, вводит в свои рассуждения или в свою теорию заведомо ложное положение, что, разумеется, не­допустимо.
С использованием символики логической (р — некоторое выска­зывание; & — конъюнкция, «и»; ˜ — отрицание, «неверно, что») Н. з. выражается формулой:
˜(р&˜р),
неверно, что р и не-р. Напр.: «Неверно, что глина металл и что она не металл», «Неверно, что птицы летают и что они не летают» и т. п.
Логические противоречия — противоречия непоследовательно­го, путаного рассуждения - принципиально отличны от проти­воречий диалектических. Н. з. запрещает первые, но он не распро­страняется на вторые. О диалектике развития и борьбе противо­положных сторон, определяющей развитие, нужно рассуждать последовательно и непротиворечиво, как и обо всем другом.
НЕСОБСТВЕННЫЕ СИМВОЛЫ, см.: Символы собственные и не­собственные.
НЕТОЧНОСТЬ — характеристика употребления термина (поня­тия), обозначающего недостаточно определенный или нечетко очер­ченный класс объектов. Употребление понятия, его интерпретация предполагает знание его смысла, или содержания, а также знание его денотации, т. е. класса объектов, к которым оно приложимо. Понятие, содержание которого является недостаточно определенным или вообще расплывчатым, называется неясным (см.: Неяс­ность). Понятие, обозначающее расплывчатый, плохо специфи­цированный класс объектов, именуется неточным. Неточным понятиям противопоставляются точные понятия, относящиеся к четко определенным совокупностям объектов (см.: Точность).



[222]
Примером неточного может служить понятие «молодой чело­век». В двадцать лет человек определенно молод, в сорок его уже нельзя назвать молодым. Где-то между этими возрастными грани­цами лежит довольно широкая область неопределенности, когда нельзя с уверенностью ни назвать человека молодым, ни сказать, что он уже немолодой. Граница класса людей, к которым приложимо понятие «молодой человек», лишена четкости.
Неточными являются эмпирические характеристики, подобные «высокий», «большой», «отдаленный» и т. д. Неточны понятия «дом», «куча» и т. п., т. к. существуют ситуации, когда мы не можем с уверенностью утверждать, употребимо рассматриваемое понятие или нет. Причем сомнения в приложимости понятия к конкретным вещам не удается устранить ни путем привлечения новых фактов, ни дополнительным анализом самого понятия. Если, напр., про­исходит постепенная разборка дома, трудно сказать, в какой именно момент оставшееся можно назвать не домом, а развалинами.
Употребление неточных понятий способно в определенных ситуациях вести к парадоксальным заключениям, о чем говорят открытые еще в древности парадоксы «Куча», «Лысый» и т. п.
Обращение с неточными понятиями требует, таким образом, известной осторожности.
Н. имеет степени, или градации, и более точные понятия во многих случаях предпочтительнее неточных. Вполне оправдано по­этому стремление к уточнению используемых понятий. Но оно дол­жно тем не менее иметь свои пределы. Даже в науке значительная часть понятий является неточной. И это связано не столько с субъек­тивными и случайными ошибками отдельных ученых, сколько с самой природой научного познания.
Долгое время в логике и математике не обращалось внимание на трудности, связанные с неточными и в особенности с размытыми понятиями. От понятий требовалась точность, а все нечеткое, раз­мытое объявлялось недостойным интереса.
В последние десятилетия эта ригористическая установка потеряла привлекательность. Построены логические теории, учитывающие своеобразие рассуждений с неточными понятиями. Успешно развивается математическая теория т. наз. размытых множеств, имеющая дело с нечетко очерченными совокупностями объектов. Изучение проблем Н. - одно из условий приближения логики к практике обычного мышления, имеющего дело по преимуществу с неточными понятиями.
НЕЧЕТКОЕ МНОЖЕСТВО
- множество с нечеткими границами, когда переход от принадлежности элементов множеству к непри-


[223]
надлежности их множеству происходит постепенно, нерезко. В классической логике элемент х из соответствующей предмет­ной области принадлежит или не принадлежит некоторому мно­жеству М. Характеристическая функция принадлежности элемента множеству принимает лишь два значения: 1, когда х дей­ствительно принадлежит М, и 0, когда х не принадлежит множеству М. Напр., к.-л. геометрическая фигура либо принад­лежит множеству треугольников, либо не принадлежит ему. С Н. м. дело обстоит иначе. Здесь элемент х принадлежит множеству A (где A — Н. м.) лишь с известной степенью. Так, различные эле­менты х Н. м. «высокие люди» могут принадлежать ему лишь с известной степенью, т. к. рост высоких людей может варьировать­ся. Среди них мы можем выделить людей, которые принадлежат множеству высоких людей со степенью принадлежности 1 (т. е. безусловно высоких людей, которые могут рассматриваться как некоторые образцы, классические случаи). С другой стороны, некоторые люди не принадлежат множеству высоких людей, их степень принадлежности множеству высоких людей равна 0. Между 0 и 1 будут располагаться группы людей, которые принадлежат к высоким людям лишь с известной степенью (0,2; 0,4; 0,5 и т. д.). Эти группы можно классифицировать по степени их принадлеж­ности данному множеству. В настоящее время разрабатываются различные методы установления, вычисления степеней принад­лежности. Н. м. можно превратить в четкое на основе определе­ния, включающего некоторый момент условности, напр.: «Вы­сокими людьми мы будем называть людей, имеющих рост 180 см и выше». Тогда всех людей можно разделить на два исключающих друг друга множества: множество невысоких людей и множество высоких людей. Однако такого рода превращения Н. м. в четкие обычно связаны со значительным огрублением изучаемой дей­ствительности: с отвлечением от различий внутри Н. м., которые могут оказаться существенными для познания и практики. Поня­тие Н. м. родственно понятию о реальном типе, где элементы объе­ма этого понятия образуют некоторый упорядоченный ряд по степени принадлежности Н. м., в котором одни подмножества Н. м. связаны с другими недостаточно определенными «текучи­ми» переходами, где границы множества недостаточно четки. К числу понятий о реальных типах относятся: «справедливая вой­на», «храбрый человек», «управляемая система», «реалистическое произведение» и т. п. Множество элементов, относящихся к Н. м. с весьма высокой степенью принадлежности, лежит в основе обра­зования понятия об идеальном типе. К числу понятий об идеаль-



[224]
ном типе относятся понятия об абсолютно черном теле, идеаль­ном газе и др.
НЕЯСНОСТЬ
— характеристика употребления термина (понятия) с недостаточно определенным, расплывчатым смыслом. Точное употребление и понимание понятия предполагает знание его смыс­ла, или содержания, и отчетливое представление о классе тех объектов, к которым оно относится. Понятие, отсылающее к раз­мытому, нечетко представляемому множеству вещей или к мно­жеству, граница которого неопределенна, является неточным. По­нятие с неясным смыслом, размытым и неопределенным содер­жанием называется содержательно неясным или просто неясным.
Напр., понятие «живое существо» является относительно точ­ным: обычно мы уверенно распознаем, является ли встретившийся объект таким существом или нет. Вместе с тем содержание этого понятия не вполне ясно. Существуют десятки определений жиз­ни, и вряд ли какое-то из них является окончательным.
Еще одним примером сравнительно точного, но содержательно неясного понятия может служить понятие «токсическое вещество». Пятьдесят лет назад в справочниках упоминалось около сотни токсинов, сейчас их число приближается уже к ста тысячам. Такой бурный рост обусловлен не столько появлением в ходе технического прогресса новых веществ, неблагоприятно воздействующих на живое, сколько Н. и постоянным изменением представлений о том, какие именно вещества должны относиться к токсинам.
Неотчетливо может мыслиться не все содержание понятия, а только какая-то его часть. Таково, напр., понятие «феодализм». Основной его смысл достаточно отчетлив, но полной ясности нет, о чем свидетельствуют споры об особом, т. наз. «азиатском спосо­бе производства», существовавшем якобы наряду с «классичес­ким» феодализмом.
Неясным понятиям противопоставляются ясные понятия, имеющие хорошо определенное содержание (см.: Ясность).
Многие понятия обычного языка являются одновременно и не­ясными, и неточными. Они как бы вдвойне расплывчаты: их содер­жание лишено определенности, к тому же они отсылают к нечетко очерченному множеству объектов. Таково, напр., понятие «игра». Его содержание настолько неопределенно, что трудно сказать, каждая ли игра имеет правила, во всякой ли игре есть выиграв­шие и проигравшие и т. п. Вместе с тем это понятие охватывает очень широкую и разнородную область, границы которой очень неопределенны. Если брать только игры человека, то игрой будут


[225]
и футбол, и шахматы, и действия актера на сцене, и детская бе­готня, и выполнение стандартных обязанностей, предполагаемых такими социальными ролями, как роль брата, роль отца и т. п. Во многих случаях трудно решить, делается что-то всерьез или же это только игра.
НОМОЛОГИЧЕСКОЕ ВЫСКАЗЫВАНИЕ (от греч. nomos - за­кон, logos — учение, понятие)
— высказывание, выражающее за­кон природы. В логике научного познания проблема Н. в. связана с попытками сформулировать формально-логические критерии, позволяющие отличать Н.в. от случайно истинных общих высказываний.
Законы природы в логике принято выражать в виде общих условных высказываний типа "х(А(х)->В(х)). Напр., закон «Все металлы электропроводны» записывается так: «Для всякого х, если х - металл (А(х)), то х - электропроводен (В(х)), т. е. "х(a(х)-> В(х))». Однако многие истинные высказывания, не являющиеся законами природы, также выражаются в виде общих условных высказываний. Напр., высказывание «Все мои друзья блондины» получит вид: «Для всякого х, если х — мой друг, то х — блондин». Поэтому возникает вопрос: как отличить общие высказывания, вы­ражающие законы, от общих высказываний, которые хотя и ис­тинны, но закона не выражают? Многолетние усилия ответить на этот вопрос и задать некоторые формальные особенности Н. в., отличающие их от случайно истинных обобщений, не привели к успеху. Тем не менее некоторые черты Н. в. были установлены. Счи­тается, что высказывание, выражающее закон природы, должно быть: общим, универсальным (т.е. область, о которой оно говорит, не должна быть ограничена), нетривиальным (т. е. не должно иметь характера логической тавтологии) и, наконец, между его антецедентом и консеквентом должна существовать смысловая, содержательная связь.
НОРМА, см.: Нормативное высказывание.
НОРМАЛЬНОЕ МНОЖЕСТВО, см.: Противоречие в явном определении.
НОРМАТИВНАЯ ЛОГИКА, см.: Деонтическая логика.
НОРМАТИВНАЯ МОДАЛЬНОСТЬ, см.: Деонтическая модаль­ность.
НОРМАТИВНОЕ ВЫСКАЗЫВАНИЕ, или: Деонтическое высказывание,
— высказывание, устанавливающее какую-то норму поведения. Языковые формулировки Н. в. многообразны и разнородны. Иногда оно имеет форму повелительного (импера­тивного) предложения. Чаще Н. в. представляется повествователь-



[226]
ным предложением с особыми нормативными словами: «обяза­тельно», «разрешено», «запрещено», «(нормативно) безразлич­но». Вместо указанных могут употребляться также другие слова и обороты: «должен», «может», «не должен», «позволено», «реко­мендуется», «возбраняется» и т. п. В языковом представлении Н. в. решающую роль играет контекст, в котором выражается норма. Можно говорить об обычных, или стандартных, формулировках Н. в., но вряд ли можно сказать, что существует грамматическое предложение, в принципе не способное выражать такое высказы­вание. Попытка определить Н. в. на чисто грамматических основа­ниях не приводит к успеху.
Более удачными представляются попытки уточнить понятие Н.в. путем выявления внутренней структуры выражаемых норм и ис­следования многообразных разновидностей норм.
Структура и логические связи Н. в. изучаются деонтической логи­кой (логикой норм). Она исходит из представления, что все нормы, независимо от их конкретного содержания, имеют одну и ту же структуру. Каждая норма включает четыре «элемента»: содержа­ние — действие, являющееся объектом нормативной регуляции; характер — норма обязывает, разрешает или запрещает это дей­ствие; условия приложения — обстоятельства, в которых должно или не должно выполняться действие; субъект — лицо или группа лиц, которым адресована норма. Не все эти структур­ные элементы находят явное выражение в языковой формулиров­ке Н. в. Но это не означает, что они не обязательны. Без любого из них нет нормы и, значит, нет выражающего ее Н. в.
Область норм крайне широка; между нормами и тем, что ими не является, нет ясной границы. Самым общим образом нормы можно разделить на правила (правила игры, грамматики, ло­гики и математики, обычая и ритуала и т. п.), предписания (законы государства, команды и т. п.), технические нормы, говорящие о том, что должно быть сделано для достижения определенного результата. Помимо этих основных групп к нормам относятся также обычаи («Принято, чтобы младшие привет­ствовали старших первыми»), моральные принципы («Не будь завистлив») и правила идеала («Солдат должен быть стойким»). Эти виды норм занимают как бы промежуточное поло­жение между главными видами.
Сложность отличения Н. в. от высказываний иных видов, и преж­де всего от высказывания описательного, во многом связана с су­ществованием высказываний, выполняющих сразу несколько фун­кций или меняющих свою функцию от ситуации к ситуации. В частности, нормы почти не встречаются в научных теориях, ко-


[227]
торые не ставят своей специальной задачей их выработку и обо­снование. В обычные теории нормы входят, как правило, в виде «смешанных», описательно-нормативных (или дескриптивно-прескриптивных) утверждений. Очевиден, в частности, двойственный характер наиболее общих принципов теории. Не являются нормативно нейтральными и все иные законы теорий и даже лежащие в их основе факты.
Нормы представляют собой частный случай оценок: это соци­ально апробированные и социально закрепленные оценки. Сред­ством, превращающим позитивную оценку действия в норму, тре­бующую его реализации, является угроза наказания, или санк­ции. «Обязательно действие А» можно определить как «Делать A хорошо, и позитивно ценно, что воздержание от этого действия ведет к наказанию». Н. в. является, таким образом, особым случа­ем оценочного высказывания.
Нормы как оценки, стандартизированные с помощью санк­ций, являются частным и довольно узким классом оценок. Нор­мы касаются действий или вещей, тесно связанных с деятельно­стью человека, в то время как оценки могут относиться к лю­бым объектам. Нормы направлены всегда в будущее, оценки могут касаться также как прошлого и настоящего, так и того, что су­ществует вне времени.
Как и всякое оценочное высказывание, Н.в. не является ни истинным, ни ложным. Истина характеризует отношение между высказыванием описательным и действительностью. Нормы не яв­ляются дескриптивными, они не употребляются для описания и описывают постольку, поскольку это необходимо для выполне­ния основной функции — предписания.
Вопрос о том, приложимы к нормам термины «истинно» и «ложно» или нет, был и остается предметом споров. Во многом они связаны с тем, что значительное число языковых выражений имеет двойственный, описательно-нормативный характер. Тако­вы, в частности, моральные нормы, которые не только предпи­сывают определенное поведение, но и опосредствованно описы­вают сферу моральной жизни.
Как говорит «Юма принцип», из высказывания со связкой «есть» невыводимо логически высказывание с «должен». Положение, что нормативное заключение не может быть выведено из чисто описа­тельных посылок, деонтическая логика дополнила утверждением о невыводимости описаний из норм. Отсутствие между Н. в. и описа­тельными высказываниями связи логического следования не оз­начает, конечно, что между этими типами высказываний вообще нет связи.

[228]


О
ОБОБЩЕНИЕ (лат. generalisatio)
— мыслительная операция, пе­реход от мысли об индивидуальном, заключенной в понятии, суж­дении, норме, гипотезе, вопросе и т. п., к мысли об общем; от мысли об общем к мыслям о более общем; от ряда фактов, ситу­аций, событий к их отождествлению в каких-то свойствах с пос­ледующим образованием множеств, соответствующих этим свой­ствам (см.: Индуктивное обобщение). Путем индуктивного О. обра­зуются не только понятия, но и суждения.
Под аналитическими понимаются О., осуществляемые на ос­нове анализа соответствующих языковых выражений, определе­ний, применения правил дедукции и не требующие обращения к опыту. Примерами могут быть мысленные переходы от понятия «механическая форма движения материи» к понятию «форма движения материи», от суждения «Киты — млекопитающие» к суждению «Киты — позвоночные», от вопроса «Разрешима ли данная проблема в данном случае?» к вопросу «Разрешима ли данная проблема в общем случае?», от юридической нормы «кража запрещена» к норме «хищение запрещено». Под синтетическими (или индук­тивными) понимаются О., связанные с изучением опытных дан­ных. Они используются при формировании и развитии различных понятий, суждений (в том числе законов), научных теорий.
В традиционной логике под О. понятия понимается переход от понятия меньшей общности к понятию большей общности путем отбрасывания признаков, принадлежащих только тем элементам, которые входят в объем обобщаемого понятия (переход от поня­тия «прямоугольный треугольник» к понятию «треугольник»). Противоположной О. является операция ограничения понятия. Боль-



[229]
шую роль в синтетических О. играет абстракция отождествления. Процесс О. широко используется при образовании понятий не только в научном познании, но и, напр., в процессе формирова­ния художественных образов.
ОБОЗНАЧЕНИЯ ОТНОШЕНИЕ
- отношение между именем и его денотатом, т. е. объектом, к которому относится имя; то же, что и отношение именования. О. о. является одним из фундамен­тальных отношений семантического анализа. Теория О. о. базиру­ется на следующих принципах:
1) однозначности: каждое имя обозначает только один объект;
2) предметности: пред­ложение говорит о предметах, обозначенных входящими в пред­ложение именами;
3) взаимозаменимости: если два имени обозначают один и тот же предмет, то истинностное значение пред­ложения не изменится, если одно из этих имен заменить другим.
Казалось бы, эти принципы являются совершенно естествен­ными, однако их последовательное проведение встречает значи­тельные трудности. Во-первых, в неэкстенсиональных кон­текстах нарушается принцип взаимозаменимости, напр. предло­жение «Н. не знал, что Пушкин был автором "Евгения Онегина"» может быть истинным, но едва ли его можно заменить предложе­нием «Н. не знал, что Пушкин был Пушкиным». Во-вторых, воз­никают проблемы, связанные с использованием пустых имен, таких, как «Пегас», «Зевс» и т. п. Напр., два предложения «Круг­лый квадрат кругл» и «Круглый квадрат не кругл» являются ис­тинными, хотя и противоречат друг другу, следовательно, нару­шается закон противоречия. В-третьих, встают проблемы, свя­занные с использованием единичных отрицательных высказываний существования, напр.: «Не существует простого числа между 7 и 11». Из утвердительного единичного высказывания следует выс­казывание существования, напр. из высказывания «Дунай — евро­пейская река» следует «Существует такой х, что х — европейская река». Однако если мы возьмем высказывание «Пегас не суще­ствует», то из него будет следовать «Существует такой х, который не существует». И наконец, четвертая группа проблем, возника­ющая в связи с принципами О.о., относится к анализу утвержде­ний тождества: как отличить высказывания «а = а» и «а=b»?
Решение перечисленных проблем дает мощный стимул разви­тию логической семантики.
ОБОСНОВАНИЕ
— процедура проведения тех убедительных ар­гументов, или доводов, в силу которых следует принять к.-л. ут­верждение или концепцию. О. является, как правило, сложным процессом, не сводимым к построению отдельного умозаключе-



[230]
ния или проведению одноактной эмпирической проверки. О. обыч­но включает целую серию мыслительных действий, касающихся не только рассматриваемого положения, но и той системы утвер­ждений, той теории, составным элементом которой оно является. Существенную роль в механизме О. играют дедуктивные умозак­лючения, хотя лишь в редких случаях процесс О. удается свести к умозаключению или цепочке умозаключений.
Все многообразные способы О., обеспечивающие в конечном счете «достаточные основания» для принятия утверждения, де­лятся на абсолютные и сравнительные. Абсолютное О. — это приведение тех убедительных или достаточных оснований, в силу которых должно быть принято обосновываемое положение. Сравнительное О. — система убедительных доводов в поддержку того, что лучше принять обосновываемое положение, чем иное, противопоставляемое ему положение. Совокупность доводов, при­водимых в поддержку обосновываемого положения, называется основанием О. Общая схема, или структура, абсолютного О.: «A должно быть принято в силу С», где A — обосновываемое поло­жение и С- основание О. Структура сравнительного О.: «Лучше принять A, чем В, в силу С». Напр., выражение «Следует принять, что небо в обычных условиях голубое, поскольку в пользу этого говорит непосредственное наблюдение» — это абсолютное О., его резюмирующая часть. Выражение же «Лучше принять, что небо синее, чем принять, что оно красное, основываясь на положени­ях физики атмосферы» — это результирующая стадия сравнитель­ного О. того же утверждения «Небо голубое». Сравнительное О. иногда наз. также рационализацией: в условиях, когда абсо­лютное О. недостижимо, сравнительное О. представляет собой су­щественный шаг вперед в совершенствовании знания, в прибли­жении его к стандартам рациональности. Очевидно, что сравни­тельное О. несводимо к абсолютному: если удалось обосновать, что одно утверждение более правдоподобно, чем другое, этот ре­зультат невозможно выразить в терминах изолированной обосно­ванности одного или обоих данных утверждений.
Требования абсолютной и сравнительной обоснованности зна­ния (его обоснованности и рациональности) играют ведущую роль как в системе теоретического и практического мышления, так и в сфере аргументации. В этих требованиях пересекаются и концент­рируются все другие темы эпистемологии, и можно сказать, что обоснованность и рациональность являются синонимами способ­ности разума постигать действительность и извлекать выводы, ка­сающиеся практической деятельности. Без данных требований ар-


[231]
гументация теряет одно из своих сущностных качеств: она пере­стает апеллировать к разуму тех, кто ее воспринимает, к их спо­собности рационально оценивать приводимые аргументы и на основе такой оценки принимать их или отбрасывать.

<<

стр. 2
(всего 4)

СОДЕРЖАНИЕ

>>