<<

стр. 2
(всего 3)

СОДЕРЖАНИЕ

>>

Но если столкновение молекул Х и А может «запус­тить» химическую реакцию, то столкновение молекул В и Y может привести к обратной реакции. Это означает, что внутри описываемой химической системы может происходить вторая реакция: Y+B®X+A, которая при­водит к дополнительному изменению концентрации X: dX/dt=k'YB. Полное изменение концентрации реагента определяется балансом между прямой и обратной реак­циями. В нашем примере dX/dt=(—dY/dt=...)=—kAX+ +k'YB.
Будучи предоставленной самой себе, система, в кото­рой происходят химические реакции, стремится к состоя­нию химического равновесия. Именно поэтому химиче­ское равновесие можно считать типичным примером со­стояния-аттрактора. Каков бы ни был ее начальный со­став, система самопроизвольно достигает этой конечной стадии, в которой прямые и обратные реакции статисти­чески компенсируют друг друга, и поэтому дальнейшее суммарное изменение концентрации любого реагента прекращается (dX/dt=0). В нашем примере из полной компенсации прямой и обратной реакций следует, что равновесные концентрации удовлетворяют соотношению AX/YB=k'/k=K. Оно известно под названием «закона действия масс», или закона Гульдберга—Вааге (К — константа равновесия). Определяемое законом действия масс соотношение концентраций соответствует химиче­скому равновесию так же, как равномерность темпера­туры (в случае изолированной системы) соответствует тепловому равновесию. Соответствующее производство энтропии равно нулю.
Прежде чем перейти к термодинамическому описанию химических реакций, рассмотрим кратко один дополни­тельный аспект кинетического описания. Скорость хими-
186


ческой реакции зависит не только от концентраций ре­агирующих молекул и термодинамических параметров (например, от давления и температуры). Сказывается на ней и присутствие в системе химических веществ, влияющих на реакцию, но остающихся в итоге неизмен­ными. Такого рода вещества называются катализатора­ми. Катализаторы могут, например, изменить значения констант реакций k или k' и даже заставить систему пойти по другому пути реакции. В биологии роль катализа­торов играют специфические протеины — ферменты. Эти макромолекулы обладают пространственной конфигура­цией, позволяющей им изменять скорость реакции. Фер­менты часто бывают высокоспецифичными и влияют лишь на одну реакцию. Возможный механизм каталити­ческого действия ферментов состоит в следующем. В мо­лекуле ферментов имеются места, обладающие повышен­ной «реакционной способностью». Молекулы других ве­ществ, участвующих в реакции, стремятся присоединить­ся к активным участкам молекулы фермента. Тем самым повышается вероятность их столкновения, а следователь­но, и инициации химической реакции.
Весьма важным типом каталитических процессов (особенно в биологии) являются так называемые автока­талитические реакции, в которых для синтеза некоторо­го вещества требуется присутствие этого же вещества. Иначе говоря, чтобы получить в результате реакции ве­щество X, мы должны начать с системы, содержащей Х с самого начала. Например, очень часто молекула Х ак­тивирует фермент: присоединяясь к молекуле фермента, Х стабилизирует такую конфигурацию, которая делает легкодоступными активные участки. Автокаталитическим процессам соответствуют схемы реакций типа А+2Х->3Х (в присутствии молекул Х одна молекула А пре­вращается в одну молекулу X). Иначе говоря, нам необходимо иметь X, чтобы произвести еще X. Графически автокаталитическне реакции принято изображать с по­мощью реакционной петли:


Важная особенность систем с такими реакционными петлями состоит в том, что кинетические уравнения, ко-
187


Рис. 3. На этом графике представлены пути реакций для «брюсселятора» (более подробно «брюсселятор» описан в тексте).
торые описывают происходящие в них изменения, явля­ются нелинейными дифференциальными уравнениями.
Если мы применим тот же метод, то для реакции A+2X®ЗX получим кинетическое уравнение dX/dt=КАХ2, т. е. скорость изменения концентрации вещест­ва Х окажется пропорциональной квадрату его концен­трации.
Другой весьма важный класс каталитических реак­ций в биологии — так называемый кросс-катализ — пред­ставлен для системы 2X+Y®3X, B+X®Y+D на рис. 3.
В данном случае мы действительно имеем дело с кросс-катализом (т. е. «перекрестным катализом»), по­скольку из Y получается X, а из Х одновременно полу­чается Y. Катализ не обязательно увеличивает скорость реакции. Он может и замедлять, или ингибировать, ее. Графически это также изображается с помощью соот­ветствующих петель обратной связи.
Характерные математические особенности нелиней­ных дифференциальных уравнений, описывающих хими­ческие реакции с каталитическими стадиями, как мы убе­димся в дальнейшем, имеют жизненно важное значение для термодинамики сильно неравновесных химических процессов. Кроме того, как мы уже упоминали, биолога­ми установлено, что петли обратной связи играют весь­ма существенную роль в метаболических функциях. На­пример, взаимосвязь между нуклеиновыми кислотами и протеинами может быть описана как кросс-катализ: нуклеиновые кислоты являются носителями информа­ции, необходимой для синтеза протеинов, а протеины в свою очередь синтезируют нуклеиновые кислоты.
Помимо скоростей химических реакций, необходимо также учитывать скорости других необратимых процес-
188


сов, таких, как перенос тепла и диффузия вещества. Ско­рости необратимых процессов называются также пото­ками и обозначаются буквой J. Общей теории, которая давала бы скорости, или потоки, не существует. В хи­мических реакциях скорость зависит от молекулярного механизма, в чем нетрудно убедиться на уже приведен­ных примерах. Термодинамика необратимых процессов вводит величины еще одного типа: помимо скоростей или потоков J, она использует обобщенные силы X, т. е. «причины», вызывающие потоки. Простейшим примером может служить теплопроводность. Закон Фурье утверж­дает, что поток тепла J пропорционален градиенту тем­пературы. Следовательно, градиент температуры есть та «сила», которая создает поток тепла. По определению, и поток и силы в состоянии теплового равновесия равны нулю. Как мы увидим в дальнейшем, производство эн­тропии P=diS/dt может быть вычислено по потоку и силам.
Рассмотрим определение обобщенной силы в случае химической реакции. Для простоты обратимся снова к реакции A+X®Y+B. Как мы уже знаем, в случае рав­новесия соотношение концентраций определяется зако­ном действия масс. Теофил де Донде показал, что в ка­честве «химической силы» можно ввести сродство A, определяющее направление протекания химической ре­акции так же, как градиент температуры определяет на­правление теплового потока. В рассматриваемом нами случае сродство пропорционально lnKBY/AX, где К — константа равновесия. Непосредственно видно, что срод­ство A обращается в нуль при достижении равновесия, где по закону действия масс AX/BY=K. Если мы станем выводить систему из равновесия, то сродство (по абсо­лютной величине) возрастет. В этом нетрудно убедить­ся, если исключить из системы некоторую долю моле­кул В по мере их образования в ходе реакции. Можно сказать, что сродство служит мерой расстояния между фактическим состоянием системы и ее равновесным со­стоянием. Кроме того, как мы упоминали, знак сродст­ва определяет направление химической реакции. Если сродство A положительно, то молекул В и Y «слишком много» и суммарная реакция идет в направлении B+Y®A+X. И, наоборот, если сродство A отрицательно, то молекул В и Y «слишком мало» и суммарная реак­ция идет в обратном направлении.
189


Сродство в том смысле, в каком мы его определили, является уточненным вариантом старинного сродства, о которой писали еще алхимики, стремившиеся разо­браться в способности химических веществ вступать в одни и не вступать в другие реакции, т. е. в «симпати­ях» и «антипатиях» молекул. Идея о том, что химическая активность не сводима к механическим траекториям, к невозмутимому господству динамических законов, под­черкивалась с самого начала. Мы уже приводили обшир­ную выдержку из Дидро. Позднее Ницше по другому поводу заметил, что смешно говорить о «химических за­конах», как будто химические вещества подчиняются за­конам, аналогичным законам морали. В химии, утверж­дал Ницше, не существует ограничений и каждое ве­щество вольно поступать как ему «вздумается». Речь идет не об «уважении», питаемом одним веществом к другому, а о силовой борьбе, о непрестанном подчинении слабого сильному2. Химическое равновесие с обращаю­щимся в нуль сродством соответствует разрешению это­го конфликта. С этой точки зрения специфичность тер­модинамического сродства перефразирует на современ­ном языке старую проблему3 — проблему различия между скованным жесткими нормами безразличным миром динамических законов и миром спонтанной про­дуктивной активности, которому принадлежат химиче­ские реакции.
Нельзя не отметить принципиальное концептуальное различие между физикой и химией. В классической фи­зике мы можем по крайней мере представлять себе об­ратимые процессы, такие, как движение маятника без трения. Пренебрежение необратимыми процессами в ди­намике всегда соответствует идеализации, но по край­ней мере в некоторых случаях эта идеализация разумна. В химии все обстоит совершенно иначе. Процессы, изу­чением которых она занимается (химические превраще­ния, характеризуемые скоростями реакций), необрати­мы. По этой причине химию невозможно свести к лежа­щей в основе классической или квантовой механики идеализации, в которой прошлое и будущее играют эк­вивалентные роли.
Как и следовало ожидать, все необратимые процес­сы сопровождаются производством энтропии. Каждый из них входит в diS в виде произведения скорости, или по­тока J и соответствующей силы X. Полное производство
190


энтропии в единицу времени P=diS/dt равно сумме всех таких вкладов, каждый из которых имеет вид произве­дения JX.
Термодинамику можно разделить на три большие области, изучение которых соответствует трем последо­вательным этапам в развитии термодинамики. В равно­весной области производство энтропии, потоки и силы равны нулю. В слабо неравновесной области, где термо­динамические силы «слабы», потоки Jk линейно зависят от сил. Наконец, третья область называется сильно не­равновесной, или нелинейной, потому, что в ней потоки являются, вообще говоря, более сложными функциями сил. Охарактеризуем сначала некоторые общие особен­ности линейной термодинамики, характерные для слабо неравновесных систем.
2. Линейная термодинамика
В 1931 г. Ларс Онсагер открыл первые общие соотно­шения неравновесной термодинамики в линейной, слабо неравновесной области. Это были знаменитые «соотно­шения взаимности». Суть их чисто качественно сводится к следующему: если сила «один» (например, градиент температуры) для слабо неравновесных ситуаций воз­действует на поток «два» (например, на диффузию), то сила «два» (градиент концентрации) воздействует на поток «один» (поток тепла). Соотношения взаимности неоднократно подвергались экспериментальной провер­ке. Например, всякий раз, когда градиент температуры индуцирует диффузию вещества, мы обнаруживаем, что градиент концентрации вызывает поток тепла через си­стему.
Следует особо подчеркнуть, что соотношения Онсагера носят общий характер. Несущественно, например, про­исходят ли необратимые процессы в газообразной, жид­кой или твердой среде. Соотношения взаимности выпол­няются независимо от допущений относительно агрегат­ного состояния вещества.
Соотношения взаимности Онсагера были первым зна­чительным результатом в термодинамике необратимых процессов. Они показали, что предмет этой новой нау­ки не некая плохо определенная «ничейная» земля, а за­служивает внимания ничуть не меньше, чем предмет тра-
191


диционной равновесной термодинамики, не уступая по­следнему в плодотворности. Если равновесная термоди­намика была достижением XIX в., то неравновесная тер­модинамика возникла и развивалась в XX в. Вывод со­отношений взаимности Онсагера ознаменовал сдвиг ин­тересов от равновесных явлений к неравновесным.
Нельзя не упомянуть и о втором общем результате линейной неравновесной термодинамики. Нам уже при­ходилось говорить о термодинамических потенциалах, экстремумы которых соответствуют состояниям равнове­сия, к которому необратимо стремится термодинамиче­ская эволюция. Для изолированной системы потенциа­лом является энтропия S, для замкнутой системы с за­данной температурой — свободная энергия F. Термоди­намика слабо неравновесных систем также вводит свой термодинамический потенциал. Весьма интересно, что та­ким потенциалом является само производство энтро­пии Р. Действительно, теорема о минимуме производст­ва энтропии утверждает, что в области применимости соотношений Онсагера, т. е. в линейной области, система эволюционирует к стационарному состоянию, характери­зуемому минимальным производством энтропии, совмес­тимым с наложенными на систему связями. Эти связи определяются граничными условиями. Например, может возникнуть необходимость поддерживать две точки си­стемы при заданных различных температурах или орга­низовать поток, который бы непрерывно подводил в ре­акционную зону исходные вещества и удалял продукты реакции.
Стационарное состояние, к которому эволюциониру­ет система, заведомо является неравновесным состояни­ем, в котором диссипативные процессы происходят с не­нулевыми скоростями. Но поскольку это состояние ста­ционарно, все величины, описывающие систему (такие, как температура, концентрации), перестают в нем зави­сеть от времени. Не зависит от времени в стационарном состоянии и энтропия системы. Но тогда изменение эн­тропии во времени становится равным нулю: dS=0. Как мы уже знаем, полное приращение энтропии состоит из двух членов: потока энтропии deS и положительного про­изводства энтропии diS; поэтому из равенства dS==0 следует, что deS=—diS<0. Поступающий из окружаю­щей среды поток тепла или вещества определяет отрица­тельный поток энтропии deS, который компенсируется
192


производством энтропии diS из-за наобратимых процес­сов внутри системы. Отрицательный поток энтропии deS означает, что система поставляет энтропию внешне­му миру. Следовательно, в стационарном состоянии ак­тивность системы непрерывно увеличивает энтропию ок­ружающей среды. Все сказанное верно для любых ста­ционарных состояний. Но теорема о минимуме производ­ства энтропии утверждает нечто большее: то выделенное стационарное состояние, к которому стремится система, отличается тем, что в нем перенос энтропии в окружаю­щую среду настолько мал, насколько это позволяют на­ложенные на систему граничные условия. В этом смысле равновесное состояние соответствует тому частному слу­чаю, когда граничные условия допускают исчезающе ма­лое производство энтропии. Иначе говоря, теорема о ми­нимуме производства энтропии выражает своеобразную «инерцию» системы: когда граничные условия мешают системе перейти в состояние равновесия, она делает лучшее из того, что ей остается, — переходит в состояние энтропии, т. е. в состояние, которое настолько близко к состоянию равновесия, насколько это позволяют обстоя­тельства.
Таким образом, линейная термодинамика описывает стабильное, предсказуемое поведение систем, стремящих­ся к минимальному уровню активности, совместимому с питающими их потоками. Из того, что линейная нерав­новесная термодинамика так же, как и равновесная тер­модинамика, допускает описание с помощью потенциала, а именно производства энтропии, следует, что и при эво­люции к равновесию, и при эволюции к стационарному состоянию система «забывает» начальные условия. Ка­ковы бы ни были начальные условия, система рано или поздно перейдет в состояние, определяемое граничными условиями. В результате реакция такой системы на лю­бое изменение граничных условий становится предска­зуемой.
Мы видим, что в линейной области ситуация остает­ся, по существу, такой же, как и в равновесной. Хотя производство энтропии не обращается в нуль, оно тем не менее не мешает необратимому изменению отождест­вляться с эволюцией к состоянию, полностью выводимо­му из общих законов. Такое «становление» неизбежно приводит к уничтожению любого различия, любой спе­цифичности. Карно или Дарвин? Парадокс, на который
193


мы обратили внимание в гл. 4, остается в силе. Между появлением естественных организованных форм, с одной стороны, и тенденцией к «забыванию» начальных усло­вий наряду с возникающей при этом дезорганизацией — с другой, все еще существует зияющая брешь.
3. Вдали от равновесия
У истоков нелинейной термодинамики лежит нечто совершенно удивительное, факт, который на первый взгляд легко принять за неудачу: несмотря на все по­пытки, обобщение теоремы о минимуме производства энтропии для систем, в которых потоки уже не являются более линейными функциями сил, оказалось невозмож­ным. Вдали от равновесия система по-прежнему может эволюционировать к некоторому стационарному состоя­нию, но это состояние, вообще говоря, уже не опреде­ляется с помощью надлежаще выбранного потенциала (аналогичного производству энтропии для слабо нерав­новесных состояний).
Отсутствие потенциальной функции ставит перед на­ми вопрос: что можно сказать относительно устойчиво­сти состояний, к которым эволюционирует система? Действительно, до тех пор пока состояние-аттрактор оп­ределяется минимумом потенциала (например, производ­ство энтропии), его устойчивость гарантирована. Прав­да, флуктуация может вывести системы из этого мини­мума. Но тогда второе начало термодинамики вынудит систему вернуться в исходный минимум. Таким образом, существование термодинамического потенциала делает систему «невосприимчивой» к флуктуациям. Располагая потенциалом, мы описываем «стабильный мир», в кото­ром системы, эволюционируя, переходят в статичное со­стояние, установленное для них раз и навсегда.
Но когда термодинамические силы, действуя на си­стему, становятся достаточно «большими» и вынуждают ее покинуть линейную область, гарантировать устойчи­вость стационарного состояния или его независимость от флуктуации было бы опрометчиво. За пределами линей­ной области устойчивость уже не является следствием общих законов физики. Необходимо специально изучать, каким образом стационарное состояние реагирует на раз­личные типы флуктуации, создаваемых системой или окружающей средой. В некоторых случаях анализ при-
194


водит к выводу, что состояние неустойчиво. В таких со­стояниях определенные флуктуации вместо того, чтобы затухать, усиливаются и завладевают всей системой, вынуждая ее эволюционировать к новому режиму, кото­рый может быть качественно отличным от стационарных состояний, соответствующих минимуму производства энтропии.
Термодинамика позволяет высказать исходное общее заключение относительно систем, в поведении которых могут обнаружиться отклонения от того типа порядка, который диктуется равновесным состоянием. Такие си­стемы должны быть сильно неравновесными. В тех слу­чаях, когда возможна неустойчивость, необходимо ука­зать порог, расстояние от равновесия, за которым флук­туации могут приводить к новому режиму, отличному от «нормального» устойчивого поведения, характерного для равновесных или слабо неравновесных систем.
Чем такой вывод интересен?
Такого рода явления хорошо известны в гидродина­мике — теории течений. Например, давно известно, что при определенной скорости ламинарное течение может смениться турбулентным. По свидетельству Мишеля Серра4, древние атомисты уделяли турбулентному тече­нию столь большое внимание, что турбулентность с пол­ным основанием можно считать основным источником вдохновения физики Лукреция. Иногда, писал Лукреций, в самое неопределенное время и в самых неожиданных местах вечное и всеобщее падение атомов испытывает слабое отклонение — «клинамен». Возникающий вихрь дает начало миру, всем вещам в природе. «Клинамен», спонтанное непредсказуемое отклонение, нередко под­вергали критике как одно из наиболее уязвимых мест в физике Лукреция, как нечто, введенное ad hoc. В действительности же верно обратное: «клинамен» представляет собой попытку объяснить такие явления, как потеря устойчивости ламинарным течением и его спонтанный переход в турбулентное течение. Современ­ные специалисты по гидродинамике проверяют устойчи­вость течения жидкости, вводя возмущение, выражаю­щее влияние молекулярного хаоса, который накладыва­ется на среднее течение. Не так уж далеко мы ушли от «клинамена» Лукреция!
Долгое время турбулентность отождествлялась с хао­сом или шумом. Сегодня мы знаем, что это не так. Хотя
195


в макроскопическом масштабе турбулентное течение ка­жется совершенно беспорядочным, или хаотическим, в микроскопическом масштабе оно высокоорганизованно. Множество пространственных и временных масштабов, на которых разыгрывается турбулентность, соответствует когерентному поведению миллионов и миллионов моле­кул. С этой точки зрения переход от ламинарного тече­ния к турбулентности является процессом самоорганиза­ции. Часть энергии системы, которая в ламинарном те­чении находилась в тепловом движении молекул, перехо­дит в макроскопическое организованное движение.
Еще одним поразительным примером неустойчивости стационарного состояния, приводящей к явлению спон­танной самоорганизации, может служить так называе­мая неустойчивость Бенара. Она возникает в горизон­тальном слое жидкости с вертикальным градиентом тем­пературы. Нижняя поверхность слоя жидкости нагрева­ется до заданной температуры, более высокой, чем тем­пература верхней поверхности. При таких граничных ус­ловиях в слое жидкости устанавливается стационарный поток тепла, идущий снизу вверх. Когда приложенный градиент температуры достигает некоторого порогового значения, состояние покоя жидкости (стационарное со­стояние, в котором перенос тепла осуществляется толь­ко с помощью теплопроводности, без конвекции) стано­вится неустойчивым. Возникает конвекция, соответст­вующая когерентному, т. е. согласованному, движению ансамблей молекул; при этом перенос тепла увеличива­ется. Следовательно, при заданных связях (величине градиента температуры) производство энтропии в систе­ме возрастает, что противоречит теореме о минимуме производства энтропии. Неустойчивость Бенара — явле­ние весьма впечатляющее. Конвективное движение жид­кости порождает сложную пространственную организа­цию системы. Миллионы молекул движутся согласован­но, образуя конвективные ячейки в форме правильных шестиугольников некоторого характерного размера.
В гл. 4 мы ввели принцип порядка Больцмана, уста­навливающий связь энтропии с вероятностью (числом комплексов Р). Применимо ли это соотношение в дан­ном случае? Каждому распределению скоростей молекул соответствует некоторое число комплексов. Оно показы­вает, сколькими способами мы можем реализовать тре­буемое распределение скоростей, придавая каждой мо-
196


лекуле некоторую скорость. Все рассуждения аналогич­ны приведенным в гл. 4 при подсчете числа комплексов как функции от распределения молекул между двумя отделениями ящика. В случае неустойчивости Бенара число комплексов также велико в случае хаоса, т. е. значительного разброса скоростей. Наоборот, когерент­ное движение означает, что многие молекулы движутся почти с одинаковыми скоростями (разброс скоростей мал). Такому распределению соответствует столь малое число комплексов Р, что вероятность возникновения са­моорганизации почти равна пулю. И все же самооргани­зация происходит! Мы видим, таким образом, что под­счет числа комплексов, исходящий из гипотезы об апри­орном равнораспределении вероятностей молекулярных состояний, приводит к неверным выводам. То, что он не соответствует истинному положению вещей, становится особенно заметным, если мы обратимся к происхожде­нию нового режима. В случае неустойчивости Бенара это — флуктуация, микроскопическое конвективное тече­ние, которое, если верить принципу порядка Больцмана, обречено на вырождение, но вопреки ему усиливается и завладевает всей системой. Таким образом, за критиче­ским значением приложенного градиента спонтанно ус­танавливается новый молекулярный порядок. Он соот­ветствует гигантской флуктуации, стабилизируемой об­меном энергией с внешним миром.
В сильно неравновесных условиях понятие вероятно­сти, лежащее в основе больцмановского принципа по­рядка, становится неприменимым: наблюдаемые струк­туры не соответствуют максимуму комплексов. Не соот­ветствует максимум комплексов и минимуму свободной энергии F=E—TS. Тенденция к выравниванию и «забы­ванию» начальных условий перестает быть общей тен­денцией. В этом смысле старая проблема происхожде­ния жизни предстает в ином свете. Заведомо ясно, что жизнь несовместима с принципом порядка Больцмана, но не противоречит тому типу поведения, который уста­навливается в сильно неравновесных условиях.
Классическая термодинамика приводит к понятию равновесной структуры, примером которой может слу­жить любой кристалл. Ячейки Бенара также представ­ляют собой структуры, но совершенно иной природы. Именно поэтому мы ввели новое понятие — диссипативная структура, чтобы подчеркнуть тесную и на первый
197


взгляд парадоксальную взаимосвязь, существующую в таких ситуациях, с одной стороны, между структурой и порядком, а с другой — между диссипацией, или потеря­ми. В гл. 4 мы видели, что в классической термодинами­ке тепловой поток считался источником потерь. В ячей­ке Бенара тепловой поток становится источником по­рядка.
Таким образом, взаимодействие системы с внешним миром, ее погружение в неравновесные условия может стать исходным пунктом в формировании новых динами­ческих состояний — диссипативных структур. Диссипативная структура отвечает некоторой форме супермоле­кулярной организации. Хотя параметры, описывающие кристаллические структуры, могут быть выведены из свойств образующих их молекул, и в частности из радиу­са действия сил взаимного притяжения и отталкивания, ячейки Бенара, как и все диссипативные структуры, по существу, отражают глобальную ситуацию в порождаю­щей их неравновесной системе. Описывающие их пара­метры макроскопические — порядка не 10-8см (как рас­стояния между молекулами в кристалле), а нескольких сантиметров. Временные масштабы также другие: они соответствуют не молекулярным масштабам (напри­мер, периодам колебаний отдельных молекул, т. е. по­рядка 10-15с), а макроскопическим, т. е. секундам, ми­нутам или часам.
Но вернемся к химическим реакциям. Они обладают некоторыми весьма важными отличиями от проблемы Бенара. В ячейке Бенара неустойчивость имеет простое механическое происхождение. Когда мы нагреваем жид­кость снизу, нижний слой жидкости становится менее плотным и центр тяжести перемещается вверх. Неудиви­тельно поэтому, что за критической точкой система «оп­рокидывается» и возникает конвекция.
Химические системы не обладают такого рода меха­ническими свойствами. Можно ли ожидать явления са­моорганизации в химических системах? Мысленно мы представляем себе химические реакции так: во всех на­правлениях в пространстве несутся молекулы веществ и случайным образом сталкиваются. В такой картине не остается места для самоорганизации, и, быть может, в этом заключается одна из причин, по которым химиче­ские неустойчивости лишь недавно начали привлекать внимание исследователей. Имеется и еще одно отличие.
198


Рис. 4. Каталитические петли соответствуют нелинейным чле­нам. В задаче с одной независимой переменной нелинейность озна­чает, что имеется по крайней мере один член, содержащий незави­симую переменную в степени выше 1. В этом простейшем случае нетрудно проследить за тем, какая связь существует между нелиней­ными членами и потенциальной неустойчивостью стационарных со­стояний.
Предположим, что для независимой переменной Х выполняется эволюционное уравнение dX/dt=f(X). Функцию f(X) всегда можно разложить в разность двух функций: f+(X), соответствующую при­были («наработке» вещества), и f-(X), соответствующую убытку (расходу вещества), каждая из которых положительна или равна 0, т. е. представить в виде f(X)=f+(X)—f-(X). Стационарные состоя­ния dX/dt=0 соответствуют значениям X, при которых f+(X)=f-(X).
Равенство f+(X)=f-(X) означает, что стационарные состояния можно найти, построив точки пересечения графиков функций f+ и f-. Если f+ и f- линейны, то их графики могут пересекаться только в одной точке. В противном случае характер пересечения позволяет сделать выводы об устойчивости соответствующего стационарного состояния.
Возможны следующие четыре случая:
SI. Стационарное состояние устойчиво относительно отрицатель­ных флуктуации и неустойчиво относительно положительных флук­туации. Если систему слегка отклонить влево от SI, то положитель­ная разность между f+ и f- вынудит систему вернуться в SI. Если же систему отклонить вправо от SI, то отклонение будет нарастать.
SS. Стационарное состояние устойчиво как относительно поло­жительных, так и относительно отрицательных флуктуации.
IS. Стационарное состояние устойчиво только относительно по­ложительных флуктуаций.
II. Стационарное состояние неустойчиво как относительно поло­жительных, так и относительно отрицательных флуктуаций.
199


Все течения достаточно далеко от равновесия становят­ся турбулентными (порог измеряется в безразмерных числах, например в числах Рейнольдса). Химические реакции ведут себя иначе. Для них большая удален­ность от состояния равновесия — условие необходимое, но не достаточное. Во многих химических системах, ка­кие бы связи на них ни накладывались и как бы ни из­менялись скорости реакций, стационарное состояние ос­тается устойчивым и произвольные флуктуации затуха­ют, как в слабо неравновесной области. В частности, так обстоит дело в системах, в которых наблюдается цепь последовательных превращений типа A®B®C®D®..., описываемая линейными дифференциальными уравне­ниями.
Судьба флуктуаций, возмущающих химическую си­стему, а также новые ситуации, к которым она может эволюционировать, зависят от детального механизма хи­мических реакций. В отличие от систем в слабо неравно­весной области поведение сильно неравновесных систем весьма специфично. В сильно неравновесной области не существует универсального закона, из которого можно было бы вывести заключение относительно поведения всех без исключения систем. Каждая сильно неравновес­ная система требует особого рассмотрения. Каждую си­стему химических реакций необходимо исследовать осо­бо — поведение ее может быть качественно отличным от поведения других систем.
Тем не менее один общий результат все же был полу­чен, а именно: выведено необходимое условие химиче­ской неустойчивости. В цепи химических реакций, про­исходящих в системе, устойчивости стационарного со­стояния могут угрожать только стадии, содержащие ав­токаталитические петли, т. е. такие стадии, в которых продукт реакции участвует в синтезе самого себя. Этот вывод интересен тем, что вплотную подводит нас к фун­даментальным достижениям молекулярной биологии (рис. 4).
4. За порогом химической неустойчивости
Изучение химических неустойчивостей в наши дни стало довольно обычным делом. И теоретические, и экс­периментальные исследования ведутся во многих инсти­тутах и лабораториях. Как мы увидим, эти исследования
200


представляют интерес для широкого круга ученых — не только для математиков, физиков, химиков и биологов, но и для экономистов и социологов.
В сильно неравновесных условиях за порогом хими­ческой неустойчивости происходят различные новые яв­ления. Для того чтобы описать их подробно, полезно на­чать с упрощенной теоретической модели, разработан­ной в последнее десятилетие в Брюсселе. Американские ученые назвали эту модель «брюсселятором», и это на­звание так и прижилось в научной литературе. (Геогра­фические ассоциации, по-видимому, стали правилом в этой области: помимо «брюсселятора», существует «оре-гонатор» и даже самый юный «палоальтонатор»!) Опи­шем кратко «брюсселятор». Ранее мы уже отмечали те стадии реакции, которые ответственны за неустойчи­вость (см. рис. 3). Вещество Х образуется из вещества А и превращается в вещество Е. Оно является «партне­ром» по кросс-катализу вещества Y: Х образуется из Y в результате тримолекулярной стадии, а Y образуется в результате реакции между Х и веществом В.
В этой модели концентрации веществ A, В, D и Е за­даны (и являются так называемыми управляющими па­раметрами). Поведение системы исследуется при возрас­тающих значениях В. Концентрация А поддерживается постоянной. Стационарное состояние, к которому с наи­большей вероятностью эволюционирует такая система (состояние с dX/dt=dY/dt=0), соответствует концентра­циям Х0=А и Y0=B/A. В этом нетрудно убедиться, если выписать кинетические уравнения и найти стационарное состояние. Но как только концентрация В переходит критический порог (при прочих равных параметрах), это стационарное состояние становится неустойчивым. При переходе через критический порог оно становится неус­тойчивым фокусом, и система, выходя из этого фокуса, выходит, или «наматывается», на предельный цикл. Вместо того чтобы оставаться стационарными, концент­рации Х и Y начинают колебаться с отчетливо выражен­ной периодичностью. Период колебаний зависит от кине­тических постоянных, характеризующих скорость реак­ции, и граничных условий, наложенных на всю систему (температуры, концентрации веществ A, B и т. д.).
За критическим порогом система под действием флук­туаций спонтанно покидает стационарное состояние Х0=A, Y0=В/A. При любых начальных условиях она стре-
201


Рис. 5. Зависимость концентрации компоненты Х от концентра­ции компоненты Y. Фокус внутри цикла (точка S) — стационарное состояние, неустойчивое при B>(1+A2). Все траектории (пять из которых представлены на графике) при любом начальном состоянии стремятся к одному и тому же предельному циклу.
мится выйти на предельный цикл, периодическое движе­ние по которому устойчиво. В результате мы получаем периодический химический процесс — химические часы. Остановимся на мгновение, чтобы подчеркнуть, сколь не­ожиданно такое явление. Предположим, что у нас име­ются молекулы двух сортов: «красные» и «синие». Из-за хаотического движения молекул можно было бы ожи­дать, что в какой-то момент в левой части сосуда ока­жется больше красных молекул, в следующий момент больше станет синих молекул и т. д. Цвет реакционной смеси с трудом поддается описанию: фиолетовый с бес­порядочными переходами в синий и красный. Иную кар­тину мы увидим, разглядывая химические часы: вся реакционная смесь будет иметь синий цвет, затем ее цвет резко изменится на красный, потом снова на синий
202


и т. д. Поскольку смена окраски происходит через пра­вильные интервалы времени, мы имеем дело с когерент­ным процессом.
Столь высокая упорядоченность, основанная на со­гласованном поведении миллиардов молекул, кажется неправдоподобной, и, если бы химические часы нельзя было бы наблюдать «во плоти», вряд ли кто-нибудь по­верил, что такой процесс возможен. Для того чтобы одновременно изменить свой цвет, молекулы должны «каким-то образом» поддерживать связь между собой. Система должна вести себя как единое целое. К ключе­вому слову «связь», обозначающему весьма важное для многих областей человеческой деятельности (от хи­мии до нейрофизиологии) понятие, мы будем еще воз­вращаться неоднократно. Возможно, что именно диссипативные структуры представляют собой один из про­стейших физических механизмов связи (communication).
Между простейшим механическим осциллятором — пружиной — и химическими часами имеется важное различие. Химические часы обладают вполне определенной периодичностью, соответствующей тому предельному циклу, на который наматывается их траектория. Что же касается пружины, то частота ее колебаний зависит от амплитуды. С этой точки зрения химические часы как хранители времени отличаются большей надежностью, чем пружина.
Но химические часы — отнюдь не единственный тип самоорганизации. До сих пор мы пренебрегали диффу­зией. В своих рассуждениях мы неизменно предполагали, что все вещества равномерно распределены по всему реакционному пространству. Разумеется, такое допуще­ние не более чем идеализация: небольшие флуктуации всегда создают неоднородности в распределении кон­центраций и, следовательно, способствуют возникнове­нию диффузии. Следовательно, в уравнениях, описываю­щих химические реакции, необходимо учитывать диффу­зию. Уравнения типа «реакция с диффузией» для «брюсселятора» обладают необычайно богатым запасом реше­ний, отвечающих качественно различным типам поведе­ния системы. Если в равновесном и в слабо неравновес­ном состояниях система остается пространственно одно­родной, то в сильно неравновесной области появление новых типов неустойчивости, в том числе усиление флук­туаций, нарушает начальную пространственную симмет-
203


рию. Таким образом, колебания во времени (химические часы) перестают быть единственным типом диссипативных структур, которые могут возникать в системе; в сильно неравновесной области могут появиться, напри­мер, колебания не только временные, но и пространст­венно-временные. Они соответствуют волнам концентра­ций химических веществ Х и Y, периодически проходя­щим по системе. Кроме того, в системе, особенно в тех случаях, когда коэффициенты диффузии веществ Х и Y сильно отличаются друг от друга, могут устанавливать­ся стационарные, не зависящие от времени режимы и возникать устойчивые пространственные структуры.
Здесь нам необходимо еще раз остановиться: на этот раз для того, чтобы подчеркнуть, как сильно спонтанное образование пространственных структур противоречит законам равновесной физики и принципу порядка Больцмана. И в этом случае число комплексов, соответствую­щих таким структурам, чрезвычайно мало по сравнению с числом комплексов, отвечающих равномерному рас­пределению. Но неравновесные процессы могут приво­дить к ситуациям, кажущимся немыслимыми с класси­ческой точки зрения.
При переходе от одномерных задач к двухмерным или трехмерным число качественно различных диссипативных структур, совместимых с заданным набором гранич­ных условий, возрастает еще больше. Например, в двух­мерной области, ограниченной окружностью, может воз­никнуть пространственно неоднородное стационарное со­стояние с выделенной осью. Перед нами новый, необы­чайно интересный процесс нарушения симметрии, особен­но если мы вспомним, что одна из первых стадий в морфогенезе зародыша — образование градиента в системе. Такого рода проблемы мы еще рассмотрим и в этой гла­ве, и в гл. 6.
До сих пор мы предполагали, что концентрации А, В, D и Е (наши управляющие параметры) равномерно распределены по всей реакционной системе. Стоит лишь нам отказаться от этого упрощения, как возникают но­вые явления. Например, система принимает «естествен­ные размеры», зависящие от определяющих параметров. Тем самым система определяет свой внутренний мас­штаб, т. е. размеры области, занятой пространственными структурами, или часть пространства, в пределах кото­рой проходят периодические волны концентраций.
204


Рис. 6. Химические полны, смоделированные на ЭВМ. Последо­вательные стадии эволюции пространственного распределения кон­центрации компоненты X в тримолекулярной модели «брюсселятор». При t=3,435 восстановилось такое же распределение концентраций, как при t=0. Концентрации компонент А и В равны соответствен­но 2 и 5,45 (В>[1+А2]). Коэффициенты диффузии для Х и Y соот­ветственно равны 8?10-3 и 4?10-3.
205


Рис. 7. Стационарное состояние с выделенной осью (результат численного моделирования). Концентрация X есть функция геомет­рических координат р, q в горизонтальной плоскости. Стрелкой ука­зано место, где было возмущено неустойчивое однородное решение (X0, Y0).
Все перечисленные выше режимы дают весьма непол­ную картину необычайного многообразия явлений, воз­никающих в сильно неравновесной области. Упомянем хотя бы о множественности стационарных состояний. При заданных граничных условиях в сильно нелинейной си­стеме могут существовать не одно, а несколько стационар­ных состояний, например одно состояние с богатым со­держанием вещества X, а другое — с бедным содержани­ем того же вещества. Переход из одного состояния в другое играет важную роль в механизмах управления, встречающихся в биологических системах.
Начиная с классических работ Ляпунова и Пуанкаре, некоторые характерные точки и линии, а именно фокусы и предельные циклы, известны математикам как аттрак­торы устойчивых систем. Новым является то, что эти понятия качественной теории дифференциальных урав-
206


Рис. 8. а) Концентрация иона бромида в реакции Белоусова— Жаботинского в моменты времени t1 и t1+T (см.: Simoyi R. Н., Wolf A., Swinney Н. L. Phys. Rev. Letters, 1982, 49, p. 245; Hirsch J., Condensed Matter Physics и по данным численных расчетов из Physics Today, 1983, May, p. 44—52).
6) Траектории аттрактора, вычисленные Хао Байлинем для «брюсселятора» при периодическом подводе извне компоненты Х (личное сообщение).

нений применимы к химическим системам. В этой связи заслуживает быть особо отмеченным тот факт, что пер­вая работа по математической теории неустойчивостей в системе реакций с диффузией была опубликована Тьюрингом в 1952 г. Сравнительно недавно были обна­ружены новые типы аттракторов. Они появляются толь­ко при большем числе независимых переменных (в «брюсселяторе» число независимых переменных равно двум: это переменные концентрации Х и Y). В частности, в трехмерных системах появляются так на­зываемые странные аттракторы, которым уже не соот­ветствует периодическое движение.
На рис. 8 представлены результаты численных расче­тов Хао Байлиня, дающие общее представление об очень
207


Рис. 9. Схема химического реактора, используемого при иссле­довании колебаний в реакции Белоусова—Жаботинского (однород­ность реакционной смеси обеспечивает перемешивающее устройство). В реакции участвуют более тридцати продуктов и промежуточных соединений. Эволюция различных путей реакции зависит (помимо других факторов) от концентраций исходных веществ, регулируемых насосами на входе в реактор.
сложной структуре такого странного аттрактора для мо­дели, обобщающей «брюсселятор» на случай периодиче­ского подвода извне вещества X. Замечательно, что большинство описанных нами типов поведения реально наблюдалось в неорганической химии и в некоторых био­логических системах.
В неорганической химии наиболее известным приме­ром колебательной системы является реакция Белоусова—Жаботинского, открытая в начале 50-х гг. нашего века. Соответствующая схема реакций, получившая на­звание орегонатор, была предложена Нойесом и сотруд­никами. По существу, она аналогична «брюсселятору», но отличается большей сложностью. Реакция Белоусова—Жаботинского состоит в окислении органической (малоновой) кислоты броматом калия в присутствии со­ответствующего катализатора — церия, марганца или ферроина.
В различных экспериментальных условиях у одной и той же системы могут наблюдаться различные формы самоорганизации — химические часы, устойчивая прост­ранственная дифференциация или образование волн хи­мической активности на макроскопических расстояни­ях5.
Обратимся теперь к самому интересному вопросу: что дают все эти результаты для понимания функциониро­вания живых систем?
208


5. Первое знакомство с молекулярной биологией
Ранее в этой главе мы уже показали, что в сильно неравновесных условиях протекают процессы самоорга­низации различных типов. Одни из них приводят к уста­новлению химических колебаний, другие — к появлению пространственных структур. Мы видели, что основным условием возникновения явлений самоорганизации явля­ется существование каталитических эффектов.
В то время как в неорганическом мире обратная связь между «следствиями» (конечными продуктами) нелинейных реакций и породившими их «причинами» встречается сравнительно редко, в живых системах об­ратная связь (как установлено молекулярной биологи­ей), напротив, является скорее правилом, чем исключе­нием. Автокатализ (присутствие вещества Х ускоряет процесс образования его в результате реакции), автоингибиция (присутствие вещества Х блокирует катализ, необходимый для производства X) и кросс-катализ (каждое из двух веществ, принадлежащих различным цепям реакций, является катализатором для синтеза другого) лежат в основе классического механизма регу­ляции, обеспечивающего согласованность метаболиче­ской функции.
Нам бы хотелось подчеркнуть одно любопытное раз­личие. В примерах самоорганизации, известных из не­органической химии, молекулы, участвующие в реак­циях, просты, тогда как механизмы реакций сложны (например, в реакции Белоусова—Жаботинского уда­лось установить около тридцати различных промежуточ­ных соединений). С другой стороны, во многих примерах самоорганизации, известных из биологии, схема реакции проста, тогда как молекулы, участвующие в реакции веществ (протеинов нуклеиновых кислот и т. д.), весьма сложны и специфичны. Отмеченное нами различие вряд ли носит случайный характер. В нем проявляется некий первичный элемент, присущий различию между физикой и биологией. У биологических систем есть прошлое. Об­разующие их молекулы — итог предшествующей эволю­ции; они были отобраны для участия в автокаталитиче­ских механизмах, призванных породить весьма специ­фические формы процессов организации.
Описание сложной сети метаболической активности
209


и торможения является существенным шагом в понима­нии функциональной логики биологических систем. К последней мы относим включение в нужный момент синтеза необходимых веществ и блокирование тех хими­ческих реакций, неиспользованные продукты которых могли бы угрожать клетке переполнением.
Основной механизм, с помощью которого молекуляр­ная биология объясняет передачу и переработку генети­ческой информации, по существу, является петлей об­ратной связи, т. е. нелинейным механизмом. Дезоксирибонуклеиновая кислота (ДНК), содержащая в линейно упорядоченном виде всю информацию, необходимую для синтеза различных основных протеинов (без которых невозможно строительство и функционирование клетки), участвует в последовательности реакций, в ходе кото­рых вся информация кодируется в виде определенной последовательности различных протеинов. Некоторые ферменты осуществляют обратную связь среди синтези­рованных протеинов, активируя и регулируя не только различные стадии превращений, но и автокаталитиче­ский механизм репликации ДНК, позволяющий копиро­вать генетическую информацию с такой же скоростью, с какой размножаются клетки.
Молекулярная биология — один из наиболее ярких примеров конвергенции двух наук. Понимание процес­сов, происходящих на молекулярном уровне в биологи­ческих системах, требует взаимно дополняющего разви­тия физики и биологии, первой — в направлении слож­ного, второй — простого.
Фактически уже сейчас физика имеет дело с иссле­дованием сложных ситуаций, далеких от идеализации, описываемых равновесной термодинамикой, а молеку­лярная биология добилась больших успехов в установ­лении связи живых структур с относительно небольшим числом основных биомолекул. Исследуя множество са­мых различных химических механизмов, молекулярная биология установила мельчайшие детали цепей метабо­лических реакций, выяснила тонкую, сложную логику регулирования, ингибирования и активации каталитиче­ской функции ферментов, связанных с критическими стадиями каждой из метаболических цепей. Тем самым молекулярная биология установила на микроскопиче­ском уровне основы тех неустойчивостей, которые могут происходить в сильно неравновесных условиях.
210


В некотором смысле живые системы можно сравнить с хорошо налаженным фабричным производством: с од­ной стороны, они являются вместилищем многочислен­ных химических превращений, с другой — демонстри­руют великолепную пространственно-временную органи­зацию с весьма неравномерным распределением биохи­мического материала. Ныне перед нами открывается возможность связать воедино функцию и структуру. Рассмотрим кратко два примера, интенсивно исследо­вавшиеся в последние годы.
Начнем с гликолиза: цепи метаболических реакций, приводящих к расщеплению глюкозы и синтезу аденозинтрифосфата (АТФ) — универсального аккумулятора энергии, общего для всех живых клеток. При расщепле­нии каждой молекулы глюкозы две молекулы АДФ (аденозиндифосфата) превращаются в две молекулы АТФ. Гликолиз может служить наглядным примером взаимной дополнительности аналитического подхода биологии и физического исследования устойчивости в сильно неравновесной области6.
В ходе биохимических экспериментов были обнару­жены колебания во времени концентраций, связанных с гликолитическим циклом7. Было показано, что эти ко­лебания определяются ключевой стадией в цепи реак­ций — стадией, активируемой АДФ и ингибируемой АТФ. Это — типично нелинейное явление, хорошо при­способленное к регулированию метаболизма. Всякий раз, когда клетка черпает энергию из своих энергети­ческих резервов, она использует фосфатные связи, и АТФ превращается в АДФ. Таким образом, накопление АДФ внутри клетки свидетельствует об интенсивном потреблении энергии и необходимости пополнить энер­гетические запасы, в то время как накопление АТФ оз­начает, что расщепление глюкозы может происходить в более медленном темпе.
Теоретическое исследование гликолиза показало, что предложенный механизм действительно может порож­дать концентрационные колебания, т. е. обеспечивать работу химических часов. Вычисленные из теоретических соображений значения концентраций, необходимые для возникновения колебаний, и величина периода цикла согласуются с экспериментальными данными. Гликолитические колебания вызывают модуляцию всех энерге­тических процессов в клетке, зависящих от концентра-
211


ции АТФ, и, следовательно, косвенно влияют на другие метаболические цепи.
Можно пойти еще дальше и показать, что в гликолитическом цикле ход реакций регулируется некоторыми ключевыми ферментами, причем сами реакции проте­кают в сильно неравновесных условиях. Такие расчеты были выполнены Бенно Хессом8, а полученные резуль­таты обобщены и на другие системы. При обычных условиях; гликолитический цикл соответствует химиче­ским часам, но изменение этих условий может привести к образованию пространственных структур в полном соответствии с предсказаниями на основе существующих теоретических моделей.
С точки зрения термодинамики живая система отли­чается необычайной сложностью. Одни реакции проте­кают в слабо неравновесных условиях, другие — в силь­но неравновесных условиях. Не все в живой системе «живо». Проходящий через живую систему поток энер­гии несколько напоминает течение реки — то спокойной и плавной, то низвергающейся водопадом и высвобож­дающей часть накопленной в ней энергии.
Рассмотрим еще один биологический процесс, также исследованный «на устойчивость»: образование колоний у коллективных амеб Dictyostelium discoideum. Этот процесс9А интересен как пример явления, пограничного между одноклеточной и многоклеточной биологией.
Образование колоний у коллективных амеб — один из наиболее ярких примеров явления самоорганизации в биологической системе, в которой важную роль играют химические часы (см. рис. А).
Выйдя из спор, амебы растут и размножаются как одноклеточ­ные организмы. Так продолжается до тех пор, пока пищи (главным образом, бактерий) достаточно. Как только пищевой ресурс исто­щается, амебы перестают репродуцироваться и вступают в промежу­точную фазу, которая длится около восьми часов. К концу этого периода амебы начинают сползаться к отдельным клеткам, выпол­няющим функции центров агрегации. Образование многоклеточных колоний, ведущих себя как единый организм, происходит в ответ на хемотаксические сигналы, испускаемые центрами. Сформировавшаяся колония мигрирует до тех пор, пока не обнаружит участок среды с условиями, пригодными для образования плодового тела. Тогда масса клеток начинает дифференцироваться, образуя стебель, несу­щий на конце мириады спор.
У Dictyostelium. discoideum сползание одноклеточных амеб в многоклеточную колонию происходит не монотонно, а периодически. Как показывает киносъемка процесса образования колоний, сущест­вуют концентрические волны амеб, сходящиеся к центру с периодом
212


в несколько минут. Природа хемотаксического фактора известна. Это циклическая АМФ (цАМФ) — вещество, встречающееся во многих биохимических процессах, например в процессах гормональной регу­ляции. Центры скопления амеб периодически испускают сигналы — порции цАМФ, на которые другие клетки реагируют, перемещаясь к центру и в свою очередь испуская аналогичные сигналы к перифе­рии территории, занимаемой колонией. Существование такого меха­низма передачи хемотаксических сигналов позволяет каждому центру контролировать колонию, состоящую примерно из 105 амеб.
Как показывает анализ модели образования многоклеточной колонии, существуют два типа бифуркаций: во-первых, агрегация сама по себе представляет нарушение пространственной симметрии; во-вторых, происходит нарушение временной симметрии.
Первоначально амебы распределены равномерно. Когда неко­торые из них начинают испускать хемотаксические сигналы, возника­ют локальные флуктуации в концентрации цАМФ. При достижении критического значения некоторого параметра системы (коэффициента диффузии цАМФ, подвижности амеб и т.д.) флуктуации усилива­ются: однородное распределение становится неустойчивым и амебы эволюционируют к неоднородному распределению в пространстве. Это новое распределение соответствует скоплению амеб вокруг цен­тров.
Для того чтобы понять происхождение периодичности в сполза­нии D. discoideum к центрам, необходимо изучить механизм синтеза хемотаксического сигнала. На основе экспериментальных данных этот механизм можно изобразить в виде следующей схемы (рис. В).
На поверхности клетки рецепторы (Р) захватывают молекулы


цАМФ. Рецептор обращен во внеклеточную среду и функционально связан с ферментом аденилатциклазой (Ц), преобразующим внутри­клеточную АТФ в цАМФ (на рис. цАМФ не обозначена). Синтези­рованная цАМФ транспортируется через мембрану во внеклеточную среду, где расщепляется фосфодиэстеразой — ферментом, выде­ляемым амебами. Эксперименты показывают, что захват внемолеку-
214


лярной цАМФ мембранным рецептором активирует аденилатциклазу (положительная обратная связь обозначена знаком +).
Анализ модели синтеза цАМФ на основе такой автокаталитической регуляции позволил унифицировать различные типы поведения, наблюдаемые при образовании колонии коллективных амеб9В.
Двумя ключевыми параметрами модели являются концентрации аденилатциклазы (s) и фосфодиэстеразы (k). На рис. С, заимствован­ном из работы Goldbeter A., Segel L.. Differentiation, 1980, 17, p. 127—135, показано поведение модельной системы в пространстве параметров s и k.
В зависимости от значений s и k все пространство этих парамет­ров подразделяется на три области. Область А соответствует устойчи­вому, невозбудимому стационарному состоянию, область В — устойчивому, но возбудимому стационарному состоянию и область С — режиму незатухающих колебаний вокруг неустойчивого стаци­онарного состояния.
Стрелка указывает возможный «путь развития», соответствую­щий повышению концентрации фосфодиэстеразы (k) и аденилатциклазы (s), наблюдаемому после начала голодания. Переход из об­ласти А в области В и С соответствует наблюдаемым изменениям в поведении: клетки сначала неспособны реагировать на сигналы — внеклеточную цАМФ, затем начинают передавать сигналы дальше и, наконец, обретают способность автономно синтезировать цАМФ в периодическом режиме. Центры колоний являются клетками, для которых параметры k и s быстрее достигают точки внутри области С после начала голодания.
Когда запас питательных веществ в той среде, в ко­торой живут и размножаются коллективные амебы, ис­сякает, происходит удивительная перестройка (рис. А): отдельные клетки начинают соединяться в колонию, на­считывающую несколько десятков тысяч клеток. Обра­зовавшийся «псевдоплазмодий» претерпевает дифферен­циацию, причем очертания его непрерывно изменяются. Образуется «ножка», состоящая примерно из трети всех клеток, с избыточным содержанием целлюлозы. Эта «ножка» несет на себе круглую «головку», напол­ненную спорами, которые отделяются и распространя­ются. Как только споры приходят в соприкосновение с достаточно питательной средой, они начинают размно­жаться и образуют новую колонию коллективных амеб. Перед нами наглядный пример приспособления к окру­жающей среде. Популяция обитает в некоторой области до тех пор, пока не исчерпывает имеющиеся там ресур­сы. Затем она претерпевает метаморфозу, в результате которой обретает способность передвигаться и осваивать другие области.
Исследование первой стадии образования колонии показало, что она начинается с волн перемещения от-
215


дельных амеб, распространяющихся по их популяции к спонтанно возникающему «центру притяжения». Экспе­риментальные исследования и анализ теоретических моделей установили, что миграция является откликом клеток на существование в среде градиента концентра­ции ключевого вещества — циклической АМФ, периоди­чески испускаемого сначала амебой, ставшей центром притяжения, а затем — после срабатывания механизма задержки — и другими амебами. И в этом случае мы видим, какую важную роль играют химические часы. Как уже неоднократно подчеркивалось, они, по сущест­ву, являются новым средством связи. В случае коллек­тивных амеб механизм самоорганизации приводит к установлению связи между клетками.
Мы хотели бы подчеркнуть еще один аспект. Образование колоний коллективных амеб — типичный пример того, что можно было бы назвать «порядком через флуктуации»: возникновение «центра притяжения», ис­пускающего циклическую АМФ, сигнализирует о потере устойчивости нормальной питательной среды, т. е. об исчерпании запаса питательных веществ. То, что при нехватке пищевого ресурса любая амеба может начать испускание химических сигналов — циклической АМФ — и, таким образом, стать «центром притяжения» для ос­тальных амеб, соответствует случайному характеру флуктуации. В данном случае флуктуация усиливается и организует среду.
6. Бифуркации и нарушение симметрии
Рассмотрим теперь более подробно, как возникает самоорганизация и какие процессы начинают происхо­дить, когда ее порог оказывается превзойденным. В рав­новесном или слабо неравновесном состоянии сущест­вует только одно стационарное состояние, зависящее от значений управляющих параметров. Обозначим управ­ляющий параметр через ППП (им может быть, например, концентрация вещества В в «брюсселяторе», описание которого приведено в разд. «За порогом химической неустойчивости»). Проследим за тем, как изменяется состояние системы с возрастанием значения В. Увеличи­вая концентрацию В, мы как бы уводим систему все дальше и дальше от равновесия. При некотором значе­нии В мы достигаем порога устойчивости термодинами-
216


ческой ветви. Обычно это критическое значение называ­ется точкой бифуркации. [На особую роль этих точек обратил внимание Максвелл, размышляя над отноше­нием между детерминизмом и свободой выбора (см. гл. 2 разд. «Язык динамики»).]
Рис. 10. Бифуркационная диаграмма. Стационарные значения переменной Х представлены на диаграмме как функции параметра бифуркации l.. Сплошные линии соответствуют устойчивым, штри­ховые — неустойчивым стационарным состояниям. Чтобы достичь ветви D, необходимо выбрать начальную концентрацию Х0 выше зна­чений X, соответствующую ветви Е.
Рассмотрим некоторые типичные бифуркационные диаграммы. В точке бифуркации В термодинамическая ветвь становится неустойчивой относительно флуктуации (см. рис. 10). При критическом значении lс управляю­щего параметра l система может находиться в трех различных стационарных состояниях: С, Е и D. Два из них устойчивы, третье неустойчиво. Очень важно под­черкнуть, что поведение таких систем зависит от их предыстории. Начав с малых значений управляющего параметра l и медленно увеличивая их, мы с большой вероятностью опишем траекторию АВС. Наоборот, на­чав с больших значений концентрации Х и поддерживая постоянным значение управляющего параметра l, мы с высокой вероятностью придем в точку D. Таким обра-
217


зом, конечное состояние зависит от предыстории систе­мы. До сих пор история использовалась при интерпрета­ции биологических и социальных явлений. Совершенно неожиданно выяснилось, что предыстория может играть роль и в простых химических процессах.
Рис. 11. Симметричная бифуркационная диаграмма. Х как функция параметра бифуркации l. При l<lс существует только одно стационарное состояние, которое устойчиво. При l>lс сущест­вуют два стационарных состояния при любом значении l (прежнее устойчивое стационарное состояние теряет устойчивость).
Рассмотрим бифуркационную диаграмму, изображен­ную на рис. 11. От предыдущей диаграммы она отлича­ется тем, что в точке бифуркации появляются два устой­чивых решения. В связи с этим, естественно, возникает вопрос: по какому пути пойдет дальнейшее развитие системы после того, как мы достигнем точки бифурка­ции? У системы имеется «выбор»: она может отдать предпочтение одной из двух возможностей, соответст­вующих двум неравномерным распределениям концент­рации Х в пространстве (рис. 12, 13).
Каждое из этих распределений зеркально симметрич­но другому: на рис. 12 концентрация Х больше справа, на рис. 13 — слева. Каким образом система выбирает между правым и левым? В этом выборе неизбежно при­сутствует элемент случайности: макроскопическое урав­нение не в состоянии предсказать, по какой траектории
218


Рис. 12, 13. Два возможных пространственных распределения концентрации компоненты X, соответствующие двум ветвям на би­фуркационной диаграмме (рис. 11). Рис. 12 отвечает «правой» струк­туре: концентрация Х в правой части выше, чем в левой. Рис. 13 отвечает «левой» структуре.
пойдет эволюция системы. Не помогает и обращение к микроскопическому описанию. Не существует также различия между правым и левым. Перед нами — случай­ные явления, аналогичные исходу бросания игральной кости.
Можно было бы ожидать, что при многократном повторении эксперимента при переходе через точку бифуркации система в среднем и половине случаев ока­жется в состоянии с максимумом концентрации справа, а в половине случаев — в состоянии с максимумом кон­центрации слева. Возникает другой интересный вопрос. В окружающем нас мире некоторые простые фундамен-
219


тальные симметрии нарушены10. Кто не замечал, на­пример, что большинство раковин закручено преимуще­ственно в одну сторону? Пастер пошел дальше и усмо­трел в дисимметрии, т. е. в нарушении симметрии, ха­рактерную особенность жизни. Как теперь известно, молекула самой важной нуклеиновой кислоты ДНК имеет форму винтовой линии, закрученной влево. Как возникает такая дисимметрия? Один из распространен­ных ответов на этот вопрос гласит: дисимметрия обус­ловлена единичным событием, случайным образом от­давшим предпочтение одному из двух возможных исхо­дов. После того как выбор произведен, в дело вступает автокаталитический процесс и левосторонняя структура порождает новые левосторонние структуры. Другой от­вет предполагает «войну» между лево- и правосторон­ними структурами, в результате которой одни структуры уничтожают другие. Удовлетворительным ответом на этот вопрос мы пока не располагаем. Говорить о еди­ничных событиях вряд ли уместно. Необходимо более «систематическое» объяснение.
Недавно был открыт еще один пример принципиаль­но новых свойств, приобретаемых системами в сильно неравновесных условиях: системы начинают «восприни­мать» внешние поля, например гравитационное поле, в результате чего появляется возможность отбора конфи­гураций.
Каким образом внешнее (например, гравитационное) поле сказалось бы на равновесной ситуации? Ответ на этот вопрос дает принцип порядка Больцмана: все за­висит от величины отношения — потенциальная энер­гия/тепловая энергия. Для гравитационного поля Земли эта величина мала. Чтобы достичь сколько-нибудь за­метного изменения давления или химического состава атмосферы, нам понадобилось бы взобраться на доста­точно высокую гору. Но вспомним ячейку Бенара. С точ­ки зрения механики ее неустойчивость обусловлена по­вышением центра тяжести вследствие теплового расши­рения. Иначе говоря, в эффекте Бенара гравитация играет существенную роль и приводит к новой структу­ре, несмотря на то что толщина самой ячейки Бенара может достигать лишь нескольких миллиметров. Дейст­вие гравитации на столь тонкий слой жидкости было бы пренебрежимо малым в равновесной ситуации, но в не­равновесной ситуации, вызванной градиентом темпера-
220


тур, приводит даже в таком тонком слое к наблюдае­мым макроскопическим эффектам. Неравновесность уси­ливает действие гравитации11.
В уравнении реакции с диффузией включение гравитации скажется на диффузионном потоке. Как показы­
Рис. 14. «Вынужденная» бифуркация, индуцированная внешним полем. На диаграмме концентрация Х представлена как функция параметра l. В отсутствие внешнего поля произошла бы симметрич­ная бифуркации, показанная пунктирной линией. Критическое значе­ние параметра бифуркации обозначено lс. Устойчивая ветвь b) на­ходится на конечном расстоянии от ветви a).
вают подробные вычисления, влияние гравитации ста­новится особенно ощутимым вблизи точки бифуркации невозмущенной системы. Это позволяет нам, в частно­сти, утверждать, что очень слабые гравитационные поля могут приводить к отбору структур.
221


Рассмотрим снова систему с бифуркационной диаг­раммой, изображенной на рис. 11. Предположим, что в отсутствие гравитации, т. е. при g=0, мы имеем, как на рис. 12 и 13, асимметричную конфигурацию «снизу вверх» и ее зеркальное отражение — конфигурацию «сверху вниз». Оба распределения равновероятны, но если включить g, то бифуркационные уравнения изме­нятся, так как поток диффузии будет содержать член, пропорциональный g. В результате мы получим диаграм­му, изображенную на рис. 14. Исходная бифуркацион­ная диаграмма исчезнет, сколь бы малым ни было включенное гравитационное поле. Одна структура а) на новой диаграмме возникает при увеличении параметра бифуркации непрерывно, другая b) достижима лишь при конечном возмущении. Следуя по ветви а), мы ожидаем, что и система будет изменяться непрерывно. Наши ожидания оправдаются при условии, если расстояние S между двумя ветвями велико по сравнению с амплиту­дой тепловых флуктуации концентрации X. Происходит то, что мы называем «вынужденной» бифуркацией. Как и прежде, вблизи критического значения lс управляю­щего параметра может произойти самоорганизация. Но теперь одна из двух возможных структур предпочти­тельнее другой и подлежит отбору.
Важно отметить, что в зависимости от химического процесса, ответственного за бифуркацию, описанный выше механизм может обладать необычайной чувстви­тельностью. Как уже упоминалось, вещество обретает способность воспринимать» различия, неощутимые в равновесных условиях. Столь высокая чувствительность наводит на мысль о простейших организмах, например о бактериях, способных, как известно, реагировать на электрические или магнитные поля. В более общем пла­не это означает, что в сильно неравновесной химии воз­можна «адаптация» химических процессов к внешним условиям. Этим сильно неравновесная область разитель­но отличается от равновесной, где для перехода от одной структуры к другой требуются сильные возмущения или изменения граничных условий.
Еще одним примером спонтанной «адаптивной орга­низации» системы, ее «подстройки» к окружающей сре­де может служить чувствительность сильно неравновес­ных состояний к внешним флуктуациям. Приведем один пример12 самоорганизации как функции флуктуирую-
222


щих внешних условий. Простейшей из всех мыслимых химических реакций является реакция изомеризации АDВ. В нашей модели вещество А может участвовать и в другой реакции: А+свет®A*®A+тепло (молеку­ла А, поглощая свет, переходит в возбужденное состоя­ние A*, из которого возвращается в основное состояние, испуская при этом тепло). Мы предполагаем, что обе ре­акции происходят в замкнутой системе, способной об­мениваться с внешним миром только светом и теплом. В системе имеется нелинейность, так как превращение молекулы В в молекулу А сопровождается поглощением тепла: чем выше температура, тем быстрее образует­ся А. Кроме того, чем выше концентрация А, чем силь­нее А поглощает свет и преобразует его в тепло, тем выше температура вещества А. Таким образом, А ката­лизирует образование самого себя.
Можно ожидать, что концентрация А, соответствую­щая стационарному состоянию, возрастет с увеличением интенсивности света, и действительно так и происходит. Но, начиная с некоторой критической точки, мы сталки­ваемся с одним из типичных сильно неравновесных явле­ний: сосуществованием множественных стационарных состояний. При одних и тех же условиях (например, интенсивности света и температуре) система может на­ходиться в двух различных устойчивых стационарных состояниях, отвечающих двум различным концентра­циям А. Третье (неустойчивое) стационарное состояние соответствует порогу между двумя устойчивыми стацио­нарными состояниями. Сосуществование стационарных состояний порождает такое хорошо известное явление, как гистерезис. Но это еще не все. Если интенсивность света вместо того, чтобы быть постоянной, начнет слу­чайным образом флуктуировать, то наблюдаемая нами картина резко изменится. Зона сосуществования двух стационарных состояний расширится, и при некоторых значениях параметров станет возможным сосущество­вание трех стационарных устойчивых состояний.
В таких положениях случайная флуктуация во внеш­нем потоке, часто называемая шумом, — отнюдь не до­садная помеха: она порождает качественно новые типы режимов, для осуществления которых при детермини­стических потоках потребовались бы несравненно более сложные схемы реакций. Важно помнить и о том, что случайный шум неизбежно присутствует в потоках в
223


любой «естественной системе». Например, в биологиче­ских или экологических системах параметры, опреде­ляющие взаимодействие с окружающей средой, как пра­вило, недопустимо считать постоянными. И клетка, и экологическая ниша черпают все необходимое для себя из окружающей их среды; влага, рН, концентрация со­
Рис. 15. Явление «гистерезиса», возникающее, если значение параметра бифуркации b сначала возрастает, а затем убывает. Если система первоначально находится в стационарном состоянии, при­надлежащем нижней ветви, то при возрастании b она продолжает оставаться на нижней ветви. При b=b2 происходит перескок: систе­ма скачком переходит из состояния Q в состояние Q', принадлежа­щее верхней ветви. И наоборот, если система первоначально нахо­дится в состоянии, принадлежащем верхней ветви, то при уменьше­нии b она продолжает оставаться на верхней ветви до b=b1, после чего скачком переходит из состояния Р в состояние Р'. Бистабильные режимы такого типа встречаются во многих областях науки и техни­ки, например в лазерах, химических реакциях и биологических мем­бранах.
лей, свет и концентрация питательных веществ образуют непрестанно флуктуирующую среду. Чувствительность неравновесных состояний не только к флуктуациям, обусловленным их внутренней активностью, но и к флук­туациям, поступающим из окружающей среды, откры­вает перед биологическими исследованиями новые пер­спективы.

7. Каскады бифуркаций и переходы к хаосу
В предыдущем разделе мы занимались рассмотре­нием только первой, или, как предпочитают говорить математики, первичной, бифуркации, которая возникает,
224


когда мы вынуждаем систему перейти порог устойчиво­сти. Далеко не исчерпывая новые решения, которые при этом могут появиться, первичная бифуркация приводит к появлению лишь одного характерного времени (пе­риода предельного цикла) или одной характерной дли­ны. Для того чтобы получить всю картину пространст­венно-временной активности, наблюдаемой в химических или биологических системах, необходимо продвинуться по бифуркационной диаграмме дальше.
Мы уже упоминали о явлениях, возникающих в ре­зультате сложного взаимодействия огромного числа час­тот в гидродинамических или химических системах. Рассмотрим хотя бы ячейки Бенара, возникающие на определенном расстоянии от равновесия. При дальней­шем удалении от теплового равновесия конвективный поток начинает колебаться во времени. Чем дальше мы уходим от равновесия, тем больше частот появляется в колебаниях, пока наконец не произойдет переход в турбулентный режим13. Взаимодействие колебаний с различными частотами создает предпосылки для воз­никновения больших флуктуаций. Область на бифур­кационной диаграмме, определяемая значениями пара­метров, при которых возможны сильные флуктуации, обычно принято называть хаотической. Иногда порядок, или когерентность, чередуется с тепловым хаосом и не­равновесным турбулентным хаосом. Так происходит, на­пример, в случае неустойчивости Бенара: если увеличи­вать градиент температуры, то конфигурация конвективных потоков усложнится, появятся колебания, а при дальнейшем увеличение градиента упорядоченная структура исчезнет, уступив место хаосу. Не следует смешивать, однако, равновесный тепловой хаос с нерав­новесным турбулентным хаосом. В тепловом хаосе, воз­никающем в равновесных условиях, все характерные пространственные и временные масштабы микроскопи­ческого порядка. В турбулентном хаосе число макроско­пических пространственных и временных масштабов столь велико, что поведение системы кажется хаотиче­ским. В химии порядок и хаос связаны между собой сложными отношениями: упорядоченные (колебатель­ные) режимы чередуются с хаотическими. Такая пере­межаемость, например, наблюдалась в реакции Белоусова—Жаботинского как функция скорости потока.
Во многих случаях довольно трудно провести четкую
225


границу между такими понятиями, как «хаос» и «поря­док». К каким системам следует отнести, например, тропический лес: к упорядоченным или хаотическим? История любого вида животных может показаться слу­чайной, зависящей от других видов и флуктуаций окру­жающей среды. Тем не менее трудно отделаться от впе­чатления, что общая структура тропического леса, на­пример все многообразие встречающихся в нем видов животных и растений, соответствует некоторому архе­типу порядка. Какой бы конкретный смысл мы ни вкла­дывали в термины «порядок» и «хаос», ясно, что в некоторых случаях последовательность бифуркации приво­дит к необратимой эволюции и детерминированность характеристических частот порождает все большую слу­чайность, обусловленную огромным числом частот, уча­ствующих в процессе.
Сравнительно недавно внимание ученых привлек необычайно простой путь к хаосу, получивший название последовательность Фейгенбаума. Обнаруженная Фейгенбаумом закономерность относится к любой системе, поведение которой характеризуется весьма общим свой­ством, а именно: в определенной области значений пара­метров система действует в периодическом режиме с периодом Т; при переходе через порог период удваива­ется и становится равным 2Т, при переходе через сле­дующий порог период в очередной раз удваивается и становится равным 4Т и т. д. Таким образом, система характеризуется последовательностью бифуркаций удвоения периода. Последовательность Фейгенбаума — один из типичных маршрутов, ведущих от простого пе­риодического режима к сложному апериодическому, на­ступающему в пределе при бесконечном удвоении пе­риода. Фейгенбаум открыл, что этот маршрут характе­ризуется универсальными постоянными, значения кото­рых не зависят от конкретных особенностей механизма, коль скоро система обладает качественным свойством удвоения периода. «Большинство поддающихся измерению свойств любой такой системы в этом апериодиче­ском пределе может быть определено, по существу, без учета каких-либо специфических особенностей уравне­ния, описывающего каждую конкретную систему...»14
В других случаях (например, в таком, который пред­ставлен на рис. 16) эволюция системы содержит как де­терминистические, так и стохастические элементы.
226


Рис. 16. Временны'е колебания концентрации иона Вг- в реак­ции Белоусова—Жаботинского. На диаграмме схематически изобра­жена последовательность режимов, соответствующая качественным различиям. Все режимы изображены упрощенно. Экспериментальные данные свидетельствуют о существовании гораздо более сложных по­следовательностей режимов.
На рис. 17 мы видим, что при значении управляю­щего параметра порядка l6 система может находиться в большом числе устойчивых и неустойчивых режимов. «Историческая» траектория, по которой эволюционирует система при увеличении управляющего параметра, ха-
227


рактеризуется чередованием устойчивых областей, где доминируют детерминистические законы, и неустойчи­вых областей вблизи точек бифуркации, где перед систе­
Рис. 17. Бифуркационная диаграмма: стационарные решения как функции параметра бифуркации l. Если l<l1, то при любом значе­нии l существует только одно стационарное состояние. Множество таких стационарных состояний образует ветвь а). Если же l=l1, то становятся возможными два других множества стационарных реше­ний (ветви b) и b')).
Состояния, принадлежащие ветви b), неустойчивы, но стано­вятся устойчивыми при l=l2, в то время как состояния, принадле­жащие ветви a), становятся неустойчивыми. При l=l3 ветвь b') снова становится неустойчивой и возникают две другие устойчивые ветви.
При l=l4 неустойчивая ветвь достигает новой точки бифурка­ции, при переходе через которую возникают две новые ветви, оста­ющиеся неустойчивыми до l=l5 и l=l6.
мой открывается возможность выбора одного из не­скольких вариантов будущего. И детерминистический характер кинетических уравнений, позволяющих вычис­лить заранее набор возможных состояний и определить их относительную устойчивость, и случайные флуктуа­ции, «выбирающие» одно из нескольких возможных со­стояний вблизи точки бифуркации, теснейшим образом взаимосвязаны. Эта смесь необходимости и случайности и составляет «историю» системы.
228


8. От Евклида к Аристотелю
Одной из наиболее интересных особенностей диссипативных структур является их когерентность. Система ведет себя как единое целое и как если бы она была вместилищем дальнодействующих сил. Несмотря на то что силы молекулярного взаимодействия являются ко­роткодействующими (действуют на расстояниях поряд­ка 10-8 см), система структурируется так, как если бы каждая молекула была «информирована» о состоянии системы в целом.
Утверждение о том, что современная наука роди­лась тогда, когда на смену пространству Аристотеля (представление о котором было навеяно организацией и согласованностью биологических функций) пришло однородное и изотропное пространство Евклида, выска­зывалось довольно часто, и мы неоднократно повторяли его. Однако теория диссипативных структур сближает нашу позицию с концепцией Аристотеля. Имеем ли мы дело с химическими часами, концентрационными волна­ми или неоднородным распределением химических ве­ществ, неустойчивость приводит к нарушению симмет­рии, как временной, так и пространственной. Например, при движении по предельному циклу никакие два мо­мента времени не являются эквивалентными: химиче­ская реакция обретает фазу, подобно тому как фазой характеризуется световая волна. Другой пример: когда однородное состояние становится неустойчивым и возни­кает выделенное направление, пространство перестает быть изотропным. Мы движемся, таким образом, от пространства Евклида к пространству Аристотеля!
Трудно удержаться от искушения и не порассуждать о том, что нарушение пространственной и временной симметрии играет важную роль в интереснейших явле­ниях морфогенеза. Наблюдая эти явления, многие скло­нялись к выводу, что биологическая система в своем развитии преследует некоторую внутреннюю цель, сво­его рода план, реализуемый зародышем по мере его роста. В начале XX в. немецкий эмбриолог Ганс Дриш полагал, что развитием зародыша управляет некий нематериальный фактор — энтелехия. Дриш обнаружил, что уже на некоторой ранней стадии зародыш способен выдерживать сильнейшие возмущающие воздействия и, несмотря на них, развиваться в нормальный функцио-
229


нирующий организм. В то же время, просматривая раз­витие зародыша, отснятое на пленку, мы «видим» скач­ки, соответствующие качественным реорганизациям тка­ней, вслед за которыми идут более «спокойные» перио­ды количественного роста. К счастью, совершаемые при таких скачках ошибки немногочисленны, ибо скачки реализуются воспроизводимо. Мы могли бы считать, что в основе главного механизма эволюции лежит игра бифуркаций как механизмов зондирования и отбора хи­мических взаимодействий, стабилизирующих ту или иную траекторию. Такую идею выдвинул около сорока лет назад биолог Уоддингтон. Для списания стабилизи­рованных путей развития он ввел специальное поня­тие — креод. По замыслу Уоддингтона, креод должен был соответствовать возможным линиям развития, воз­никающим под влиянием двойного императива — гиб-кости и надежности15. Ясно, что затронутая Уоддингтоном проблема необычайно сложна, и мы сможем кос­нуться ее лишь весьма бегло.
Много лет назад эмбриологи ввели понятие морфогенетического поля и высказали гипотезу о том, что дифференциация клетки зависит от ее положения в этом поле. Но как клетка «узнает» о своем положении? Один из возможных ответов состоит в том, что клетка, по-ви­димому, реагирует на градиент концентрации вещества» определяющего морфогенез, — морфоген. Такие градиенты действительно могли бы возникать в сильно не­равновесных условиях из-за неустойчивостей, приводя­щие к нарушениям симметрии. Если бы возник градиент концентрации морфогена, то каждая клетка оказалась бы в иной окружающей среде, чем остальные, что при­вело бы к синтезу каждой клеткой своего, специфиче­ского набора протеинов. Такая модель, ныне широко ис­пользуемая, по-видимому, хорошо согласуется с экспе­риментальными данными. Сошлемся хотя бы на работу Кауфмана по эмбриональному развитию дрозофилы16. В этой работе ответственность за распределение альтер­нативных программ развития по различным группам клеток в ранней стадии эмбрионального развития возла­гается на систему реакций с диффузией. Каждая «сек­ция» зародыша характеризуется единственной комбина­цией двоичных выборов, а каждый акт выбора проис­ходит в результате бифуркации, нарушающей простран­ственную симметрию. Модель Кауфмана позволяет ус-
230


пешно предсказывать исход трансплантации клеток как функции расстояния междy областью, откуда берется пересаживаемая клетка, и областью, куда ее переса­живают, т. е. как функции числа различий между би­нарными выборами, или «переключений», определяю­щих каждый из них.
Такие идеи и модели особенно важны для биологи­ческих систем, у которых зародыш начинает развиваться
Рис. 18. Схематическое изображение структуры зародыша дрозофилы, возникающей в результате серии двоичных выборов. По­дробности см. в тексте.
в состоянии, обладающем наружной сферической сим­метрией (например, бурая водоросль «фукус» или зеле­ная водоросль «ацетабулярия»). Уместно, однако, спро­сить: однороден ли зародыш с самого начала? Предпо­ложим, что в начальной среде имеются небольшие неод­нородности. Являются ли они причиной дальнейшей эволюции или только направляют эволюцию к образо­ванию той или иной структуры? Точные ответы на эти вопросы пока не известны. Но одно установлено опре­деленно: неустойчивость, связанную с химическими ре­акциями и переносом, можно считать единственным об­щим механизмом, способным нарушить симметрию пер­воначально однородного состояния.
Самая возможность такого вывода уводит нас дале­ко за рамки векового конфликта между редукционистами и антиредукционистами. Со времен Аристотеля неод­нократно высказывалось одно и то же убеждение (вы­сказывания Шталя, Гегеля, Бергсона и других антире-
231


дукционистов мы уже приводили): чтобы связать между собой различные уровни описания и учесть взаимосвязь между поведением целого и отдельных частей, необхо­димо понятие сложной организации. В противовес редукционистам, усматривавшим единственную «причину» организации в частях, Аристотель с его формальной причиной, Гегель с его абсолютной идеей в природе, Бергсон с его простым, необоримым актом творения ор­ганизации утверждали, что целое играет главенствую­щую роль. Вот что говорится об этом у Бергсона:
«В общем, когда один и тот же объект предстает в одном аспекте как простой, а в другом — как бесконеч­но сложный, эти два аспекта не равнозначны или, точ­нее, не обладают реальностью в одной и той же мере. В подобных случаях простота присуща самому объекту, а бесконечная сложность — точкам зрения, с которых объект открывается нам, когда мы, например, обходим вокруг него, символам, в которых наши чувства или разум представляют нам объект, или, более общо, эле­ментам различного порядка, с помощью которых мы пытаемся искусственно имитировать объект, но с кото­рыми он остается несоизмеримым, будучи другой приро­ды, чем они. Гениальный художник изобразил на холсте некую фигуру. Мы можем имитировать его картину многоцветными кусочками мозаики. Контуры и оттенки красок модели мы передадим тем точнее, чем меньше наши кусочки по размеру, чем их больше и чем больше градаций по цвету. Но нам понадобилось бы бесконеч­но много бесконечно малых элементов с бесконечно тон­кой градацией цвета, чтобы получить точный эквивалент фигуры, которую художник мыслил как простую, кото­рую он хотел передать как нечто целое на холсте и которая тем полнее, чем сильнее поражает нас как про­екция неделимой интуиции»17.
В биологии конфликт между редукционистами и антиредукционистами часто принимал форму конфликта между утверждением внешней и внутренней целесооб­разности. Идея имманентного организующего разума тем самым часто противопоставляется модели организа­ции, заимствованной из технологии своего времени (ме­ханических, тепловых, кибернетических машин), на что немедленно следует возражение: «А кто построил маши­ну, автомат, подчиняющийся внешней целесообразно­сти?»
232


Как подчеркивал в начале нашего века Бергсон, и технологическая модель, и виталистская идея о внут­ренней организующей силе выражают неспособность воспринимать эволюционную организацию без непосред­ственного ее соотнесения с некоторой предсуществую­щей целью. И в наши дни, несмотря на впечатляющие успехи молекулярной биологии, концептуальная ситуа­ция остается почти такой же, как в начале XX в.: аргу­ментация Бергсона в полной мере относится к таким метафорам, как «организатор», «регулятор» и «генети­ческая программа». Неортодоксально мыслящие биоло­ги, такие, как Пол Вейсс и Конрад Уоддингтон18, с полным основанием критиковали такой способ припи­сывания индивидуальным молекулам способности по­рождать глобальный биологический порядок, справед­ливо усматривая в этом негодную попытку разобраться в сути дела, поскольку в действительности решение проблемы ошибочно подменяется ее постановкой.
Вместе с тем нельзя не признать, что технологиче­ские аналогии сами по себе представляют определенный интерес для биологии. Но неограниченная примени­мость таких аналогий означала бы, что между описа­нием молекулярного взаимодействия и описанием глобального поведения биологической системы, как и в случае, например, электронной цепи, существует прин­ципиальная однородность: функционирование цепи мо­жет быть выведено из природы и положения ее узлов; и узлы, и цепь в целом относятся к одному масштабу, поскольку узлы были спроектированы и смонтированы тем же инженером, который разработал и построил всю цепь. В биологии такое, как правило, невозможно.
Правда, когда мы встречаем такую биологическую систему, как бактериальный хемотаксис, бывает трудно удержаться от аналогии с молекулярной машиной, со­стоящей из рецепторов, сенсорной, регуляторной и дви­гательной систем. Известно около двадцати или трид­цати рецепторов, способных детектировать высокоспе­цифические классы соединений и заставить бактерию плыть против пространственного градиента аттрактан­тов (т. е. в сторону повышения концентрации) и по градиенту репеллентов, Такое «поведение» определяется сигналом на выходе системы, обрабатывающей посту­пающую извне информацию, т. е. положением «тумбле­ра», отвечающего за изменение направления, в котором
233


движется бактерия, в положение «включено» или «вы­ключено»19 .
Но как бы ни поражали наше воображение такие случаи, ими исчерпывается далеко не все. Весьма со­блазнительно рассматривать их как предельные случаи, как конечные продукты специфического типа селектив­ном эволюции с акцентом на устойчивости и воспроиз­водимом поведении в противовес открытости и адаптив­ности. С этой точки зрения адекватность технологиче­ской метафоры — вопрос не принципа, а удобства.
Проблема биологического порядка включает в себя переход от молекулярной активности к надмолекулярному порядку в клетке. Эта проблема далека от своего решения.
Биологический порядок нередко представляют как невероятное физическое состояние, созданное и поддер­живаемое ферментами напоминающими демон Макс­велла: ферменты поддерживают неоднородность хими­ческого состава в системе точно так же, как демон под­держивает разность температур или давлений. Если встать на эту точку зрения, то биология окажется в том положении, которое описывал Шталь. Законы природы разрешают только смерть. Представление Шталя об ор­ганизующем действии души на этот раз подменяется ге­нетической информацией, содержащейся в нуклеиновых кислотах и проявляющейся в образовании ферментов, которые делают возможным продолжение жизни. Фер­менты отодвигают наступление смерти и исчезновение жизни.
Иное значение приобретает (и приводит к иным вы­водам) биология, если к ней подходить с позиций физи­ки неравновесных процессов. Как теперь известно, и биосфера в целом, и ее различные компоненты, живые или неживые, существуют в сильно неравновесных ус­ловиях. В этом смысле жизнь, заведомо укладывающая­ся в рамки естественного порядка, предстает перед нами как высшее проявление происходящих в природе про­цессов самоорганизации.
Мы намереваемся пойти еще дальше и утверждаем, что, коль скоро условия для самоорганизации выполне­ны, жизнь становится столь же предсказуемой, как не­устойчивость Бенара или падение свободно брошенного камня. Весьма примечательно, что недавно были откры­ты ископаемые формы жизни, обитавшие на Земле при-
234


мерно в ту эпоху, когда происходило первое горообразо­вание (самые древние из известных ныне ископаемых жили на Земле 3,8?108 лет; возраст Земли считается равным 4,6?109; образование скальных пород также происходило примерно 3,8?109 лет назад). Раннее за­рождение жизни, несомненно, является аргументом в пользу идеи о том, что жизнь — результат спонтанной самоорганизации, происходящей при благоприятных ус­ловиях. Нельзя не признать, однако, что до количест­венной теории нам еще очень далеко.
Возвращаясь к нашему пониманию жизни и эволю­ции, следует заметить, что оно стало существенно более глубоким, и это позволяет нам избежать опасностей, с которыми сопряжена любая попытка полностью опро­вергнуть редукционизм. Сильно неравновесная система может быть названа организованной не потому, что в ней реализуется план, чуждый активности на элементар­ном уровне или выходящий за рамки первичных прояв­лений активности, а по противоположной причине: уси­ление микроскопической флуктуации, происшедшей в «нужный момент», приводит к преимущественному вы­бору одного пути реакции из ряда априори одинаково возможных. Следовательно, при определенных условиях роль того или иного индивидуального режима стано­вится решающей. Обобщая, можно утверждать, что поведение «в среднем» не может доминировать над со­ставляющими его элементарными процессами. В сильно неравновесных условиях процессы самоорганизации со­ответствуют тонкому взаимодействию между случай­ностью и необходимостью, флуктуациями и детермини­стическими законами. Мы считаем, что вблизи бифур­каций основную роль играют флуктуации или случай­ные элементы, тогда как в интервалах между бифурка­циями доминируют детерминистические аспекты. Зай­мемся теперь более подробным изучением этих вопро­сов.
235


Глава 6. ПОРЯДОК ЧЕРЕЗ ФЛУКТУАЦИИ
1. Флуктуации и химия
Во введении к книге мы уже говорили о происходя­щем ныне концептуальном перевооружении физических наук. От детерминистических, обратимых процессов фи­зика движется к стохастическим и необратимым процес­сам. Это изменение перспективы оказывает сильнейшее влияние на химию. Как мы узнали из гл. 5, химические процессы, в отличие от траекторий классической дина­мики, соответствуют необратимым процессам. Химиче­ские реакции приводят к производству энтропии. Между тем классическая химия продолжает опираться на детерминистическое описание химической эволюции. Как было показано в гл. 5, основным «оружием» теоретиков в химической кинетике являются дифференциальные уравнения, которым удовлетворяют концентрации ве­ществ, участвующих в реакции. Зная эти концентрации в некоторый начальный момент времени (а также соот­ветствующие граничные условия, если речь идет о явле­ниях, зависящих от пространственных переменных, на­пример о диффузии), мы можем вычислить их в после­дующие моменты времени. Интересно отметить, что та­кой детерминистический взгляд на химию перестает соответствовать действительности, стоит лишь перейти к сильно неравновесным процессам.
Мы уже неоднократно подчеркивали роль флуктуа­ций. Перечислим кратко наиболее характерные особен­ности их воздействия на систему. Когда система, эволю­ционируя, достигает точки бифуркации, детерминисти­ческое описание становился непригодным. Флуктуация вынуждает систему выбрать ту ветвь, по которой будет
236


происходить дальнейшая эволюция системы. Переход через бифуркацию — такой же случайный процесс, как бросание монеты. Другим примером может служить хи­мический хаос (см. гл. 5). Достигнув хаоса, мы не мо­жем более прослеживать отдельную траекторию химиче­ской системы. Не можем мы и предсказывать детали временного развития. И в этом случае, как и в предыдущем, возможно только статистическое описание. Су­ществование неустойчивости можно рассматривать как результат флуктуации, которая сначала была локализо­вана в малой части системы, а затем распространилась и привела к новому макроскопическому состоянию.
Такая ситуация в корне меняет традиционное пред­ставление об отношении между микроскопическим уров­нем, описываемым в терминах атомов и молекул, и макроскопическим уровнем, описываемым в терминах таких глобальных переменных, как концентрация. Во многих случаях флуктуации вносят лишь малые поправ­ки. В качестве примера рассмотрим газ, N молекул ко­торого заключены в сосуд объемом V. Разделим этот объем на две равные части. Чему равно число молекул Х в одной из них? Здесь Х — «случайная» переменная, и можно ожидать, что ее значение достаточно близко к N/2.
Основная теорема теории вероятностей (так назы­ваемый закон больших чисел) позволяет оценить ошиб­ку, вносимую флуктуациями. По существу, закон боль­ших чисел утверждает, что при измерении X мы можем ожидать значение порядка N/2±ON/2. При большом N ошибка ON/2, вносимая флуктуациями, может быть так­же большой (например, если N˜1024, то ON˜1012), но относительная ошибка, вносимая флуктуациями, поряд­ка (ON/2)!(N/2) или 1/ON стремится к нулю при боль­ших N. Как только система становится достаточно боль­шой, закон больших чисел позволяет отличать средние значения от флуктуаций (последние становятся пре­небрежимо малыми).
В случае неравновесных процессов встречается пря­мо противоположная ситуация. Флуктуации определяют глобальный исход эволюции системы. Вместо того что­бы оставаться малыми поправками к средним значе­ниям, флуктуации существенно изменяют средние зна­чения. Ранее такая ситуация нам не встречалась. Желая
237


подчеркнуть ее новизну, мы предлагаем назвать ситуацию, возникающую после воздействия флуктуации на систему, специальным термином — порядком через флук­туацию. Прежде чем приводить примеры порядка через флуктуацию, нам бы хотелось сделать несколько общих замечаний, чтобы подчеркнуть концептуальную новизну той ситуации, с которой мы столкнулись.
Некоторым читателям, должно быть, известны соот­ношения неопределенности Гейзенберга, выражающие несколько неожиданным образом вероятностный аспект квантовой теории. Возможность одновременного измере­ния координат и импульса в квантовой теории отпадает, тем самым нарушается и классический детерминизм. Считалось, однако, что это никак не сказывается на опи­сании таких макроскопических объектов, как живые си­стемы. Но роль флуктуаций в сильно неравновесных си­стемах показывает, что это не так. Случайность остает­ся весьма существенной и на макроскопическом уровне. Интересно отметить еще одну аналогию с квантовой ме­ханикой, приписывающей волновой характер всем эле­ментарным частицам. Как нам уже известно, сильно не­равновесные химические системы также могут обладать когерентным волновым поведением: таковы, например, рассмотренные нами в гл. 5 химические часы. И снова некоторые из особенностей квантовой механики, откры­тые на микроскопическом уровне, проявляются теперь и на макроскопическом уровне!
Химия активно вовлекается в концептуальное пере­вооружение физических наук1. По-видимому, мы нахо­димся лишь в самом начале нового направления иссле­дований. Результаты некоторых проведенных в послед­нее время расчетов наводят на мысль, что в определен­ных случаях понятие скорости химической реакции мо­жет быть заменено статистической теорией, использую­щей распределение вероятностей реакций2.
2. Флуктуации и корреляции
Вернемся еще раз к химической реакции типа, рас­смотренного в гл. 5. Пусть для большей конкретности мы имеем цепь реакций ADXDF. Приведенные в гл. 5 кинетические уравнения относятся к средним концентра­циям. Чтобы подчеркнуть это, условимся писать aXn
238


вместо X. Естественно задать вопрос: какова вероят­ность того, что в данный момент времени концентрация вещества Х имеет то или иное значение? Ясно, что эта вероятность флуктуирует, поскольку флуктуирует число столкновений между молекулами различных веществ, участвующих в реакции. Нетрудно выписать уравнение, описывающее, как изменяется распределение вероятно­сти Р (X, t) в результате процессов рождения и уничто­жения молекул X. Для равновесных или стационарных систем это распределение вероятности можно вычислить. Начнем с результатов, которые удается получить для равновесных систем.
В равновесных условиях мы, по существу, открываем заново одно из классических распределений вероятности, известное под названием распределения Пуассона. Оно описано в любом учебнике теории вероятностей, по­скольку выполняется в огромном числе самых различ­ных случаев: например, по Пуассону, распределены количество вызовов, поступающих на телефонную стан­цию, время ожидания в ресторане, флуктуации концент­рации частиц в жидкости или газе. Математическая формула, задающая распределение Пуассона, для нас сейчас не имеет значения. Мы хотели бы лишь подчерк­нуть два аспекта этого важного распределения. Во-пер­вых, оно приводит к закону больших чисел именно в том виде, в каком он сформулирован в предыдущем раз­деле; следовательно, в большой системе флуктуации допустимо считать пренебрежимо малыми. Во-вторых, закон больших чисел позволяет нам вычислять корре­ляции между числом молекул Х в двух точках прост­ранства, находящихся на заданном расстоянии друг от друга. Как показывают вычисления, в равновесных ус­ловиях такая корреляция не существует. Вероятность одновременно найти молекулу Х в точке r и молекулу X' в точке r' (отличной от точки r) равна произведе­нию вероятности найти молекулу X в точке r и вероят­ности найти молекулу X' в точке r' (мы рассматриваем случай, когда расстояние между точками r и r' велико по сравнению с радиусом межмолекулярного взаимо­действия).
Один из наиболее неожиданных результатов недав­них исследований состоял в том, что в неравновесной области ситуация резко изменяется. Во-первых, при под­ходе вплотную к точкам бифуркации флуктуации стано-
239


вятся аномально сильными и закон больших чисел на­рушается. Этого следовало ожидать, так как в сильно неравновесной области система при прохождении точек бифуркации «выбирает» один из различных возможных режимов. Амплитуды флуктуаций имеют такой же по­рядок величины, как и средние макроскопические значе­ния. Следовательно, различие между флуктуациями и средними значениями стирается. Кроме того, в случае нелинейных химических реакций того типа, который мы рассматривали в гл. 5, появляются дальнодействующие корреляции. Частицы, находящиеся на макроскопиче­ских расстояниях друг от друга, перестают быть незави­симыми. «Отзвуки» локальных событий разносятся по всей системе. Интересно отметить3, что такие дальнодействующне корреляции появляются в самой точке пе­рехода от равновесного состояния к неравновесному. В этом смысле потеря устойчивости равновесным состоя­нием напоминает фазовый переход, с той лишь особен­ностью, что амплитуды дальнодействующих корреляций сначала малы, а затем по мере удаления от равновес­ного состояния нарастают и в точках бифуркаций могут обращаться в бесконечность.
Мы считаем, что такой тип поведения представляет особый интерес, поскольку позволяет подвести «молеку­лярную основу» под обсуждавшуюся ранее при рас­смотрении химических часов проблему связи между частицами. Дальнодействующие корреляции организуют систему еще до того, как происходит макроскопическая бифуркация. Мы снова возвращаемся к одной из глав­ных идей нашей книги: к неравновесности как источнику порядка. В данном случае ситуация особенно ясна. В равновесном состоянии молекулы ведут себя незави­симо: каждая из них игнорирует остальные. Такие не­зависимые частицы можно было бы назвать гипнонами («сомнамбулами»). Каждая из них может быть сколь угодно сложной, но при этом «не замечать» присутствия остальных молекул. Переход в неравновесное состояние пробуждает гипноны и устанавливает когерентность, совершенно чуждую их поведению в равновесных усло­виях. Аналогичную картину рисует и микроскопическая теория неравновесных процессов, с которой мы позна­комимся в гл.9.
Активность материи связана с неравновесными усло­виями, порождаемыми самой материей. Так же как и
240


в макроскопическом поведении, законы флуктуации и корреляций в равновесных условиях (когда мы обнару­живаем распределение Пуассона) носят универсальный характер. При переходе границы, отделяющей равно­весную область от неравновесной, они утрачивают уни­версальность и обретают сильнейшую зависимость от типа нелинейности системы.
3. Усиление флуктуаций
Рассмотрим сначала два примера, на которых во всех подробностях можно проследить за ростом флуктуаций, предшествующим образованию новой структуры. Первый пример — образование колонии коллективных амеб, стягивающихся при угрозе голода в единую многокле­точную массу. В гл. 5 мы уже упоминали об этом ярком примере самоорганизации. Другой иллюстрацией роли флуктуации может служить первая стадия постройки гнезда термитами. Она была впервые описана Грассе, а Денюбург исследовал ее с интересующей нас точки зрения4.
Процесс самоорганизации в популяции насекомых
Личинки жука Dendroctonus micans [Scol.] первоначально слу­чайным образом распределены между двумя горизонтальными стек­лянными пластинками с зазором 2 мм. С боковых сторон пространст­во между пластинками открыто. Площадь поверхности 400 см2.
Скопление личинок происходит под влиянием конкуренции двух факторов: случайных движений личинок и их реакции на особое хи­мическое вещество феромон, синтезируемое личинками из терпенов, содержащихся в дереве, которым они питаются. Личинки испускают феромоновые сигналы с частотой, зависящей от степени насыщения. Феромон диффундирует в пространстве, и личинки перемещаются в направлении, задаваемом градиентом его концентрации. Такая реакция является автокаталитическим механизмом, поскольку скоп­ление личинок увеличивает притягательность соответствующей области. Чем выше локальная плотность личинок в данной области, тем выше градиент концентрации феромона и тем сильнее тенденция дру­гих личинок к сползанию в точку скопления.
Как показывает эксперимент, плотность популяцни личинок определяет не только скорость, но и эффективность процесса самоорганизации, т.е. число личинок в скоплении на его конечном этапе. При большой плотности (рис. А) скопление возникает и быстро растет в центре экспериментальной установки. При очень малых плотностях устойчивое скопление не образуется (рис. В).
241


Рис. А. Самоорганизация при большой плотности. Распределе­ние личинок через 0 и 21 мин после начала эксперимента.
242


Рис В. Самоорганизация при малой плотности. Распределение личинок через 0 и 22 мин после начала эксперимента.
243


Рис. С. Доля личинок в центральном скоплении (в процентах) от общего числа личинок как функция времени при трех различных плотностях.
Рис. D. Распад начальных ядер из 10 личинок. Общая числен­ность популяции в каждом эксперименте 80 личинок, N — число ли­чинок в ядре.
В других экспериментах исследовалась возможность образования, скопления личинок из «ядра», искусственно созданного на периферии системы. В зависимости от числа личинок в начальном ядре возника­ют различные ситуации (рис. С).
Если число личинок в ядре мало по сравнению с общим числом личинок, то скопление не образовывалось (рис. D) Если же число. личинок в ядре велико, то скопление растет (рис. Е). При среднем 244


Рис. Е. Рост начальных ядер из 20 (О---О) и 30 (•———•) личинок. Общая численность популяции в каждом эксперименте 80 личинок.
(не слишком большом и не слишком малом) числе личинок в ядре могут возникать структуры новых типов: появляются и сосуществу­ют два, три или четыре новых скопления с временем жизни не мень­шим, чем время наблюдения (рис. F и G).
В экспериментах с однородными начальными условиями такие многокластерные структуры никогда не наблюдались. По-видимому, на бифуркационной диаграмме они соответствуют устойчивым сос­тояниям при допустимых значениях параметров, характеризующих систему, недостижимых из однородных начальных условий. Затравочное ядро выполняет функцию своего рода возмущения, которым не­обходимо воздействовать на систему для того, чтобы возбудить ее и перевести в область бифуркационной диаграммы, соответствующей" семействам многокластерных распределений.

Постройка гнезда (термитника) термитами — одна из тех когерентных активностей, которые дали некото­рым ученым повод для умозрительных утверждений о «коллективном разуме» в сообществах насекомых. Про­является этот «коллективный разум» довольно необыч­ным способом: для участия в постройке такого огромно­го и сложного сооружения, как термитник, термитам
245


Рис. F. Многокластерные распределения. В начальном ядре 15 личинок. Общая численность популяции 80 личинок.
необходимо очень мало информации. Первая стадия строительной активности (закладка основания), как по­казал Грассе, является результатом внешне беспорядоч­ного поведения термитов. На этой стадии они приносят и беспорядочно разбрасывают комочки земли, но каж­дый комочек пропитывают гормоном, привлекающим других термитов. Ситуацию можно представить следую­щим образом: начальной «флуктуацией» является не­сколько большая концентрация комочков земли, которая рано или поздно возникнет в какой-то точке области обитания термитов. Возросшая плотность термитов в окрестности этой точки, привлеченных несколько боль­шей концентрацией гормона, приводит к нарастанию флуктуации. Поскольку число термитов в окрестности точки увеличивается, постольку вероятность сбрасыва­ния ими комочков земли в этой окрестности возрастает, что в свою очередь приводит к увеличению концентра­ции гормона-аттрактанта. Так воздвигаются «опоры». Расстояние между ними определяется радиусом распро-
246


Рис. G. Рост скопления, искусственно созданного на периферии (верхний рис.), индуцирует образование еще одного небольшого скопления (нижний рис.).
247


странения гормона. Недавно были описаны и другие аналогичные примеры.
Хотя принцип порядка Больцмана позволяет описы­вать химические или биологические процессы, в которых неоднородности выравниваются, а начальные условия забываются, он не может объяснить ситуации, подобные только что описанным, где несколько «решений», при­нятых в условиях потери устойчивости, могут направить развитие системы, состоящей из большого числа взаи­модействующих единиц, к некоторой глобальной струк­туре.
Когда новая структура возникает в результате конеч­ного возмущения, флуктуация, приводящая к смене ре­жимов, не может сразу «одолеть» начальное состояние. Она должна сначала установиться в некоторой конеч­ной области и лишь затем распространиться и «запол­нить» все пространство. Иначе говоря, существует ме­ханизм нуклеации. В зависимости от того, лежат ли размеры начальной области флуктуации ниже или вы­ше критического значения (в случае химических диссипативных структур этот порог зависит, в частности, от кинетических констант и коэффициента диффузии), флук­туация либо затухает, либо распространяется на всю систе­му. Явления нуклеации хорошо известны из классической теории фазового перехода: например, в газе непрестан­но образуются и затем испаряются капельки конденсата. Когда же температура и давление достигают точки, в которой становится устойчивым жидкое состояние, мо­жет образоваться капля критических размеров (тем меньших, чем ниже температура и чем выше давление), Если размеры капли превышают порог нуклеации, газ почти мгновенно превращается в жидкость.
Как показывают теоретические исследования и численное моделирование, критические размеры ядра воз­растают с эффективностью механизмов диффузии, свя­зывающих между собой все области системы. Иначе говоря, чем быстрее передается сигнал по «каналам свя­зи» внутри системы, тем выше процент безрезультатных флуктуаций и, следовательно, тем устойчивее система. Этот аспект проблемы критического размера означает, что в подобных ситуациях «внешний мир», т. е. все, что окружает флуктуирующую область, всегда стремится погасить флуктуации. Затухнут ли флуктуации или усилятся, зависит от эффективности «канала связи» между
248


флуктуирующей областью и внешним миром. Таким об­разом, критические размеры определяются конкурен­цией между «интегративной силой» системы и химиче­скими механизмами, приводящими к усилению флук­туации.
Описанная нами модель применима, в частности, к результатам, полученным в последнее время in vitro при экспериментальных исследованиях зарождения раковых опухолей5. В этих исследованиях отдельная раковая
Рис. 19. Нуклеация капли жидкости в перенасыщенном паре. а) капля меньше критического размера; b) капля больше критиче­ского размера. Существование порога для диссипативных структур подтверждено экспериментально.
клетка рассматривается как флуктуация, способная спонтанно и непрестанно появляться и размножаться посредством репликации. Возникнув, раковая клетка сталкивается с популяцией цитотоксических клеток и либо погибает, либо выживает. В зависимости от значе­ний различных параметров, характеризующих процессы репликации и гибели раковых клеток, мы можем пред­сказывать либо регресс, либо разрастание опухоли. Та­кого рода кинетические исследования привели к откры­тию неожиданных свойств взаимодействия цитотоксических клеток и опухоли: было установлено, что цитотоксические клетки могут принимать мертвые опухолевые клетки за живые. Такие ошибки существенно затруд­няют разрушение опухоли.
Вопрос о пределах сложности системы поднимался довольно часто. Действительно, чем сложнее система, тем более многочисленны типы флуктуаций, угрожающих
249


ее устойчивости. Позволительно, однако, спросить, как же в таком случае существуют такие сложные системы, какими является экологическая или социальная струк­тура человеческого общества? Каким образом им уда­ется избежать перманентного хаоса? Частичным ответом на подобные вопросы может быть ссылка на стабилизи­рующее влияние связи между частями систем, процес­сов диффузии. В сложных системах, где отдельные виды растений, животных и индивиды вступают между собой в многочисленные и разнообразные взаимодействия, связь между различными частями системы не может не быть достаточно эффективной. Между устойчивостью, обеспечиваемой связью, и неустойчивостью из-за флук­туации имеется конкуренция. От исхода этой конкурен­ции зависит порог устойчивости.
4. Структурная устойчивость
В каких случаях мы начинаем говорить об эволюции в ее собственном смысле? Как известно, диссипативные структуры требуют сильно неравновесных условий. Тем не менее уравнения реакций с диффузией содержат па­раметры, допускающие сдвиг в слабо неравновесную область. На бифуркационной диаграмме система может эволюционировать и приближаясь к равновесию, и уда­ляясь от него, подобно тому как жидкость может пере­ходить от ламинарного течения к турбулентному и воз­вращаться к ламинарному. Сколько-нибудь жесткой и определенной схемы эволюции не существует.
С совершенно иной ситуацией мы встречаемся в мо­делях, в которых размеры системы входят в качестве параметра бифуркации: рост, происходящий необратимо во времени, приводит к необратимой эволюции. Однако такой тип развития является достаточно узким частным случаем, хотя вполне возможно, что он имеет некоторое отношение к морфогенетическому развитию.
Ни в биологической, ни в экологической или социаль­ной эволюции мы не можем считать заданным опреде­ленное множество взаимодействующих единиц или опре­деленное множество преобразований этих единиц. Это означает, что определение системы необходимо модифи­цировать в ходе эволюции. Простейший из примеров такого рода эволюции связан с понятием структурной
250


устойчивости. Речь идет о реакции заданной системы на введение новых единиц, способных размножаться и во­влекать во взаимодействие различные процессы, проте­кающие в системе.
Проблема устойчивости системы относительно изме­нений такого типа сводится к следующему. Вводимые в небольшом количестве в систему новые составляющие приводят к возникновению новой сети реакций между ее компонентами. Новая сеть реакций начинает конку­рировать со старым способом функционирования систе­мы. Если система структурно устойчива относительно вторжения новых единиц, то новый режим функциони­рования не устанавливается, а сами новые единицы («инноваторы») погибают. Но если структурные флук­туации успешно «приживаются» (например, если новые единицы размножаются достаточно быстро и успевают «захватить» систему до того, как погибнут), то вся си­стема перестраивается на новый режим функционирова­ния: ее активность подчиняется новому «синтаксису»6.
Простейшим примером такого рода может служить популяция макромолекул, образующихся в результате-полимеризации внутри системы, в которую поступают мономеры А и В. Предположим, что процесс полимери­зации автокаталитический, т. е. синтезированный поли­мер используется в качестве образца для образования цепи с той же последовательностью структурных единиц. Такого рода синтез протекает гораздо быстрее, чем син­тез в отсутствие образца для копирования. Каждый тип полимеров, отличающийся от других последователь­ностью расположения в цепи молекул А и В, может быть описан набором параметров, задающих скорость катализируемого синтеза копии, точность процесса ко­пирования и среднее время жизни самой макромолеку­лы. Можно показать, что при определенных условиях в популяции доминирует полимер какого-то одного типа, например АВАВАВА..., а остальные полимеры могут рас­сматриваться как «флуктуации» относительно него. Воз­никающая всякий раз проблема структурной устойчиво­сти обусловлена тем, что в результате «ошибки» при' копировании эталонного образца в системе возникает полимер нового типа, характеризуемый ранее не встре­чавшейся последовательностью мономеров А и В и но­вым набором параметров, который начинает размно­жаться, конкурируя с доминантными видам и за обла-
251


дание мономерами А и В. Перед нами простейший ва­риант классической дарвиновской идеи о «выживании
наиболее приспособленного».
Аналогичные идеи положены в основу модели предбиотической эволюции, разработанной Эйгеном и его сотрудниками. Подробности теории Эйгена можно най­ти в многочисленных статьях и книжных публикациях7, поэтому мы ограничимся лишь изложением самой сути. Эйген и его сотрудники показали, что только система
одного типа обладает способностью сопротивляться «ошибкам», постоянно совершаемым автокаталитическими популяциями, — а именно полимерная система, структурно устойчивая относительно появления любого полимера-«мутанта». Такая система состоит из двух множеств полимерных молекул. Молекулы первого мно­жества выполняют функцию «нуклеиновых кислот». Каждая молекула обладает способностью к самовоспро­изведению и действует как катализатор при синтезе молекул второго множества, выполняющих функцию
«протеинов». Каждая молекула второго множества ка­тализирует самовоспроизведение молекул первого мно­жества. Такая кросс-каталитическая связь между молекулами двух множеств может превращаться в цикл (каждая «нуклеиновая кислота» воспроизводит себя с помощью «протеина»). Этот цикл обеспечивает устой­чивое выживание «нуклеиновых кислот» и «протеинов», защищенных от постоянно возникающих с высоким ко­эффициентом воспроизводства новых полимеров: ничто не может вмешиваться в самовоспроизводящийся цикл, образуемый «нуклеиновыми кислотами» и «протеинами». Таким образом, эволюция нового типа начинает расти на прочном фундаменте, предвосхищающем появление генетического кода.
Подход, предложенный Эйгеном, несомненно, пред­ставляет большой интерес. В среде с ограниченным запасом питательных веществ дарвиновский отбор имеет важное значение для точного самовоспроизведения. Но нам хотелось бы думать, что это не единственный аспект предбиотической эволюции. Не менее важное значение имеют сильно неравновесные условия, связанные с кри­тическими, пороговыми значениями потоков энергии и вещества. По-видимому, разумно предположить, что не­которые из первых стадий эволюции к жизни были свя­заны с возникновением механизмов, способных погло-
252


щать и трансформировать химическую энергию, как бы выталкивая систему в сильно неравновесные условия. На этой стадии жизнь, или «преджизнь», была редким
событием и дарвиновский отбор не играл такой сущест­венной роли, как на более поздних стадиях.
В нашей книге отношению между микроскопическим и макроскопическим уделяется немало внимания. Одной из наиболее важных проблем в эволюционной теории является возникающая в итоге обратная связь между макроскопическими структурами и микроскопическими событиями: макроскопические структуры, возникая из ми­кроскопических событий, должны были бы в свою оче­редь приводить к изменениям в микроскопических ме­ханизмах. Как ни странно, но в настоящее время наи­более понятные случаи относятся к ситуациям, возника­ющим в человеческом обществе. Когда мы прокладыва­ем дорогу или строим мост, мы можем предсказать, как это скажется на поведении окрестного населения, а оно в свою очередь определяет изменения в характере и способах связи внутри региона. Такие взаимосвязанные процессы порождают очень сложные ситуации, и это обстоятельство необходимо сознавать, приступая к их моделированию. Именно поэтому мы ограничимся опи­санием лишь четырех наиболее простых случаев.
5. Логистическая эволюция
Понятие структурной устойчивости находит широкое применение в социальных проблемах. Следует, однако, подчеркнуть, что всякий раз речь идет о сильном упро­щении реальной ситуации, описываемой в терминах кон­куренции между процессами саморепликации в среде с ограниченными пищевыми ресурсами.
В экологии классическое уравнение, описывающее такую проблему, называется логистическим уравнением. Оно описывает, как эволюционирует популяция из N осо­бей с учетом рождаемости, смертности и количества ре­сурсов, доступных популяции. Логистическое уравнение можно представить в виде dN/dt=rN(K—N)—mN, где r и m — характерные постоянные рождаемости и смерт­ности, К — «несущая способность» окружающей среды. При любом начальном значении N система со временем выходит на стационарное значение N=K—m/r, завися-
253


Рис. 20. Эволюция популяции N как функция времени t, описы­ваемая логистической кривой. Стационарное состояние N=0 неустой­чиво, а стационарное состояние N=K—т/r устойчиво относительно флуктуации величины N.
щее от разности между несущей способностью среды и отношением постоянных смертности и рождаемости. При достижении этого стационарного значения насту­пает насыщение: в каждый момент времени рождается столько индивидов, сколько их погибает.
Кажущаяся простота логистического уравнения до некоторой степени скрывает сложность механизмов, уча­ствующих в процессе. Мы уже упоминали о внешнем шуме. В случае логистического уравнения он имеет осо­бенно простой смысл. Ясно, что при учете одних лишь климатических флуктуаций коэффициенты К, т и r нельзя считать постоянными: как хорошо известно, та­кие флуктуации могут разрушить экологическое равно­весие и даже обречь популяцию на полное вымирание. Разумеется, в системе начинаются новые процессы, та­кие, как создание запасов пищи и образование новых колоний, которые заходят в своем развитии настолько далеко, что позволяют в какой-то мере избежать воздействия внешних флуктуации.
Есть в логистической модели и другие тонкости. Вмес­то того чтобы записывать логистическое уравнение в непрерывном времени, будем сравнивать состояние по­пуляции через заданные интервалы времени (с интерва­лом, например, в год). Такое дискретное логистическое
254


уравнение представимо в виде Nt+1=Nt(l+r[1—Nt/K]), где Nt и Nt+1 — популяции с интервалом в один год (членом, учитывающим смертность, мы пренебрегаем). Р. Мэй8 обратил внимание на одну замечательную осо­бенность таких уравнений: несмотря на их простоту, они допускают необычайно много решений. При значениях параметра 0?r?2 в дискретном случае так же, как и в непрерывном, наблюдается монотонное приближение к равновесию. При значениях параметра 2<r<2,444 воз­никает предельный цикл: наблюдается периодический режим с двухлетним периодом. При еще больших зна­чениях параметра r возникают четырех-, восьмилетние и т. д. циклы, пока периодические режимы не переходят (при значениях r больше 2,57) в режим, который мо­жет быть назван только хаотическим. Мы имеем здесь дело с переходом к хаосу, описанным в гл. 5, — через серию бифуркаций удвоения периода. Возникает ли та­кой хаос в природе? Как показывают последние иссле­дования9, параметры, характеризующие реальные попу­ляции в природе, не позволяют им достигать хаотиче­ской области. Почему? Перед нами одна из интересней­ших проблем, возникающих при попытке решения эво­люционных проблем математическими методами с по­мощью численного моделирования на современных компьютерах.
До сих пор мы рассматривали все со статической точки зрения. Обратимся теперь к механизмам, позво­ляющим варьировать параметры К, r и m в ходе биоло­гической или экологической эволюции.
Следует ожидать, что в процессе эволюции значения экологических параметров К, r и m будут изменяться (так же как и многих других параметров и переменных независимо от того, допускают ли они квантификацию или не допускают). Живые сообщества непрестанно изыскивают новые способы эксплуатации существую­щих ресурсов или открытия новых (увеличивая тем са­мым значение параметра К), продления жизни или бо­лее быстрого размножения. Каждое экологическое рав­новесие, определяемое логистическим уравнением, носит лишь временный характер, и логистически заданная эко­логическая ниша последовательно заполняется серией видов, каждый из которых вытесняет предшествующие, когда его «способность» к использованию ниши, изме­ряемая величиной К—m/r, становится больше, чем у
255


Рис. 21. Эволюция всей популяции Х как функция времени. Популяция состоит из видов X1, Х2 и Х3, возникающих последовательно и соответствующих возрастающим значениям К—т/r (пояснения см. в тексте).
них (см. рис. 21). Таким образом, логистическое урав­нение описывает весьма простую ситуацию, позволяю­щую количественно сформулировать дарвиновскую идею о выживании «наиболее приспособленного»: наиболее приспособленным считается тот вид, у которого в дан­ный момент времени величина К—т/r больше.
Сколь ни ограниченна задача, описываемая логи­стическим уравнением, однако и она приводит к неко­торым поистине замечательным примерам изобрета­тельности природы.
Возьмем хотя бы гусениц, которые должны оставать­ся незамеченными, поскольку они движутся слишком медленно, чтобы успеть скрыться от врага.
Выработанные в процессе эволюции стратегии, вклю­чающие использование ядов, едких веществ, раздражаю­щих волосков и игл, оказываются высокоэффективными при отпугивании птиц и других потенциальных хищни­ков. Но ни одна из этих стратегий не обладает универ­сальной эффективностью, способной надежно защитить гусеницу от любого хищника в любое время, в особен­ности если хищник голоден. Идеальная стратегия со­стоит в том, чтобы быть как можно более незаметной. Некоторые гусеницы близки к этому идеалу, а при виде разнообразия и изощренности стратегий, используемые сотнями видов чешуекрылых, чтобы остаться незамечен-
256


ными, невольно вспоминаются слова выдающегося нату­ралиста XIX в. Жан Луи Агассиса: «Экстравагантность настолько глубоко отражает самую возможность суще­ствования, что вряд ли найдется какая-нибудь концеп­ция, которую Природа не реализовала бы как слишком экстраординарную»10.
Мы не можем удержаться от искушения привести пример, заимствованный у Милтона Лава11. Трематод (плоский червь), паразитирующий в печени овцы, про­ходит путь от муравья до овцы, где наконец происходит самовоспроизведение. Вероятность того, что овца про­глотит инфицированного муравья, сама по себе очень мала, но поведение такого муравья изменяется самым удивительным образом, и вероятность, по-прежнему ос­таваясь малой, становится максимальной. Можно с пол­ным основанием сказать, что трематод «завладевает» телом своего хозяина. Он проникает в мозг муравья и вынуждает свою жертву вести себя самоубийственным образом: порабощенный муравей вместо того, чтобы оставаться на земле, взбирается по стеблю растения и, за­мерев на самом кончике листа, поджидает овцу. Это — поистине «остроумное» решение проблемы для парази­та. Остается загадкой, как оно было отобрано.
Модели, аналогичные логистическому уравнению, позволяют исследовать и другие ситуации, возникающие в ходе биологической эволюции. Например, такие моде­ли помогают определить условия межвидовой конкурен­ции, при которой определенной части популяции выгод­но специализироваться на «военной», непроизводитель­ной деятельности (таковы, например, «солдаты» у общественных насекомых). Можно также указать, в ка­кой среде специализированный вид с ограниченным диапазоном пищевых ресурсов имеет более высокую вероятность, выжить, чем неспециализированный вид, потребляющий более разнообразные пищевые ресурсы12. Но здесь мы сталкиваемся с некоторыми весьма различ­ными проблемами организации внутренне дифференци­рованных популяций. Во избежание путаницы и недо­разумений необходимо установить четкие «демаркацион­ные линии». В популяциях, где отдельные особи раз­личимы, где каждая особь наделена памятью, обладает своим характером и опытом и призвана играть свою особую роль, применимость логистического уравнения или, более общо, простого аналога дарвиновских идей
257


становится весьма относительной. В дальнейшем мы еще вернемся к этой проблеме.
Интересно отметить, что кривая на рис. 21, показы­вающая, как последовательно сменяются при увеличении параметра К—т/r периоды роста и пики семейства ре­шений логистического уравнения, может также описывать размножение некоторых технологических продедур или продуктов. Открытие или технологическое новшест­во, появление нового продукта нарушает сложившееся социальное, технологическое или экономическое равно­весие. Такое равновесие соответствует максимуму кри­вой роста техники или продуктов производства, с кото­рыми новшеству приходится вступать в конкуренцию (в ситуации, описываемой логистическим уравнением, они играют аналогичную роль13). Приведем лишь один пример. Распространение пароходов привело не только к почти полному исчезновению парусного флота, но и за счет снижения транспортных расходов и повышения скорости перевозок способствовало увеличению спроса на морской транспорт (т. е. увеличению параметра K), что в свою очередь повлекло за собой увеличение чис­ленности транспортных судов. Разумеется, ситуация, о которой мы говорим здесь, предельно упрощена и, по предположению, подчиняется чисто экономической логи­ке: технологическое новшество в данном случае лишь удовлетворяет (хотя и иным путем) ранее существовав­шую потребность, которая остается неизменной. Но в экологии и человеческом обществе имеется немало при­меров инноваций, оказавшихся успешными, несмотря на отсутствие предварительной «ниши».
6. Эволюционная обратная связь
Мы сделаем первый шаг к объяснению эволюционной обратном связи, если будем считать «несущую способ­ность» системы не постоянной, как это было до сих пор, а функцией того, как используется система.
Такое расширение модели позволит нам учесть не­которые дополнительные аспекты экономической дея­тельности, и в частности некоторые «эффекты усиле­ния». Например, мы получаем возможность описать са­моускоряющиеся свойства системы и пространственную дифференциацию различных уровней активности.
258


Географы уже построили модель, коррелирующую эти процессы. Мы имеем в виду модель Кристаллера, определяющую оптимальное пространственное распреде­ление центров экономическом деятельности. Крупные городские центры располагаются в узлах шестиугольной решетки. Каждый из центров окружен кольцом городов следующего по величине масштаба, те в свою очередь окружены тяготеющими к ним еще меньшими населен­ными пунктами и т. д. Ясно, что в действительности такое геометрически правильное строго иерархическое распределение встречается очень редко: немало истори­ческих, политических и географических факторов нару­шают пространственную симметрию. Но рассматриваемая модель нереалистична и по другим причинам. Даже если бы мы исключили все наиболее важные источники асимметричного развития и начали с однородного в эко­номическом и географическом отношениям пространст­ва, моделирование генезиса распределения, по Кристаллеру, приводит к выводу о том, что описываемая мо­делью статическая оптимизация является возможным, но маловероятным исходом эволюции.
Рассматриваемая модель14 использует лишь минимальный набор переменных, входящих в вычисления, аналогичные, проведенным Кристаллером. Построено несколько уравнений, обобщающих логистическое. При выводе их авторы исходят из основного предположения о том, что способность населения мигрировать есть функция локальных уровней экономической активности, определяющих своего рода локальную «несущую способ­ность», которая в данном случае сводится к занятости населения. Но местное население есть в то же время потенциальный потребитель товаров, производимых ме­стной промышленностью. Таким образом, в локальном. развитии существует двойная положительная обратная связь, называемая «городским мультипликатором»: и локальное население, и экономическая структура, сло­жившаяся при уже достигнутом уровне активности, спо­собствуют дальнейшему его повышению. Вместе с тем каждый локальный уровень активности определяется конкуренцией с аналогичными центрами экономической активности, расположенными в других местах. Сбыт произведенных продуктов или оказываемых услуг зави­сит от стоимости транспортировки их к потребителю и масштабов «предприятия». Расширение любых пред-
259


Рис. 22. Возможная история «урбанизации». Черный кру­жок — населенные пункты только с одной функцией 1; круп­ный черный кружок — населенные пункты с функциями 1 и 2; крупный: черный кружок в треугольнике — населенные пункты
А
260


с функциями 1, 2 и 3; крупный черный кружок в треугольнике и квадрате — крупнейшие населенные пункты с функциями 1, 2, 3 и 4. При t=0 (не показано на рисунках) численность населения всех пунктов одинакова и составляет 67 единиц.
В


На рис. С численность населения крупнейшего центра достига­ет максимума (152 единицы), после чего начинается «расползание» города с образованием городов-спутников.
С
262


Аналогичный процесс наблюдается и в окрестностях главного центра.
D
263


264


приятий определяется спросом на то (товар или услугу), производству чего оно способствует и за производство чего данные предприятия конкурируют с другими. Та­ким образом, между относительным ростом населения и производительной деятельностью или сферой услуг су­ществуют сильная обратная связь и нелинейные зави­симости.
За исходное состояние в рассматриваемой модели приняты гипотетические начальные условия, при кото­рых в различных точках наблюдается (сельскохозяйст­венная) активность «уровня 1». Модель позволяет про­следить возникновение иерархически упорядоченной активности, соответствующей более высоким уровням иерархии по Кристаллеру, т. е. подразумевающей экс­порт произведенной продукции в более широкую об­ласть. Модель показывает, что даже если начальное состояние совершенно однородно, то одной лишь игры случайных (т. е. не контролируемых моделью) факто­ров, таких, как место и время закладки различных предприятий, достаточно для нарушения симметрии — появления зон с высокой концентрацией активности и одновременным спадом экономической активности в других областях и оттоком из них населения. Проигры­вание модели на ЭВМ позволяет наблюдать расцвет и упадок, подчинение одного экономического центра дру­гому и соответственно доминирование одних центров над другими, периоды, благоприятные для развития альтернативных направлений, и сменяющие их периоды «замораживания» уже существующих структур.
В то время как симметричное распределение Кристаллера игнорирует «историю», изложенный выше сце­нарий учитывает ее (по крайней мере самым минималь­ным образом) как взаимодействие «законов», имеющих в данном случае чисто экономическую природу, и «слу­чая», управляющего последовательностью, в которой возникают предприятия.
7. Моделирование сложности
Несмотря на свою простоту, наша модель довольно точно передает некоторые особенности эволюции слож­ных систем. В частности, она проливает свет на приро­ду трудностей «управления» развитием, зависящим от
265


большого числа взаимодействующих элементов, Каждое отдельное действие или локальное вмешательство в си­стему обретает коллективный аспект, который может повлечь за собой совершенно неожиданные глобальные изменения. Как подчеркивал Уоддингтон, в настоящее время мы еще мало знаем о наиболее вероятной реак­ции системы на то или иное изменение. Очень часто от­клик системы на возмущение оказывается противопо­ложным тому, что подсказывает нам наша интуиция. Наше состояние обманутых ожиданий в этой ситуации хорошо отражает введенный в Массачусетском техноло­гическом институте термин «контринтуитивный»: «Эта проклятая штука ведет себя не так, как должна была бы вести!» В подтверждение сошлемся на классический пример, приведенный Уоддингтоном: программа ликви­дации трущоб вместо того, чтобы улучшить, еще более ухудшает ситуацию. Новые здания, построенные на месте снесенных, привлекают в район большее число людей, но если их занятость не обеспечивается, то они продолжают оставаться бедными, а их жилища стано­вятся еще более перенаселенными15. Мы приучены мыс­лить в терминах линейной причинности, но теперь нуж­даемся в новых «средствах мышления». Одно из вели­чайших преимуществ рассмотренной модели состоит как раз в том, что она позволяет нам находить такие средства и разрабатывать способы их оптимального ис­пользования.
Как мы уже отмечали, логистические уравнения наи­более пригодны, когда критическим измерением являет­ся рост популяции, будь то популяция животных, сово­купность их навыков или активностей. Логистическая модель исходит из предположения о том, что каждый член популяции может быть выбран и рассматриваться как эквивалент любого другого члена. Но эту общую эквивалентность надлежит рассматривать не как не­зыблемый факт, а лишь как приближение, достоверность которого зависит от связей, наложенных на популяцию, от оказываемого на нее давления и от стратегии, изби­раемой популяцией для того, чтобы противодействовать вмешательству извне.
Взять хотя бы различие, проводимое экологами меж­ду К-стратегиями и r-стратегиями (К и r — парамет­ры, входящие в логистическое уравнение). Хотя это раз­личие относительно, оно проявляется особенно отчетли-
266


во в дивергенции, обусловленной систематическим вза­имодействием между двумя популяциями, в частности взаимодействием хищник — жертва. Типичной для попу­ляции жертв эволюцией является увеличение рождаемо­сти r, а для популяции хищников — совершенствование способов ловли жертв, т. е. увеличение коэффициента К. Но повышение К в рамках логистической модели вле­чет за собой последствия, выходящие за круг явлений, описываемых логистическими уравнениями.
Как заметил Стивен Дж. Гулд16. К-стратегия под­разумевает, что индивид все более повышает свою спо­собность обучаться на опыте и хранить накопленную информацию в памяти. Иначе говоря, индивиды стано­вятся все более сложными и со все более долгим пе­риодом созревания и обучения. В свою очередь это озна­чает, что индивиды становятся все более «ценными», представляющими более крупные вложения «биологиче­ского капитала» и уязвимыми на протяжении более про­должительного периода. Развитие «социальных» и «се­мейных» связей является, таким образом, логическим аналогом К-стратегии. С этой точки зрения другие фак­торы, помимо численности индивидов в популяции, ста­новятся все более существенными, и логистическое уравнение, измеряющее успех по числу индивидов, все хуже отражает истинное положение дел. Перед нами достаточно наглядный пример, показывающий, почему к моделированию сложных явлений следует относиться с осторожностью: в сложных системах дефиниция самих сущностей и взаимодействия между ними в процессе эволюции могут претерпевать изменения. Не только каждое состояние системы, но и само определение си-темы в том виде, в каком ее описывает модель, обычно нестабильно или по крайней мере метастабильно.
Мы подходим к проблемам, в которых методология неотделима от вопроса о природе исследуемого объекта. Мы не можем задавать одни и те же вопросы относи­тельно популяции мушек, рождающихся и погибающих миллионами без сколько-нибудь заметных признаков обучения на опыте или расширения опыта, и относитель­но популяции приматов, каждый член которой является как бы тончайшим переплетением собственного опыта и традиций популяции.
Нетрудно видеть, что и в самой антропологии необхо­дим принципиальный выбор между различными подхо-
267


дами к коллективным явлением. Хорошо известно, на­пример, что структурная антропология отдает предпочте­ние тем аспектам общества, к которым применимы сред­ства и методы логики и конечной математики, а именно: к элементарным структурам родства или анализу мифов, трансформации которых нередко сравнимы с ростом кристаллов. Дискретные элементы подсчитываются и комбинируются. Такой комбинаторный подход в корне отличается от подходов, анализирующих эволюцию в терминах процессов, которые охватывают большие, час­тично хаотические популяции. Мы имеем здесь дело с двумя различными взглядами и двумя типами моделей: Леви-Строс называет их соответственно механической и статистической моделями. В механической модели «эле­менты того же масштаба, что и явления», а индивиду­альное поведение основано на предписаниях, относя­щихся к структурной организации общества. Антрополог выявляет логику этого поведения, а социолог со своей стороны работает со статистическими моделями больших популяций и определяет средние и пороги17.
Общество, определяемое исключительно в терминах функциональной модели, соответствовало бы аристоте­левской идее о естественной иерархии и естественном порядке. Каждое официальное лицо исполняло бы все то, что входит в круг его обязанностей. Эти обязанности осуществляют перевод различных аспектов организа­ции общества как целого с одного уровня на другой. Король отдает приказы архитектору, архитектор — под­рядчику, подрядчик — строительным рабочим. На каж­дом уровне имеется свой руководитель. В то же время поведение термитов и других общественных насекомых ближе к статистической модели. Как мы уже видели, при возведении своего «дома» термиты не следуют ука­заниям одного руководящего разума. Взаимодействие между индивидами порождает при некоторых условиях определенные типы коллективного поведения, но ни од­но из этих взаимодействий не соотносится с глобальной задачей, все взаимодействия чисто локальны. Такое опи­сание подразумевает обращение к средним и вновь под­нимает вопрос относительно устойчивости и бифурка­ций.
Какие события способствуют регрессу и какие про­грессу системы? В каких ситуациях перед системой воз­никает необходимость выбора и в каких ситуациях ре-
268


жимы стабильны? Поскольку размеры или плотность системы могут играть роль параметра бифуркации, как может чисто количественный рост приводить к качест­венно новому выбору? Для ответа на эти вопросы по­надобилась бы обширная исследовательская программа. Как и в случае с r- и K-стратегиями, поставленные на­ми вопросы приводят к обоснованию выбора «хорошей» модели социального поведения и истории. Каким обра­зом в ходе эволюции популяция становится все более «механической»? Параллелизм между этим вопросом и теми вопросами, с которыми мы уже сталкивались при рассмотрении биологических проблем, очевиден. Напри­мер, каким образом отбор генетической информации, управляющей скоростями и регулированием метаболи­ческих реакций, делает одни пути настолько наиболее предпочтительными, чем другие, что развитие кажется целенаправленным или напоминает передачу «сигнала»?
Мы полагаем, что модели, построенные на основе понятия «порядок через флуктуации», помогут нам спра­виться с подобными вопросами, а при определенных обстоятельствах будут способствовать более точной фор­мулировке сложного взаимодействия между индивиду­альным и коллективным аспектами поведения. С точки зрения физика, к этому кругу проблем относится прове­дение различия, с одной стороны, между состояниями системы, в которых всякая индивидуальная инициатива малозначима, а с другой стороны, между областями бифуркаций, в которых индивидуальная идея или даже новое поведение может порождать глобальное состоя­ние. Но даже в областях бифуркации усиление — удел далеко не каждой индивидуальной идеи и не каж­дого индивидуального поведения, а лишь «опасных», т. е. способных обратить себе на пользу нелинейные соот­ношения, обеспечивавшие устойчивость предыдущего режима. Таким образом, одни и те же нелинейности мо­гут порождать порядок из хаоса элементарных процес­сов, а при других обстоятельствах приводить к разру­шению того же порядка и в конечном счете к возникно­вению новой когерентности, лежащей уже за другой
бифуркацией.
Модели «порядка через флуктуации» открывают пе­ред нами неустойчивый мир, в котором малые причины порождают большие следствия, но мир этот не произво­лен. Напротив, причины усиления малых событий —
269


вполне «законный» предмет рационального анализа. Флуктуации не вызывают преобразования активности системы. Если воспользоваться образным сравнением Максвелла, можно сказать, что спичка может стать причиной лесного пожара, но одно лишь упоминание о спичке еще не позволяет понять, что такое огонь. Кроме того, если флуктуация становится неуправляемой, это еще не означает, что мы не можем локализовать причи­ны неустойчивости, вызванной усилением флуктуаций.
8. Открытый мир
Ввиду сложности затронутых нами вопросов мы вряд ли вправе умолчать о том, что традиционная интерпре­тация биологической и социальной эволюции весьма не­удачно использует понятия и методы, заимствованные из физики18, — неудачно потому, что они применимы в весьма узкой области физики и аналогия между ними и социальными или экономическими явлениями лишена всякого основания.
Первый пример тому — парадигма оптимизации. И управление человеческим обществом, и действие се­лективных «воздействий» на систему направлены на оптимизацию тех или иных аспектов поведения или спо­собов связи, но было бы опрометчиво видеть в оптимизации ключ к пониманию того, как выживают популя­ции и индивиды. Те, кто так думает, рискуют впасть в ошибку, принимая причины за следствия, и наоборот.
Модели оптимизации игнорируют и возможность ра­дикальных преобразований (т. е. преобразований, ме­няющих самую постановку проблемы и тем самым характер решения, которое требуется найти), и инерциалъные связи, которые в конечном счете могут вынудить систему перейти в режим функционирования, ведущий к ее гибели. Подобно доктринам, аналогичным «неви­димой направляющей руке» Адама Смита, или другим определениям прогресса в терминах критериев макси­мизации или минимизации, модели оптимизации рисуют утешительную картину природы как всемогущего и ра­ционального калькулятора, а также строго упорядочен­ном истории, свидетельствующей о всеобщем неукосни­тельном прогрессе. Для того чтобы восстановить и инерцию, и возможность неожиданных событий, т. е. восста-
270


повить открытый характер истории, необходимо при­знать ее фундаментальную неопределенность. В качестве символа мы могли бы использовать явно случайный характер массовой гибели в меловой период живых су­ществ, исчезновение которых с лица Земли расчистило путь для развития млекопитающих — небольшой группы крысообразных животных19.
Сказанное выше было лишь общим изложением, сво­его рода «видом с птичьего полета». Mы обошли молча­нием многие важные вопросы (например, большой тео­ретический и практический интерес представляют неус­тойчивости, возникающие в пламёнах, плазме и лазерах в сильно неравнонесных условиях). Всюду, куда бы мы ни бросили свой взгляд, нас окружает природа, неисчер­паемо разнообразная и щедрая на всякого рода нова­торские решения. Описываемая нами концептуальная эволюция сама по себе является лишь составной частью более широкой истории последовательного, шаг за ша­гом переоткрытия времени.
Мы видели, как физика постепенно обогащалась все новыми и новыми аспектами времени, между тем как присущие классической физике претензии на всемогу­щество одна за другой отпадали как необоснованные. В этой главе мы шли от физики через биологию и эко­логию к человеческому обществу, хотя могли бы дви­гаться и в обратном направлении: история занималась изучением в основном человеческих сообществ и лишь затем распространила свое внимание на временные аспекты жизни и геологии. Таким образом, вхождение времени в физику явилось заключительным этапом все более широкого «восстановления прав» истории в есте­ственных и социальных науках.
Интересно отметить, что на каждом этапе этого про­цесса наиболее важной отличительной особенностью «историизации» было открытие какой-нибудь временной неоднородности. Начиная с эпохи Возрождения запад­ное общество вступало в контакт со многими цивилиза­циями, находившимися на различных этапах развития; в XIX в. биология и геология открыли и классифицировали ископаемые формы жизни и научились распозна­вать в ландшафтах сохранившиеся до нашего времени памятники прошлого; наконец, физика XX в. также от­крыла своего рода «ископаемое» — реликтовое излуче­ние, поведавшее нам о «первых минутах» Вселенной.
271


ЧАСТЬ ТРЕТЬЯ. ОТ БЫТИЯ К СТАНОВЛЕНИЮ
Ныне мы твердо знаем, что живем в мире, где сосуще­ствуют в неразрывной связи различные времена и иско­паемые различных эпох.
Теперь перед нами возникает новый вопрос. Мы уже говорили о том, что жизнь стала казаться столь же «естественной, как свободно падающее тело». Что обще­го между естественным процессом самоорганизации и свободно падающим телом? Какая связь может суще­ствовать между динамикой, наукой о силах и траекто­риях, и наукой о сложности и становлении, наукой о жизненных процессах и о естественной эволюции, частью которой они являются? В конце XIX в. необратимость связывали с трением, вязкостью и теплопроводностью. Необратимость была первопричиной потерь и непроиз­водительных расходов энергии. Тогда, к началу XIX в., необратимость еще можно было приписывать неполноте наших знаний, несовершенству наших машин и утверж­дать, будто природа в основе своей обратима. Теперь это безвозвратно ушло в прошлое: ныне даже физика говорит нам, что необратимые процессы играют конст­руктивную и неоценимую по значимости роль.
Тут мы и подходим к вопросу, уклониться от которо­го более невозможно. Как соотносятся между собой но­вая наука о сложности и наука о простом, элементар­ном поведении? Какая связь существует между столь противоположными взглядами на природу? Не означает ли все это, что существуют две теории, две истины для одного мира? Но как такое возможно?
В определенном смысле мы возвращаемся к самым истокам современной науки. Теперь, как и во времена Ньютона, сошлись лицом к лицу две науки: наука о гравитации, описывающая подчиненную законам вне­временную природу, и наука об огне, химия. Ныне мы понимаем, почему первый синтез, достигнутый наукой, ньютоновский синтез, не мог быть полным: описываемые динамикой силы взаимодействия не могут объяснить сложное и необратимое поведение материи. Ignis mutat res — огонь движет вещами. Согласно этому древнему высказыванию, химические структуры — творение огня, результат необратимых процессов. Как преодолеть брешь между бытием и становлением — двумя противо­речащими друг другу понятиями, одинаково необходи­мыми для достижения согласованного описания того странного мира, в котором мы живем?
272


Часть третья. От бытия к становлению
Глава 7. ПЕРЕОТКРЫТИЕ ВРЕМЕНИ
1. Смещение акцента
Уайтхед некогда писал о том, что «столкновение теорий — не бедствие, а благо, ибо открывает новые перспективы»1. Если это утверждение верно, то в исто­рии науки можно указать считанное число случаев, ког­да новая перспектива была столь же многообещающей, как и та, которая открылась при непосредственном столкновении двух миров: мира динамики и мира тер­модинамики.
Ньютоновская наука была вершиной, завершающим синтезом, увенчавшим столетия экспериментирования и теоретических исследований, происходивших в различ­ных направлениях, но метивших в одну точку. То же можно было бы утверждать и относительно термодина­мики. Рост науки не имеет ничего общего с равномер­ным развертыванием научных дисциплин, каждая из которых в свою очередь подразделяется на все боль­шее число водонепроницаемых отсеков. Наоборот, кон­вергенция различных проблем и точек зрения способ­ствует разгерметизации образовавшихся отсеков и за­кутков и эффективному «перемешиванию» научной куль­туры. Поворотные пункты в развитии науки приводят к последствиям, выходящим за рамки чистой науки и оказывающим влияние на всю интеллектуальную среду. Верно и обратное: глобальные проблемы часто были источниками вдохновения в науке.
Столкновение теорий, конфликт между бытием и становлением свидетельствуют о том, что новый пово­ротный пункт уже достигнут и возникла настоятельная необходимость в новом синтезе. Такой синтез обретает
275


свою форму в наше время, столь же неожиданную, как и все предыдущие синтезы. Мы снова являемся свиде­телями замечательной конвергенции исследований, каж­дое из которых вносит свой вклад в выяснение природы трудностей, присущих ньютоновской концепции науч­ной теории.
Ньютоновская наука претендовала на создание кар­тины мира, которая была бы универсальной, детерми­нистической и объективной, поскольку не содержала ссылки на наблюдателя, полной, поскольку достигну­тый уровень описания позволял избежать «оков» вре­мени.
Упомянув о времени, мы подходим к самому суще­ству проблемы. Что такое время? Следует ли нам при­нять ставшее традиционным после Канта противопо­ставление статического времени классической физики субъективно переживаемому нами времени? Вот что пишет об этом Карнап:
«Эйнштейн как-то заметил, что его серьезно беспо­коит проблема «теперь». Он пояснил, что ощущение настоящего, «теперь», означает для человека нечто су­щественно отличное от прошлого и будущего, но это важное отличие не возникает и не может возникнуть в физике. Признание в том, что наука бессильна по­знать это ощущение, было для Эйнштейна болезнен­ным, но неизбежным. Я заметил, что все происходя­щее объективно может быть описано наукой. С одной стороны, описанием временной последовательности со­бытий занимается физика, с другой стороны, особенно­сти восприятия человеком времени, в том числе различ­ное отношение человека к прошлому, настоящему и бу­дущему, может быть описано и (в принципе) объясне­но психологией. Но Эйнштейн, по-видимому, считал, что эти научные описания не могут удовлетворить на­ши человеческие потребности и что с «теперь» связано нечто существенное, лежащее за пределами науки»2.
Интересно отметить, что Бергсон, избравший в опре­деленном смысле иной путь, также пришел к дуали­стическому заключению (см. гл. 3). Подобно Эйнштей­ну, Бергсон начал с субъективного времени и, отправ­ляясь от него, двинулся к времени в природе, време­ни, объективированному физикой. Но, с точки зрения Бергсона, такая объективизация лишила время прочной основы. Внутреннее экзистенциальное время утратило
276


при переходе к объективированному времени свои ка­чественные отличительные свойства. По этой причине Бергсон ввел различие между физическим временем и длительностью — понятием, относящимся к экзистенци­альному времени.
Но на этом история не кончается. Как заметил Дж. Т. Фрезер, «последовавшее разделение на время ощущаемое и время понимаемое является клеймом на­учно-промышленной цивилизации, своего рода коллек­тивной шизофренией»3. Как мы уже отмечали, там, где классическая наука подчеркивала незыблемость и по­стоянство, мы обнаруживаем изменение и эволюцию. При взгляде на небо мы видим не траектории, некогда восхищавшие Канта ничуть не меньше, чем сам пре­бывающий в нем моральный закон, а некие странные объекты: квазары, пульсары, взрывающиеся и разры­вающиеся на части галактики, звезды, коллапсирующие, как нам говорят, в «черные дыры», которые без­возвратно поглощают все, что в них попадает.
Время проникло не только в биологию, геологию и социальные науки, но и на те два уровня, из которых его традиционно исключали: микроскопический и кос­мический. Не только жизнь, но и Вселенная в целом имеет историю, и это обстоятельство влечет за собой важные следствия.
Первая теоретическая работа, в которой космологи­ческая модель рассматривалась с точки зрения общей теории относительности, была опубликована Эйнштей­ном в 1917 г. В ней Эйнштейн нарисовал статическую, безвременную картину мира Спинозы, своего рода ми­росозерцание в переводе на язык физики. И тогда слу­чилось неожиданное: сразу же после выхода в свет работы Эйнштейна стало ясно, что, помимо найденных им стационарных решений, эйнштейновские уравнения допускают и другие нестационарные (т. е. зависящие от времени) решения. Этим открытием мы обязаны со­ветскому физику А. А. Фридману и бельгийцу Ж. Леметру. В то же время Хаббл и его сотрудники, занима­ясь изучением движения галактик, показали, что ско­рость дальних галактик пропорциональна расстоянию до них от Земли. В рамках теории расширяющейся Вселенной, основы которой были заложены Фридманом и Леметром, закон Хаббла был очевиден. Тем не менее на протяжении многих лет физики всячески сопротив-
277


лялись принятию «исторического» описания эволюции Вселенной. Сам Эйнштейн относился к нему с боль­шой осторожностью. Леметр часто рассказывал, что, когда он пытался обсуждать с Эйнштейном возмож­ность более точного задания начального состояния Все­ленной в надежде найти объяснение космических лу­чей, Эйнштейн не проявил никакого интереса.
Ныне мы располагаем новыми сведениями о знаме­нитом реликтовом излучении — «свете», испущенном при взрыве сверхплотного файербола, с которого началась наша Вселенная. По иронии истории, Эйнштейн (в известной мере против собственной воли) стал Дарвином физики. Дарвин учил, что человек составляет неотъемлемую часть биологической эволюции; и Эйн­штейн учил, что человек неразрывными узами связан с эволюцией Вселенной. Идеи Эйнштейна привели его к открытию «нового континента», и это открытие было для него столь же неожиданным, как открытие Амери­ки для Колумба. Подобно многим физикам своего по­коления, Эйнштейн исходил в своей деятельности из глубокого убеждения в существовании в природе фун­даментального простого уровня. Однако ныне этот уро­вень становится все менее доступным эксперименту. Единственные объекты, поведение которых действи­тельно «просто», существуют в нашем мире на макро­скопическом уровне. Классическая наука тщательно выбирала объекты изучения именно на этом промежу­точном уровне. Первые объекты, выделенные Ньюто­ном, действительно были простыми; свободно падаю­щие тела, маятник, движение планет. Однако, как мы знаем теперь, эта простота отнюдь не является отличи­тельной особенностью фундаментального: она не может быть приписана остальному миру.
Достаточно ли этого? Мы знаем ныне, что устойчи­вость и простота являются скорее исключением, чем правилом. Следует ли просто отбросить претендующие на всеобщность тоталитарные притязания концептуали­зации, применимые в действительности лишь к простым и устойчивым объектам? Нужно ли проявлять столь большую заботу о том, чтобы согласовать дина­мику и термодинамику?
Не следует забывать слова Уайтхеда, справедли­вость которых непрестанно подтверждается историей науки: столкновение теорий не бедствие, а благо ибо
278


открывает новые перспективы. Различные авторы доволь­но часто высказывали мысль о том, что мы из практических соображений игнорируем те или иные проблемы: по­скольку те основаны на трудно реализуемых идеализациях. В начале XX в. некоторые физики предлагали от­казаться от детерминизма на том основании, что он недостижим в реальном опыте4. Действительно, мы уже говорили о том, что точные положения и скорости мо­лекул в большой системе никогда нельзя считать из­вестными. Поэтому точно предсказать будущую эволю­цию системы невозможно. Впоследствии Бриллюэн по­пытался подорвать детерминизм, апеллируя к истине на уровне здравого смысла. Точное предсказание, рассуждал он, требует точного знания начальных усло­вий, а за это знание нужно платить. За точное предска­зание, необходимое для того, чтобы детерминизм «ра­ботал», необходимо платить бесконечно большую цену.
Подобные возражения при всей их разумности не оказывают особого влияния на концептуальный мир ди­намики. Не проливают они новый свет и на реальность. Кроме того, усовершенствования в области технологии могут все больше приближать нас к идеализации, тре­буемой классической динамикой.
В отличие от таких возражений доказательства «не­возможности» имеют фундаментальные значения. Каж­дое из них открывает какую-то неожиданную внутрен­нюю структуру реальности, обрекающую на провал чи­сто умозрительные построения. Такие открытия исклю­чают возможность проведения операции, ранее считав­шейся (по крайней мере в принципе) возможной. «Ни один двигатель не может иметь коэффициент полезно­го действия, который бы превышал единицу», «ни один тепловой двигатель не может производить полезную ра­боту, если он не находится в контакте с двумя источни­ками (нагревателем и холодильником)», — примеры двух утверждений о невозможности, которые привели к глубокой перестройке системы понятий.
В основе термодинамики, теории относительности и квантовой механики лежат открытия невозможности, установление пределов амбициозных притязаний клас­сической физики. Эти открытия ознаменовали в свое время конец целых направлений в естествознании, до­стигших своих пределов. Ныне они предстают перед на­ми в ином свете — не как конец, а как начало, как но-
279


вая, открывающаяся перспектива. В гл. 9 мы увидим, что второе начало термодинамики выражает «невоз­можность» даже на микроскопическом уровне, но и здесь эта недавно открытая невозможность становится исходным пунктом для возникновения новых понятий.
2. Конец универсальности
Научное описание должно соответствовать источникам, доступным наблюдателю, принадлежащему тому миру, который он описывает, а не существу, созерцаю­щему наш мир «извне». Таково одно из фундаментальных требований теории относительности. Она устанав­ливает предел скорости распространения сигнала, ко­торый не может быть превзойден ни одним наблюдате­лем. Скорость света с в вакууме (с=300 000 км/с) — предельная скорость распространения всех сигналов. Эта предельная скорость играет весьма важную роль:
она ограничивает ту область пространства, которая мо­жет влиять на точку нахождения наблюдателя.
В ньютоновской физике нет универсальных постоян­ных. Именно поэтому она претендует на универсаль­ность, на применимость независимо от масштаба объ­ектов: движение атомов, планет и небесных светил под­чиняется единому закону.
Открытие универсальных постоянных произвело ко­ренной переворот в бытующих взглядах. Используя скорость света как эталон для сравнения, физика ус­тановила различие между малыми и большими скоро­стями (последние приближаются к скорости света).
Аналогичным образом постоянная Планка h позво­лила установить естественную шкалу масс объектов. Атом уже не мог более считаться крохотной планетной системой: электроны принадлежат к иному масштабу масс, чем планеты и все тяжелые медленно движущие­ся макроскопические объекты, включая нас самих.
Универсальные постоянные не только разрушили однородность Вселенной введением физических масшта­бов, позволяющих устанавливать качественные разли­чия между отдельными типами поведения, но и приве­ли к новой концепции объективности. Ни один наблю­датель не может передавать сигналы со скоростью
большей, чем скорость света в вакууме. Исходя из
280


этого постулата, Эйнштейн пришел к весьма замеча­тельному выводу: мы не можем более определить аб­солютную одновременность двух пространственно раз­деленных событий; одновременность может быть опре­делена только относительно данной системы отсчета. Подробное изложение теории относительности увело бы нас слишком далеко от основной темы, поэтому мы ог­раничимся лишь одним замечанием. Законы Ньютона отнюдь не предполагают, что наблюдатель — «физиче­ское существо». Объективность описания определяется как отсутствие всякого упоминания об авторе описания. Для «нефизических» разумных существ, способных об­мениваться сигналами, распространяющимися с беско­нечно большой скоростью, теория относительности бы­ла бы неверна. То обстоятельство, что теория относи­тельности основана на ограничении, применимом к фи­зически локализованным наблюдателям, существам, могущим находиться в один момент времени лишь в одном месте, а не всюду сразу, придает физике не­кую «человечность». Это отнюдь не означает, будто физика субъективна, т. е. является результатом наших предпочтений и убеждений. Физика по-прежнему оста­ется во власти внутренних связей, делающих нас частью того физического мира, который мы описываем. Наша физика предполагает, что наблюдатель находится внут­ри наблюдаемого им мира. Наш диалог с природой успешен лишь в том случае, если он ведется внутри природы.
3. Возникновение квантовой механики
Теория относительности изменила классическое представление об объективности. Но она оставила не­изменной другую принципиально важную отличитель­ную особенность классической физики — претензию на «полное» описание природы. Хотя после создания спе­циальной теории относительности физики уже не мог­ли апеллировать к демону, наблюдающему всю Все­ленную извне, но еще обращались к всевышнему — ма­тематику, который, по словам Эйнштейна, изощрен, но не злонамерен и не играет в кости. Считалось, что все­ведущий математик владеет «формулой Вселенной», включавшей в себя полное описание природы. В этом
281


смысле теория относительности была продолжением классической физики.
Первой физической теорией, действительно порвав­шей с прошлым, стала квантовая механика. Она не только поместила нас в природу, но и присвоила нам атрибут «тяжелые», т. е. состоящие из макроскопиче­ски большого числа атомов. Дабы придать большую наглядность физическим следствиям из существования такой универсальной постоянной, как скорость света, Эйнштейн вообразил себя летящим верхом на фотоне. Но, как показала квантовая механика, мы слишком тяжелы для того, чтобы ездить верхом на фотонах или электронах. Мы не можем заменить те эфемерные су­щества, которым дано оседлать фотон, не можем отож­дествить себя с ними и описать, что бы они думали, ес­ли бы были наделены способностью мыслить, и что бы они ощущали, если бы могли чувствовать.
История квантовой механики, как и история любой концептуальной инновации, сложна и полна неожидан­ных событий. Это история логики, следствия из кото­рой были извлечены после того, как она возникла, вы­званная к жизни настоятельной потребностью экспери­мента, в сложной политической и культурной обстанов­ке5. Не имея возможности сколько-нибудь подробно останавливаться на истории квантовой механики, мы хотим лишь подчеркнуть ту роль, которую она сыграла в наведении моста между бытием и становлением — главной темы книги.
Своим рождением квантовая механика отчасти обя­зана стремлению физиков преодолеть пропасть, отде­лявшую бытие от становления. Планка интересовало взаимодействие между веществом и излучением. Он намеревался осуществить для взаимодействия вещест­ва со светом такую же программу, какую Больцман осуществил для взаимодействия вещества с веществом, а именно: построить кинетическую модель необратимых процессов, приводящих к равновесию6. К своему удив­лению, Планк обнаружил, что достичь согласия с экс­периментальными результатами в условиях теплового равновесия можно, лишь приняв гипотезу о том, что обмен энергией между веществом и излучением про­исходит только дискретными порциями, пропорциональ­ными новой универсальной постоянной. Эта универсаль­ная постоянная h служит мерой для порций энергии.
282


И в этом случае, как и во многих других, попытка понять природу необратимости способствовала сущест­венному прогрессу физики.
Открытие дискретности, или квантованности, энер­гии оставалось вне связи с другими физическими явле­ниями до тех пор, пока Эйнштейн не предложил пер­вую общую интерпретацию постоянной Планка. Эйн­штейн понял, к сколь далеки идущим последствиям приводит открытие Планка для природы света, и вы­двинул радикально новое понятие: дуализм волна — ча­стица (для света).
В начале XIX в. физики наделяли свет волновыми свойствами, проявляющимися в таких явлениях, как дифракция и интерференция. Но в конце XIX в. были открыты новые явления. Самым важным из новых от­крытий по праву считается фотоэлектрический эф­фект — испускание электронов поверхностью металла в результате поглощения света. Объяснить новые экспе­риментальные результаты традиционными волновыми свойствами света было трудно. Эйнштейн разрешил проблему фотоэлектрического эффекта, предположив, что свет может быть и волной, и частицей и что обе «ипостаси» света связаны между собой постоянной Планка. Точный смысл нашего утверждения состоит в следующем. Световая волна характеризуется частотой v и длиной волны l. Постоянная Планка позволяет пе­реходить от частоты и длины волны к таким механиче­ским величинам, как энергия e и импульс р. Соотноше­ния между v и l, а также между e и р очень просты (e=hv, p=h/l), и оба содержат постоянную Планка h, Через двадцать лет после Эйнштейна Луи де Бройль обобщил дуализм волна — частица со света на мате­рию. Это открытие послужило исходным пунктом со­временной формулировки квантовой механики.
В 1913 г. Нильс Бор установил связь новой кванто­вой физики со строением атомов (а впоследствии и мо­лекул). Исходя из дуализма волна — частица, Бор по­казал, что существует дискретная последовательность орбит электронов. При возбуждении атома электрон прыжком переходит с одной орбиты на другую. В этот самый момент атом испускает или поглощает фотон, частота которого соответствует разности энергии, ха­рактеризующей движение электрона по каждой из двух орбит. Эта разность вычисляется по формуле Эйнштей-
283


на, устанавливающей соотношение между энергией и частотой.
Наступили решающие 1925—1927 годы — «золотой век» физики7. За этот короткий период Гейзенберг, Борн, Иордан, Шредингер и Дирак превратили кван­товую механику в непротиворечивую новую теорию. Дуализм волна — частица Эйнштейна и де Бройля эта теория органично включила в схему новой обобщенной формы динамики: квантовой механики. Для нас сущест­венна концептуальная новизна квантовой механики.
Первая и, пожалуй, наиболее существенная особен­ность этой теории состояла в ее новой, неизвестной в классической физике формулировке, которая понадобилась для того, чтобы ввести в теоретический язык кван­тование. Атом (и это весьма существенно!) может на­ходиться лишь на дискретных энергетических уровнях, соответствующих различным орбитам электронов. Это, в частности, означает, что энергия (или гамильтониан) не может быть функцией только координат и импульса, как в классической механике (в противном случае, придавая координатам и импульсам значения, близкие к исходным, мы могли бы непрерывно изменять энер­гию, в то время как эксперимент показывает, что суще­ствуют лишь дискретные энергетические уровни).
Итак, от традиционного представления о гамильто­ниане как о функции координат и импульса, необходи­мо отказаться и заменить его чем-то новым. Основная идея квантовой механики состоит в том, что гамильто­ниан так же, как и другие величины классической ме­ханики, например координаты q или импульсы р, над­лежит рассматривать как операторы. Переход от чисел к операторам — одна из наиболее дерзких идей в со­временной науке, и нам хотелось бы обсудить ее более подробно.
Сама по себе эта идея очень проста, хотя на пер­вый взгляд кажется несколько абстрактной: оператор (математическую операцию, производимую над некото­рым объектом) необходимо отличать от объекта, на который он действует, — от функции. Выберем, напри­мер, в качестве математического оператора дифферен­цирование (взятие производной) d/dx. Действуя нашим оператором на какую-нибудь функцию (например, на х2), мы получим новую функцию (в данном случае 2х). Некоторые функции ведут себя при дифференцировании
284


особым образом. Например, производная от e3x равна 3e3x, т. е. отличается от исходной функции только чис­ленным множителем (равным в нашем примере 3). Функции, переходящие под действием оператора (с точ­ностью до численного множителя) в себя, называются собственными функциями данного оператора, а числен­ные множители, на которые они умножаются, — собст­венными значениями оператора.
Каждому оператору соответствует определенный на­бор собственных значений, который называется спект­ром. Если собственные значения образуют дискретную последовательность, то спектр дискретный. Например, существует оператор, имеющий собственными значе­ниями все целые неотрицательные числа: 0, 1, 2, ... Спектр может быть и непрерывным, например, состоять из всех чисел, заключенных между 0 и 1.
Основная идея квантовой механики сводится к сле­дующему: всем физическим величинам классической ме­ханики в квантовой механике соответствуют «свои» опе­раторы, а численным значениям, принимаемым данной физической величиной, — собственные значения ее квантовомеханического оператора. Подчеркнем одну важную особенность квантовой механики: различие, проводимое в ней между понятием физической величины (представимой оператором) и принимаемыми этой величиной численными значениями (представимыми собственными значениями оператора). В частности, энергии в кванто­вой механике соответствует оператор гамильтониан, а энергетическим уровням (наблюдаемым значениям энергии) — собственные значения спектра гамильто­ниана.
Введение операторов распахнуло перед физиками ворота в неожиданно богатый и разнообразный микро­скопический мир, и нам остается лишь сожалеть, что мы не можем уделить больше места такой увлекатель­ной области пауки, как квантовая механика, в которой творческое воображение и экспериментальное наблюде­ние столь успешно сочетаются друг с другом. Подчерк­нем лишь, что микроскопический мир подчиняется за­конам, имеющим качественно новую структуру. Тем самым раз и навсегда кладется конец всем надеждам на создание единой концептуальной схемы, общей для всех уровней описания.
Новый математический язык, изобретаемый для пре-
285


одоления вполне определенных трудностей, может спо­собствовать открытию новых областей исследования, полных неожиданностей, превосходящих самые смелые ожидания своих создателей. Так было с дифференци­альным исчислением, лежащим в основе классической динамики. Так было и с теорией операторов. Кванто­вая теория, созданная в ответ на насущную потреб­ность объяснения новых, неожиданных эксперименталь­ных открытий, — вскоре превратилась в почти необо­зримую terra incognita — бескрайний простор для ис­следований.
Ныне, через более чем пятьдесят лет после введения операторов в квантовую механику, их значение по-прежнему остается предметом горячих дискуссий. Исто­рически введение операторов связано с существовани­ем энергетических уровней, но теперь операторы приме­няются даже в классической физике. Их значение на­много превзошло ожидания основателей квантовой ме­ханики. Операторы ныне вступают в игру всякий раз, когда по той или иной причине приходится отказывать­ся от понятия динамической траектории, а вместе с ним и от детерминистического описания траектории.
4. Соотношения неопределенности Гейзенберга
Мы видели, что в квантовой механике каждой фи­зической величине соответствует оператор, который дей­ствует на функции. Особенно важную роль играют соб­ственные функции и собственные значения интересую­щего нас оператора. Собственные значения соответст­вуют допустимым численным значениям величины. Рас­смотрим теперь более подробно квантовомеханические операторы, связанные с координатами q и импульса­ми р (как показано в гл. 2, эти величины — канониче­ские переменные).
В классической механике координаты и импульсы независимы в том смысле, что мы можем приписывать координате любое численное значение совершенно неза­висимо от того, какое значение приписано нами им­пульсу. Но существование постоянной Планка h приво­дит к уменьшению числа независимых переменных. Об этом можно было бы догадаться, исходя из соотноше­ния Эйнштейна—де Бройля l=h/p, связывающего дли­ну волны с импульсом: постоянная Планка есть отно-
286


шение длины волны частицы (тесно связанной с поня­тием координаты) к ее импульсу. Следовательно, коор­динаты и импульс квантовомеханической частицы уже более не являются независимыми переменными, как в классической механике. Операторы, соответствующие координатам и импульсам, как объясняется во всех учебниках квантовой механики, могут быть представле­ны либо только в координатах, либо только в импуль­сах.
Важно подчеркнуть, что во всех этих случаях в представление оператора входят только однотипные ве­личины (либо только координаты, либо только импуль­сы), но не координаты и импульсы одновременно. В этом смысле можно утверждать, что в квантовой ме­ханике число независимых переменных вдвое меньше, чем в классической.
Из соотношения между операторами в квантовой механике вытекает одно фундаментальное свойство: два оператора — qоп и роп — не коммутируют, т. е., действуя на одну и ту же функцию операторами qопроп и ропqоп, мы получим различные функции. Некоммутационность операторов координат и импульсов приводит к весьма важным следствиям, так как только коммути­рующие операторы допускают общие собственные функции. Таким образом, невозможно указать функ­цию, которая была бы одновременно собственной функ­цией координаты и импульса. Из определения коорди­наты и импульса в квантовой механике следует, что не существует состояний, в которых эти две физические величины (т. е. координата q и импульс р) имели бы вполне определенное значение. Эту ситуацию, неизвест­ную в классической механике, выражают знаменитые соотношения неопределенности Гейзенберга. Мы можем измерять координату и импульс, но неопределенности в их значениях Dq и Dр связаны между собой неравен­ством Гейзенберга DqDр?h. Если неопределенность Dq в положении частицы сделать сколь угодной малой, то неопределенность Dр в ее импульсе обратится в бесконечность, и наоборот.
О соотношениях неопределенности Гейзенберга на­писано много, и мы сознательно переупрощаем их из­ложение. Нам хотелось лишь, чтобы читатель мог со­ставить хотя бы общее представление о новых пробле­мах, возникших в связи с использованием операторов.
287


Соотношение неопределенности Гейзенберга с необходи­мостью приводит к пересмотру понятия причинности. Мы можем определить координату с абсолютной точ­ностью, но в тот момент, когда это происходит, импульс принимает совершенно произвольное значение, положи­тельное или отрицательное. Это означает, что объект, положение которого нам удалось измерить абсолютно точно, тотчас же перемещается сколь угодно далеко. Локализация утрачивает смысл: понятия, составляющие самую основу классической механики, при переходе к квантовой механике претерпевают глубокие изменения.
Столь необычные следствия из квантовой механики были неприемлемы для многих физиков, в том числе и для Эйнштейна. Для доказательства их абсурдности было предложено и поставлено немало экспериментов. Предпринимались также попытки минимизировать кон­цептуальные изменения, вызванные квантовой механи­кой. В частности, высказывалась мысль о том, что ос­нования квантовой механики каким-то образом связаны с возмущениями, вносимыми в процессе наблюдения. Предполагалось, что система обладает внутренне впол­не определенными механическими параметрами — коор­динатами и импульсами, но в процессе измерения не­которые из этих параметров становятся неопределенны­ми, и неравенство Гейзенберга выражает лишь связь между возмущениями, вносимыми в систему при изме­рении. Тем самым классический реализм в основе сво­ей сохранялся бы в неприкосновенности, и мы лишь до­бавляли к нему позитивистское определение. Такая ин­терпретация слишком узка. Не квантовый процесс из­мерения вносит возмущения в значения координат и импульсов. Отнюдь нет! Постоянная Планка вынужда­ет нас к пересмотру традиционных представлений о ко­ординатах и импульсах. Такой вывод подтверждается недавними экспериментами, поставленными для про­верки гипотезы о скрытых переменных, выдвинутой для восстановления позиций классического детерминиз­ма8. Результаты экспериментов подтвердили правиль­ность поразительных следствий из квантовой механики.
Из того, что квантовая механика вынуждает нас говорить менее определенно о локализации объекта, следует, как часто подчеркивал Нильс Бор, необходи­мость отказа от классической физики. Для Бора по­стоянная Планка определяет взаимодействие между
288


квантовой системой и измерительным устройством как единым целым, включая взаимодействие в процессе из­мерения, в результате которого мы получаем возмож­ность приписывать измеряемым величинам численные значения. Все измерения, по Бору, подразумевают вы­бор измерительного устройства, выбор вопроса, на ко­торый требуется дать ответ. В этом смысле ответ, т. е. результат измерения, не открывает перед нами доступ к данной реальности. Нам приходится решать, какое измерение мы собираемся произвести над системой и какой вопрос наши эксперименты зададут ей. Следо­вательно, существует неустранимая множественность представлений системы, каждое из которых связано с определенным набором операторов.
В свою очередь это влечет за собой отход квантовой механики от классического понятия объективности, по­скольку с классической точки зрения существует един­ственное объективное описание. Оно является полным описанием системы «такой, как она есть», не завися­щим от выбора способа наблюдения.
Бор всегда подчеркивал новизну, нетрадиционность позитивного выбора, производимого при квантовомеханическим измерении. Физику необходимо выбрать свой язык, свой макроскопический измерительный прибор. Эту идею Бор сформулировал в виде так называемого принципа дополнительности9, который можно рассмат­ривать как обобщение соотношений неопределенности Гейзенберга. Мы можем измерить либо координаты, либо импульсы, но не координаты и импульсы одновре­менно. Физическое содержание системы не исчерпыва­ется каким-либо одним теоретическим языком, посред­ством которого можно было бы выразить переменные, способные принимать вполне определенные значения. Различные языки и точки зрения на систему могут ока­заться дополнительными. Все они связаны с одной и той же реальностью, но не сводятся к одному-единственному описанию. Неустранимая множественность то­чек зрения на одну и ту же реальность означает не­возможность существования божественной точки зре­ния, с которой открывается «вид» на всю реальность. Однако принцип дополнительности учит нас не только отказу от несбыточных надежд. Бор неоднократно го­ворил, что от размышлений над смыслом квантовой механики голова у него идет кругом, и с ним нельзя
289


не согласиться: у каждого из нас голова пойдет кру­гом, стоит лишь оторваться от привычной рутины здра­вого смысла.
Реальный урок, который мы можем извлечь из прин­ципа дополнительности (урок, важный и для других областей знания), состоит в констатации богатства и разнообразия реальности, превосходящей изобрази­тельные возможности любого отдельно взятого языка, любой отдельно взятой логической структуры. Каждый язык способен выразить лишь какую-то часть реально­сти. Например, ни одно направление в исполнитель­ском искусстве и музыкальной композиции от Баха до Шёнберга не исчерпывает всей музыки.
Мы стремились всячески подчеркнуть важность вве­дения операторов, ибо они позволили нам достаточно убедительно показать: реальность, изучаемая физикой, есть не что иное, как конструкция нашего разума, а не только данность. Необходимо проводить различие между абстрактным понятием координаты или импуль­са, представляемых математически операторами, и их численной реализацией, достигаемой посредством экс­перимента. Одна из причин противопоставления «двух культур», по-видимому, кроется в убеждении, что ли­тература соответствует некоторой концептуализации реальности, чему-то вымышленному, в то время как наука выражает объективную реальность. Квантовая механика учит нас, что ситуация не столь проста. Су­щественный элемент концептуализации подразумевает­ся на всех уровнях реальности.
5. Временная эволюция квантовых систем
Перейдем теперь к рассмотрению временной эволю­ции квантовых систем. В квантовой механике, как и в классической, основную роль играет гамильтониан. Как мы уже знаем, в квантовой механике гамильтониан-функция заменяется гамильтониан-оператором Hоп. Этот оператор энергии выполняет весьма важную мис­сию: с одной стороны, его собственные значения соот­ветствуют энергетическим уровням, с другой стороны, как и в классической механике, гамильтониан опреде­ляет временную эволюцию системы. В квантовой меха­нике аналогом канонических уравнений классической механики является уравнение Шредингера, которое
290


описывает временную эволюцию функции ?, задающей квантовое состояние системы как результат действия на волновую функцию ? гамильтониана Hоп (сущест­вуют и другие формулировки квантовой механики, но мы не будем приводить их здесь). Термин волновая функция выбран для того, чтобы еще раз подчеркнуть столь важный для всей квантовой физики дуализм вол­на — частица. Напомним, что ? — амплитуда волны, эволюционирующей в соответствии с зависящим от ти­па частицы уравнением, задаваемым гамильтонианом. Как и канонические уравнения классической физики, уравнение Шредингера описывает обратимую и детер­министическую эволюцию. Обратимое изменение волно­вой функции в квантовой механике соответствует обра­тимому движению вдоль траектории. Если волновая функция в данный момент времени известна, то урав­нение Шредингера позволяет вычислить значение, при­нимаемое ею в любой другой момент времени как в прошлом, так и в будущем. С этой точки зрения ситуа­ция в квантовой механике вполне аналогична ситуации в классической механике. Столь тесная аналогия объ­ясняется тем, что время не входит в соотношения неоп­ределенности в квантовой механике. Время в квантовой механике — число, а не оператор, тогда как в соотно­шения неопределенности Гейзенберга могут входить только операторы.
Квантовая механика использует лишь половину пе­ременных классической механики, поэтому классиче­ский детерминизм становится неприменимым, и в кван­товой физике центральное место занимают статистиче­ские соображения. В соприкосновение с ними мы всту­паем через интенсивность волны | ? |2 (квадрат ампли­туды).
Стандартная статистическая интерпретация кванто­вой механики сводится к следующему. Рассмотрим соб­ственные функции какого-нибудь оператора (например, оператора энергии Hоп) и соответствующие им собст­венные значения. В общем случае волновая функция ? не является собственной функцией оператора энергии, но представима в вмде суперпозиции собственных функ­ций. Вес («важность»), с которым каждая собственная функция входит в эту суперпозицию, позволяет вычис­лять вероятность появления соответствующего собст­венного значения.
291


Здесь мы снова сталкиваемся с весьма важным от­клонением от классической теории: предсказуемы толь­ко вероятности, а не отдельные события. Второй раз за историю физики вероятности были привлечены для объяснения некоторых фундаментальных свойств при­роды. Впервые вероятности использовал Больцман в своей интерпретации энтропии. Однако предложенная Больцманом интерпретация отнюдь не исключала субъ­ективную точку зрения, согласно которой «только» ог­раниченность наших знаний перед лицом сложности си­стемы служит препятствием на пути к полному описа­нию. (Как мы увидим в дальнейшем, это заблуждение ныне вполне преодолимо.) Как и во времена Больцмана, использование вероятностей в квантовой механике оказалось неприемлемым для многих физиков (в том числе и для Эйнштейна), стремившихся к «полному» детерминистическому описанию. Как и в случае необра­тимости, ссылка на неполноту и ограниченность нашего знания, казалось, позволяла найти выход из создавше­гося затруднения: ответственность за статистический характер квантовомеханического описания так же, как некогда за необратимость, возлагалась на нашу неспо­собность охватить все детали поведения сложной си­стемы.
И здесь мы снова подошли к проблеме скрытых пе­ременных. Однако, как уже говорилось, из-за отсутст­вия сколько-нибудь убедительного экспериментального подтверждения от идеи введения скрытых переменных пришлось отказаться. Фундаментальная роль вероятно­стей в квантовой механике постепенно получила всеоб­щее признание.
Существует лишь один случай, когда уравнение Шредингера приводит к детерминистическому предска­занию: так бывает, когда волновая функция ?, представимая, вообще говоря, в виде суперпозиции собствен­ных функций, сводится к одной-единственной функции. В частности, при идеальном процессе измерения систе­ма может быть приготовлена таким образом, чтобы ре­зультат данного измерения был предсказуем. Тогда си­стему будет описывать единственная собственная функ­ция и поведение системы станет достоверно предсказуе­мым: она будет находиться в собственном состоянии, соответствующем результату измерения.
Процесс измерения в квантовой механике имеет
292


особое значение, и поныне вызывающее значительный интерес. Предположим, что мы начали с волновой функ­ции, которая является в действительности суперпозици­ей собственных функций. В результате процесса изме­рения этот единственный набор систем, представимых одной и той же волновой функцией, заменяется набо­ром волновых функций, соответствующих различным собственным значениям, которые могут быть измерены. На языке квантовой механики это означает, что изме­рение переводит одну волновую функцию («чистое» со­стояние) в смесь («смешанное» состояние).
Бор и Розенфельд10 неоднократно отмечали, что каждое измерение содержит элемент необратимости, т. о. апеллировали к необратимым явлениям (таким, как химические процессы), соответствующим записи, или регистрации, данных. Запись сопровождается уси­лением, в результате которого микроскопическое явле­ние производит эффект на макроскопическом уровне, т. е. на том самом уровне, на котором мы считываем показания измерительных приборов. Таким образом, измерение предполагает необратимость.
В определенном смысле это утверждение было спра­ведливо и в классической физике. Но проблема необ­ратимого характера измерения в квантовой механике приобрела большую остроту, поскольку затрагивает вопросы на уровне формулировки квантовой механики.
Обычный подход к этой проблеме сводится к ут­верждению о том, что у квантовой механики нет иного выбора, как постулировать сосуществование двух пер­вичных и не сводимых друг к другу процессов: обрати­мой и непрерывной эволюции, описываемой уравнением Шредингера, и необратимой и дискретной редукции волновой функции к одной из входящих в нее собствен­ных функций в момент измерения. Возникает парадокс: обратимое уравнение Шредингера может быть провере­но лишь с помощью необратимых измерений, которые это уравнение, по определению, не может описывать. Следовательно, квантовая механика не может быть замкнутой теорией.
Столкнувшись со столь большими трудностями, не­которые физики в очередной раз попытались искать убежище в субъективизме, утверждая, что мы сами (наше измерение и даже, по мнению некоторых, наш разум) определяем эволюцию системы, нарушающую
293


естественную «объективную» обратимость11. Другие физики пришли к выводу, что уравнение Шредингера «не полно» и в него необходимо ввести новые члены, которые бы учитывали необратимость измерения. Пред­лагались и менее правдоподобные решения проблемы, такие, как гипотеза многих миров Эверетта (см. книгу д'Эспаньи, указанную в прим. 8). Однако для нас со­существование в квантовой механике обратимости и необратимости свидетельствует о том, что классическая идеализация, описывающая мир как замкнутую си­стему, на микроскопическом уровне невозможна. Имен­но это имел в виду Бор, когда заметил, что язык, ис­пользуемый нами для описания квантовой системы, не­отделим от макроскопических понятий, описывающих функционирование наших измерительных приборов. Уравнение Шредингера описывает не какой-то особый уровень реальности. В его основе лежит скорее пред­положение о существовании макроскопического мира, которому принадлежим мы сами.
Таким образом, проблема измерения в квантовой ме­ханике является аспектом одной из проблем, которым посвящена наша книга, — взаимосвязи между простым миром, описываемым гамильтоновыми траекториями и уравнением Шредингера, и сложным макроскопическим миром необратимых процессов.
В гл. 9 мы увидим, что необратимость входит в классическую физику, когда идеализация, в основе ко­торой заложено понятие траектории, становится неадек­ватной. Проблема измерения в квантовой механике до­пускает решение того же типа12. Действительно, волно­вая функция представляет максимум того, что нам из­вестно о квантовой системе. Как в классической физи­ке, объект этого максимального знания удовлетворяет обратимому эволюционному уравнению. В обоих случа­ях необратимость возникает, когда идеальный объект, соответствующий максимальному знанию, подлежит за­мене менее идеализированными понятиями. Но когда это происходит? Наступление такого момента зависит от физических механизмов необратимости, к которым мы еще вернемся в гл. 9. Но предварительно нам необ­ходимо резюмировать некоторые другие особенности возрождения современной науки.
294


6. Неравновесная Вселенная
Две научные революции, описанные в этой главе, начались с попыток включить в общую схему классиче­ской механики универсальные постоянные с и h. Это по­влекло за собой далеко идущие последствия, частично описанные выше. Вместе с том нельзя не отметить, что другие аспекты теории относительности и квантовой ме­ханики свидетельствуют об их принадлежности к миро­воззрению, лежащему в основе ньютоновской механики. В особенности это относится к роли и значению времени. Коль скоро в квантовой механике волновая функ­ция известна в нулевой момент времени, ее значение ? (t) определено в любой момент времени t, как в прошлом, так и в будущем. Аналогичным образом в теории относительности статический, геометрический характер времени часто подчеркивается использовани­ем четырехмерных обозначений (трех пространственных измерений и одного временного). Как точно заметил Минковский в 1908 г., «отныне пространство само по себе и время само по себе должны обратиться в фик­ции и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность»13.
Но за последние пятьдесят лет ситуация резко из­менилась. Квантовая теория стала основным средством при рассмотрении элементарных частиц и их превраще­ний. Описание фантастического многообразия элемен­тарных частиц, обнаруженных за последние годы, уве­ло бы нас далеко в сторону от нашей основной темы.
Напомним лишь, что, опираясь на квантовую меха­нику и теорию относительности, Дирак предсказал су­ществование античастиц: каждой частице с массой m и зарядом е соответствует античастица с массой m и зарядом противоположного знака. Предвидение Дирака подтвердилось: к настоящему времени на ускорителях высоких энергий получены позитроны (античастицы электронов), антипротоны. Антиматерия стала обычным предметом исследования в физике элементарных час­тиц. При столкновении частицы и античастицы анни­гилируют с выделением фотонов — безмассовых частиц света. Уравнения квантовой теории симметричны отно­сительно замены частицы — античастицы или, точнее, относительно более слабого требования, известного под названием СРТ-симметрии. Несмотря на СРТ-симмет-
295


рию, между частицами и античастицами в окружающем нас мире существует замечательная дисимметрия. Мы состоим из частиц (электронов, протонов). Что же ка­сается античастиц, то они остаются своего рода лабора­торными «раритетами». Если бы частицы и античасти­цы сосуществовали в равных количествах, то все веще­ство аннигилировало бы. Имеются веские основания полагать, что в нашей Галактике антиматерия не су­ществует, но не исключено, что она существует в дру­гих галактиках. Можно представить себе, что во Все­ленной действует некий механизм, разделяющий части­цы и античастицы и «прячущий» последние где-то да­леко от нас. Однако более вероятно, что мы живем в несимметричной Вселенной, в которой материя преоб­ладает над антиматерией.
Как такое возможно? Модель, объясняющая наблю­даемую ситуацию, была предложена А. Д. Сахаровым в 1966 г.14 В настоящее время проблема отсутствия симметрии в распределении материи и антиматерии уси­ленно разрабатывается. Существенным элементом со­временного подхода является утверждение о том, что в момент образования материи Вселенная должна была находиться в неравновесных условиях, поскольку в со­стоянии равновесия из закона действия масс, о котором шла речь в гл. 5, следовало бы количественное равен­ство материи и антиматерии.
В этой связи мы хотели бы подчеркнуть, что нерав­новесность обретает ныне новое, космологическое изме­рение. Без неравновесности и связанных с ней необра­тимых процессов Вселенная имела бы совершенно иную структуру. Материя нигде не встречалась бы в замет­ных количествах. Повсюду наблюдались бы лишь флуктуации, приводящие к локальным избыткам то материи, то антиматерии.
Из механистической теории, модифицированной с учетом существования универсальной постоянной h, квантовая теория превратилась в теорию взаимопре­вращений элементарных частиц. В ходе предпринятых в последнее время попыток построить единую теорию элементарных частиц высказывалась гипотеза о том, что все элементарные частицы материи, включая про­тон, нестабильны (правда, время жизни протона дости­гает коллосальной величины — 1030 лет). Механика, наука о движении, вместо того чтобы соответствовать
296


фундаментальному уровню описания, низводится до ро­ли приближения, годного лишь вследствие огромного времени жизни таких элементарных частиц, как протоны.
Аналогичным трансформациям подверглась и тео­рия относительности. Как мы уже упоминали, теория относительности начинала как геометрическая теория, сильно акцентировавшая свой безвременной характер. Ныне теория относительности является основным инст­рументом исследования тепловой истории Вселенной, позволяющим раскрыть те механизмы, которые привели к наблюдаемой ныне структуре Вселенной. Тем самым обрела новое звучание проблема времени, необратимо­сти. Из области инженерии, прикладной химии, где она была сформулирована впервые, проблема необратимо­сти распространилась на всю физику — от теории эле­ментарных частиц до космологии.
Если к оценке квантовой механики подходить, имея в виду главную тему нашей книги, то основной заслу­гой ее следует считать введение вероятности в физику микромира. Вероятность, о которой идет речь, не следу­ет путать со стохастическими процессами, описываю­щими химические реакции (о них мы рассказали в гл. 5). В квантовой механике волновая функция эво­люционирует во времени детерминистическим образом, за исключением тех моментов, когда над квантовой системой производится измерение.
Мы видим, что за пятьдесят лет, прошедших со вре­мени создания квантовой механики, исследования не­равновесных процессов показали, что флуктуация, сто­хастические элементы важны даже в микроскопическом масштабе. На страницах нашей книги мы уже неодно­кратно говорили о том, что продолжающееся ныне кон­цептуальное перевооружение физики ведет от детерми­нистических обратимых процессов к процессам стоха­стическим и необратимым. Мы считаем, что в этом процессе квантовая механика занимает своего рода про­межуточную позицию: она вводит вероятность, но не необратимость. Мы ожидаем (и в гл. 9 будут приведе­ны некоторые основания для этого), что следующим шагом будет введение фундаментальной необратимости на микроскопическом уровне. В отличие от попыток восстановить классическую ортодоксальность с по­мощью скрытых переменных мы считаем, что необходи­мо еще дальше отойти от детерминистических описаний и принять статистическое, стохастическое описание.


297


Глава 8. СТОЛКНОВЕНИЕ ТЕОРИЙ
1. Вероятность и необратимость
Мы увидим, что почти всюду фи­зик очистил свою науку от использо­вания одностороннего времени, как бы сознавая, что эта идея привносит антропоморфный элемент, чуждый идеалам физики. Тем не менее в не­скольких важных случаях односто­роннее время и односторонняя при­чинность возникали, словно по вол­шебству, но, как будет показано, всякий раз в поддержку какой-ни­будь ложной теории.
Г. Н. Льюис1
Закон монотонного возрастания энтропии — второе начало термоди­намики — занимает, как мне кажется, высшее положение среди законов при­роды. Если кто-нибудь заметит вам, что ваша любимая теория Вселенной не согласуется с уравнениями Мак­свелла, то тем хуже для уравнений Максвелла. Если окажется, что ваша теория противоречит наблюдениям,— ну что же, и экспериментаторам слу­чается ошибаться. Но если окажется, что ваша теория противоречит вто­рому началу термодинамики, то у вас не останется ни малейшей надежды: ваша теория обречена на бесславный конец.
А. С. Эддингтон2
Предложенная Клаузиусом формулировка второго начала термодинамики сделала очевидным конфликт между термодинамикой и динамикой. Вряд ли найдется в физике другой такой вопрос, который бы обсуждался чаще и активнее, чем соотношение между термодина­микой и динамикой. Даже теперь, через сто пятьдесят лет после Клаузиуса, этот вопрос продолжает вызывать сильные эмоции. Никто не остается нейтральным в кон-
298


фликте, затрагивающем самый смысл реальности и времени. Следует ли нам отказаться от динамики, ма­тери современного естествознания, в пользу какого-нибудь варианта термодинамики? «Энергетисты», пользовавшиеся большим влиянием к конце XIX в., считали отказ oт динамики необходимым. Нельзя ли как-нибудь «спасти» динамику, сохранить второе нача­ло и вместе с тем не нарушить величественное здание, воздвигнутое Ньютоном и его последователями? Какую роль может играть энтропия в мире, описываемом ди­намикой?
Мы уже упоминали об ответе на этот вопрос, кото­рый был дан Больцманом. Знаменитое соотношение Больцмана S KlnP связывает энтропию и вероят­ность: энтропия возрастает потому, что возрастает ве­роятность. Сразу же подчеркнем, что в этом плане вто­рое начало имело бы огромное практическое значение, но не было бы столь фундаментальным. В своей пре­восходной книге «Этот правый, левый мир» Мартин Гарднер пишет: «Некоторые явления идут в одну сторо­ну не потому, что не могут идти в другую, а потому, что их протекание в обратом направлении весьма малове­роятно»3. Усовершенствуя наши возможности измерять все менее и менее вероятные события, мы могли бы достичь такого положения, когда второе начало играло бы сколь угодно малую роль. Такой точки зрения при­держиваются некоторые современные физики. Но Макс Планк считал иначе:
«Нелепо было бы предполагать, что справедливость второго начала каким бы ни было образом зависит от большего или меньшего совершенства физиков и хими­ков в наблюдательном или экспериментальном искусст­ве. Содержанию второго начала нет дела до экспери­ментирования, оно гласит in nuce (в самом главном): «В природе существует величина, которая при всех из­менениях, происходящих в природе, изменяется в од­ном и том же направлении». Выраженная в таком об­щем виде, эта теорема или верна, или не верна; но она остается тем, что она есть, независимо от того, сущест­вуют ли на Земле мыслящие и измеряющие существа и если они существуют, то умеют ли они контролировать подробности физических или химических процессов на один, два или сто десятичных знаков точнее, чем в на­стоящее время. Пределы для этого начала, если только
299


они действительно существуют, необходимо должны на­ходиться в той же области, в которой находится и его содержание, — в наблюдаемой природе, а не в наблю­дающих людях. Обстоятельства нисколько не изме­няются от того, что для вывода начала мы пользуемся
Рис. 23. Модель урн Эренфестов. N шаров распределены между двумя урнами А и В. Через равные промежутки времени (которые можно принять за единицу) из урны, выбираемой наугад, извлекает­ся шар и кладется в другую урну. В момент времени п в урне А на­ходится k шаров, а в урне В остальные N—k шаров.
человеческим опытом; для нас это вообще единствен­ный путь для исследования законов природы»4.
Взгляды Планка не получили особого распростра­нения среди его современников. Как уже отмечалось, большинство физиков склонны были считать второе на­чало следствием приближенного описания, вторжения субъективных взглядов в точный мир физики. Эту точ­ку зрения отражает, например, знаменитое высказыва­ние Борна: «Необратимость есть результат вхождения элемента нашего незнания в основные законы физики»5.
В настоящей главе мы намереваемся осветить неко-
300


торые основные этапы в развитии интерпретации вто­рого начала. Прежде всего необходимо понять, почему эта проблема оказалась столь трудной. В гл. 9 мы из­ложим новый подход, из которого, как нам хотелось бы надеяться, читателю станут ясны и принципиальная новизна, и объективное значение второго начала. Вы­вод, к которому мы придем, совпадает с точкой зре­ния Планка. Мы покажем, что второе начало, отнюдь
Рис. 24. Приближение к равновесию (k=N/2) в модели урн Эренфестов (ход кривой изображен схематически).
не разрушая величественное здание динамики, допол­няет его существенно новым элементом.
Прежде всего необходимо пояснить установленную Больцманом связь между вероятностью и энтропией. Воспользуемся для этого моделью урн, предложенной П. и Т. Эренфестами6. Рассмотрим N предметов (на­пример, шаров), распределенных между двумя контей­нерами (урнами) А и В. Предположим, что через оди­наковые промежутки времени (например, через секун­ду) мы извлекаем наугад шар либо из урны А, либо из урны В и перекладываем его в другую урну. Пусть че­рез п шагов в урне А находится k шаров, а в урне В — остальные N—k шаров. Тогда на (n+1)-ом шаге в ур­не A может оказаться либо k—1, либо k+1 шаров и вероятность перехода равна k/N для k®k—1 и 1—k/N для k®k+1. Предположим, что мы продолжаем из­влекать шары наугад из урн и перекладывать их в дру­гую урну. Мы ожидаем, что в результате перекладыва­ния шаров установится наиболее вероятное их распре­деление по урнам в смысле Больцмана. Если число ша-
301


ров N достаточно велико, то шары с наибольшей ве­роятностью распределятся между урнами А и В поров­ну: в каждой урне по N/2 шаров. В этом нетрудно убе­диться, проделав соответствующие вычисления или вы­полнив экспериментальную проверку.
Модель Эренфестов — простой пример марковского процесса (или цепи Маркова), названного так в честь выдающегося русского математика академика А. А. Мар-
Рис. 25. Временная эволюция H-функции (определенной в тек­сте), соответствующая модели Эренфестов. H монотонно убывает и при t®? стремится к нулю.
кова, одним из первых исследовавшего такие процессы (Пуанкаре был вторым). Кратко отличительную осо­бенность марковских процессов можно сформулировать следующим образом: вероятности переходов однознач­но определены и не зависят от предыстории системы. Цепи Маркова обладают замечательным свойством: их можно описать с помощью энтропии. Пусть P(k) — вероятность найти k шаров в урне A. Вероятности Р(К) можно сопоставить H-функцию, свойства которой в точ­ности совпадают со свойствами энтропии, рассмотрен­ной нами в гл. 4. На рис. 25 показано, как H-функция изменяется во времени. Мы видим, что она изменяется монотонно, как и энтропия изолированной системы.
302


Правда, H-функция убывает, а энтропия S возрастает, но так происходит «по определению»: H играет роль — S.
Математический смысл H-функции заслуживает то­го, чтобы рассмотреть его более подробно: H-функция служит мерой отклонения вероятностей в данный мо­мент времени от вероятностей в равновесном состоянии (когда число шаров в каждой урне равно N/2). Рас­суждения, используемые в модели урн Эренфестов, до­пускают обобщение. Рассмотрим разбиение квадрата, т. е. разделим квадрат на некоторое число непересе­кающихся областей. Нас будет интересовать распреде­ление частиц по квадрату. Пусть Р(k, t) — вероятность найти частицу в области k (в момент времени t), а Рравн(k) — вероятность найти частицу в области k в равновесных условиях. Предполагается, что, как и в модели урн, вероятности переходов существуют и одно­значно определены. По определению, H-функция зада­ется выражением
Заметим, что в правую часть входит отношение P(k,t)/Pравн(k). Предположим, что мы разделили квад­рат на восемь непересекающихся клеток и Рравн(k)=1/8. Пусть в момент времени t все частицы находят­ся в первой клетке. Тогда P(1,t)=1, a во всех осталь­ных клетках вероятности P(k,t) равны нулю. Следова­тельно, H=ln(1/(1/8))=ln8. Со временем частицы распределяются по клеткам равномерно, и P(k,t)=Pравн(k)=1/8. H-функция при этом обращается в нуль. Можно показать, что H-функция убывает моно­тонно, как это изображено на рис. 25. (Доказательство этого утверждения приводится во всех учебниках по теории стохастических процессов.) Именно поэтому H-функция играет роль «негэнтропии» — S. Монотон­ное убывание H-функции имеет очень простой смысл: оно отражает и служит мерой прогрессирующего вы­равнивания неоднородностей в системе. Начальная ин­формация утрачивается, и система эволюционирует от «порядка» к «беспорядку».
Заметим, что марковский процесс включает в себя флуктуации. Это отчетливо видно на рис. 24. Подож­дав достаточно долго, мы могли бы вернуться в исход-
303


ное состояние. Следует, однако, подчеркнуть, что речь идет о средних: монотонно убывающая Hм-функция может быть выражена через распределения вероятно­стей, а не через отдельные события. Именно распреде­ление вероятностей эволюционирует необратимо (в мо­дели Эренфестов функция распределения равномерно стремится к биномиальному распределению). Сле­довательно, на уровне функций распределения цепи Маркова приводят к однонаправленности во време­ни.
Стрела времени характеризует различие между це­пями Маркова и временной эволюцией в квантовой ме­ханике, в которой волновая функция (самым непосред­ственным образом связанная с вероятностями) эволю­ционирует во времени обратимо. Это также один из примеров тесной взаимосвязи между стохастическими процессами, например цепями Маркова, и необрати­мостью. Однако возрастание энтропии (или убывание H-функции) основывается не на стреле времени, зало­женной в законах природы, а на нашем решении вос­пользоваться знанием, которым мы располагаем в на­стоящем, для предсказания поведения в будущем (но не в прошлом). Вот что говорит об этом в присущей ему лапидарной манере Гиббс:
«Но хотя по отношению к математическим построе­ниям различие между предшествующими и последую­щими событиями и может являться несущественным, по отношению к событиям реального мира дело обстоит совершенно иначе. В тех случаях, когда мы использу­ем ансамбли для вычисления вероятностей событий, происходящих в реальном мире, нельзя забывать о том, что если вероятности последующих событий довольно часто можно определить, зная вероятности предшеству­ющих, то лишь в весьма редких случаях удается определить вероятности предшествующих событий, зная ве­роятности последующих, ибо лишь чрезвычайно редко можно обоснованно исключить из рассмотрения апри­орную вероятность предшествующих событий»7.
Асимметрия между прошлым и будущим — важный вопрос, бывший и продолжающий оставаться предме­том оживленного обсуждения8. Теория вероятностей ориентирована во времени. Предсказание будущего от­лично от восстановления хода событий задним числом. Если бы этим отличием все и ограничилось, то нам не
304


оставалось бы ничего другого, как принять субъектив­ную интерпретацию необратимости, так как различие между прошлым и будущим оказалось бы зависимым только от нас. Иначе говоря, при субъективной интер­претации необратимости (к тому же подкрепляемой сомнительной аналогией с теорией информации) «от­ветственность» за асимметрию во времени, характери­зующую развитие системы, возлагается на наблюдате­ля. А так как наблюдатель не может «одним взглядом» определить положения и скорости всех частиц, образу­ющих сложную систему, ему не известно мгновенное состояние системы, содержащее в себе ее прошлое и бу­дущее; он не в состоянии постичь обратимый закон, ко­торый позволил бы предсказать развитие системы от одного момента времени к следующему. Наблюдатель не может также производить над системой такие мани­пуляции, какие производил максвелловский демон, спо­собный разделять быстро и медленно движущиеся ча­стицы и вынуждать систему к антитермодинамической эволюции от менее к более неоднородному распределе­нию температуры9.
Термодинамика по-прежнему остается наукой о сложных системах, но с указанной точки зрения един­ственной специфической особенностью сложных систем является то, что наше знание о них ограниченно и не­определенность со временем возрастает. Вместо того чтобы распознать в необратимости связующее звено между природой и наблюдателем, ученый вынужден признать, что природа лишь отражает его собственное незнание. Природа безответна. Необратимость, отнюдь не способствуя укреплению наших позиций в физиче­ском мире, представляет собой не более чем отзвук че­ловеческой деятельности и ее пределов.
Против подобной точки зрения сразу же можно воз­разить. Приведенные выше интерпретации исходят из того, что термодинамика должна быть столь же уни­версальной, как и наше незнание. Но тогда должны существовать только необратимые процессы. Именно это и является камнем преткновения всех универсаль­ных интерпретаций энтропии, уделяющих основное вни­мание нашему незнанию начальных (или граничных) условий. Необратимость — не универсальное свойство. Чтобы установить связь между динамикой и термоди­намикой, необходим физический критерий, который по-
305


зволил бы нам различать обратимые и необратимые процессы.
К этому вопросу мы вернемся в гл. 9. А пока обра­тимся снова к истории науки и к пионерским работам Больцмана.
2. Больцмановский прорыв
Свои основные результаты Больцман получил в 1872 г., за тридцать лет до того, как были открыты це­пи Маркова. Больцман намеревался дать «механиче­скую» интерпретацию энтропии. Иначе говоря, если в цепях Маркова вероятности перехода заданы извне (как в модели Эренфестов), их в действительности не­обходимо связать с динамическим поведением системы. Эта проблема настолько захватила Больцмана, что он посвятил ей большую часть своей научной жизни. В его «Статьях и речах» есть такие строки:
«Если вы меня спросите относительно моего глу­бочайшего убеждения, назовут ли нынешний век же­лезным веком или веком пара и электричества, я от­вечу не задумываясь, что наш век будет называться веком... Дарвина»10.
Идея эволюции неотразимо влекла к себе Больц­мана. Его мечтой было стать Дарвином эволюции ма­терии.
Первый шаг на пути к механистической интерпрета­ции энтропии состоял во введении в физическое описа­ние некогда отброшенного представления о столкнове­нии атомов и молекул и тем самым в создании базы для статистического описания. Этот шаг был сделан Клаузиусом и Максвеллом. Так как столкновения — явления дискретные, их можно сосчитать и оценить среднюю частоту. Мы можем также классифицировать столкновения, например отнести к одному классу столк­новения, в результате которых рождается частица с заданной скоростью v, а к другому — столкновения, в результате которых частица со скоростью v исчезает, превращаясь в частицы с другими скоростями (т. е. разделить столкновения на прямые и обратные)11.
Максвелла интересовало, можно ли указать такое состояние газа, в котором столкновения, непрестанно изменяющие скорости молекул, не сказываются более на эволюции распределения скоростей, т. е. на среднем
306


числе молекул, движущихся с любой из скоростей. При каком распределении скоростей последствия различных столкновений в целом по ансамблю взаимно компенси­руются?
Максвелл показал, что такое особое состояние (со­стояние термодинамического равновесия) наступает, когда распределение скоростей принимает хорошо из­вестную форму колоколообразной, или гауссовой, кри­вой — той самой, которую основатель «социальной фи­зики» Кетле считал подлинным выражением случайности. Теория Максвелла позволяет весьма просто интер­претировать основные законы поведения газов. Повы­шение температуры соответствует увеличению средней скорости молекул и тем самым энергии, связанной с их движением. Эксперименты с высокой точностью под­твердили распределение Максвелла. Оно и поныне слу­жит основой решения многочисленных задач в физиче­ской химии (например, при вычислении числа столкно­вений в реакционной смеси).
Больцман, однако, вознамерился пойти дальше. Ему хотелось описывать не только состояние равновесия, но и эволюцию к равновесию, т. е. эволюцию к максвелловскому распределению. Он решил выявить молеку­лярный механизм, соответствующий возрастанию энт­ропии, механизм, вынуждающий систему стремиться к переходу из произвольного распределения скоростей к равновесному.
Характерно, что Больцман подошел к решению про­блемы физической эволюции не на уровне индивидуаль­ных траекторий, а на уровне ансамбля молекул. Ру­ководствуясь интуитивными соображениями, Больцман избрал подход, адекватный замыслу повторить в физике то, что Дарвин свершил в биологии, убедительно до­казав: движущая сила биологической эволюции — есте­ственный отбор — может быть определена не для от­дельной особи, а лишь для популяции. Следовательно, естественный отбор — понятие статистическое.
Полученный Больцманом результат допускает срав­нительно простое описание. Эволюция функции распре­деления f(v,t) скоростей v в некоторой области прост­ранства в момент времени t представима в виде суммы двух эффектов: число частиц, имеющих в момент вре­мени t скорость v, изменяется в результате как свобод­ного движения частиц, так и столкновений между ни-
307


ми. Изменение числа частиц вследствие свободного движения нетрудно вычислить с помощью классической динамики. Оригинальность метода Больцмана связана с оценкой второго эффекта: изменения числа частиц за счет столкновений. Чтобы избежать трудностей, неиз­бежно возникающих при прослеживании движения (не только свободного, но и при взаимодействии) по траек­ториям, Больцман воспользовался понятиями, аналогич­ными тем, которые были описаны в гл. 5 (при рассмот­рении химических реакций), и занялся вычислением среднего числа столкновений, приводящих к рождению или уничтожению молекулы со скоростью v.
Здесь снова мы имеем два процесса, действие кото­рых противоположно: прямые и обратные столкновения. В результате прямого столкновения молекул со ско­ростями v' и v" возникает («рождается») молекула со скоростью v. В результате обратного столкновения мо­лекулы со скоростью v с молекулой со скоростью v'" скорость первой изменяется — молекула со скоростью v исчезает («уничтожается»). Как и в случае химиче­ских реакций (см. гл. 5, разд. 1), частота столкновений считается пропорциональной произведению числа моле­кул, участвующих в столкновении. (Разумеется, исто­рически метод Больцмана (1872) предшествовал мето­ду химической кинетики.)
Результаты, полученные Больцманом, совершенно аналогичны результатам теории цепей Маркова. Мы снова вводим функцию HHH. На этот раз она относится к распределению скоростей f. Она представима в виде H= o flnfdv. Как и в предыдущем случае, H-функция может только убывать со временем до тех пор, пока не будет достигнуто равновесие и распределение скорос­тей не перейдет в распределение Максвелла.
В последние годы многочисленные проверки моно­тонного убывания H-функции были проведены с по­мощью моделирования на ЭВМ. Все они подтвердили предсказание Больцмана. И поныне кинетическое урав­нение Больцмана играет важную роль в физике газов. Оно позволяет вычислять коэффициенты переноса (на­пример, коэффициенты теплопроводности и диффузии) в хорошем соответствии с экспериментальными данны­ми.
Но особенно велико достижение Больцмана с кон­цептуальной точки зрения: различие между обратимы-
308


ми и необратимыми процессами, лежащее, как мы ви­дели, в основе второго начала термодинамики, Больц­ман низвел с макроскопического на микроскопический уровень. Изменение распределения скоростей из-за сво­бодного движения молекул соответствует обратимой ча­сти, а вклад, вносимый в изменение распределения столкновениями, — необратимой части. Именно в этом и был, с точки зрения Больцмана, ключ к микроскопи­ческой интерпретации энтропии. Принцип молекулярной эволюции сформулирован! Легко понять, что это от­крытие обладало неотразимой привлекательностью для физиков, разделявших идеи Больцмана, в том числе Планка, Эйнштейна и Шредингера12.
Больцмановский прорыв стал решающим этапом в формировании нового научного направления — физики процессов. Временную эволюцию в уравнении Больц­мана больше не определяет гамильтониан, зависящий от типа сил. В больцмановском подходе движение по­рождают функции, связанные с процессом, например сечение рассеяния. Можно ли считать, что проблема необратимости решена и что теории Больцмана уда­лось свести энтропию к динамике? Ответ однозначен: нет, желанная цель не достигнута. Впрочем, вопрос этот столь важен, что заслуживает более подробного рассмотрения.
3. Критика больцмановской интерпретации
Возражения против теории Больцмана появились сразу же после выхода его основной работы в 1872 г. Действительно ли Больцману удалось «вывести» необ­ратимость из динамики? Каким образом обратимые за­коны движения по траекториям могут порождать не­обратимую эволюцию? Не противоречит ли кинетиче­ское уравнение Больцмана динамике? Нетрудно видеть, что симметрия уравнения Больцмана не согласуется с симметрией классической механики.
Мы уже видели, что в классической динамике обра­щение скорости (v®—v) приводит к такому же ре­зультату, как и обращение времени (t®—t). Это — основная симметрия классической динамики, и можно было бы надеяться, что кинетическое уравнение Больцмана, описывающее, как изменяется во времени функ­ция распределения, обладает такой же симметрией. Но
309


в действительности все обстоит иначе: вычисленный Больцманом столкновительный член инвариантен отно­сительно обращения скорости. Эта несколько неожи­данная инвариантность имеет простой физический смысл: в больцмановской картине нет никакого раз­личия между столкновением, обращенным в будущее, и столкновением, обращенным в прошлое. Именно на этой идее основано возражение Пуанкаре против вывода уравнения Больцмана, предложенного самим Больцма­ном. Правильные вычисления не могут приводить к за­ключениям, противоречащим исходным допущени­ям13, 14. Но, как мы видели, симметрия кинетического уравнения, выведенного Больцманом для функции рас­пределения, противоречит симметрии классической ди­намики. Следовательно, заключает Пуанкаре, Больцман не сумел «вывести» энтропию из динамики. Где-то в своих рассуждениях он ввел нечто новое, чуждое ди­намике. Следовательно, выведенное Больцманом урав­нение в лучшем случае может рассматриваться лишь как феноменологическая модель, полезная, но не име­ющая прямого отношения к динамике. Таково было также возражение Цермело (1896), выдвинутое против теории Больцмана.
С другой стороны, возражение Лошмидта (1876) позволило установить границы применимости кинетиче­ской модели Больцмана. Лошмидт заметил, что модель Больцмана перестает выполняться после обращения скоростей, соответствующего преобразованию v®—v.
Поясним суть возражения Лошмидта с помощью мысленного эксперимента. Предположим, что газ на­ходится сначала в неравновесном состоянии и эволю­ционирует до момента времени t0. В момент времени t0 обратим все скорости. Тогда система вернется в началь­ное состояние. Следовательно, больцмановская энтро­пия при t=0 и t=2t0 должна быть одинакова.
Число таких мысленных экспериментов легко мож­но было бы приумножить. Предположим, что при t=0 у нас имеется смесь водорода и кислорода. Через ка­кое-то время образуется вода. Если обратить все ско­рости, то смесь вернется в исходное состояние: вода ис­чезнет, останутся только водород и кислород.
Интересно, что в лаборатории или в численном мо­делировании обращение скоростей — вполне выполни­мая операция. Например, на рис. 26 и 27 H-функция
310


Больцмана вычислена для двухмерных твердых сфер (дисков). В начальный момент времени диски располагаются в узлах квадратной решетки с изотропным рас­пределением cкоростей. Результаты вычислений совпа­дают с предсказаниями Больцмана.
Рис. 26. Эволюция H со временем для N «твердых шаров» (численное моделирование): a) N=100, b) N=484, с) N=1225.
Если через пятьдесят или сто столкновений (в раз­реженном газе это соответствует 10-6с) обратить ско­рости, то получается новый ансамбль15. После обраще­ния скоростей H-функция Больцмана уже не убывает, а возрастает.
Аналогичная ситуация возникает при определенных условиях в реальных экспериментах со спиновым эхом и эхом в плазме: на ограниченных интервалах времени наблюдается «антитермодинамическое», в смысле Больцмана, поведение системы.
Важно отметить, что эксперимент по обращению скоростей тем труднее, чем позже происходит обраще­ние скоростей (т. е. чем больше время t0).
Восстановить свое прошлое газ может лишь в том случае, если он «помнит» все, что с ним произошло в интервале времени от t=0 до t=t0. Для этого необхо­димо какое-то «хранилище» информации. В роли тако-
311


го хранилища, или памяти, выступают корреляции меж­ду частицами. К вопросу о корреляциях мы вернемся в гл. 9. Пока же заметим, что именно это соотношение между корреляциями и столкновениями было недоста­ющим звеном в рассуждениях Больцмана. Когда Лошмидт в полемике с Больцманом указал на это обстоя­
Рис. 27. Эволюция H при обращении скоростей после 50 и 100 соударений. Численное моделирование для 100 «твердых шаров».
тельство, Больцман вынужден был признать правоту своего оппонента: обратные столкновения «ликвидиру­ют последствия» прямых столкновений и система долж­на возвращаться в начальное состояние. Следователь­но, H-функция должна возрастать от конечного значе­ния к начальному. Таким образом, обращение скоро­стей требует проведения различия между ситуациями, к которым рассуждения Больцмана применимы, и си­туациями, в которых те же рассуждения неверны.
После того как эта проблема была поставлена (1894), выяснить природу ограничения оказалось. совсем не трудно16,17. Применимость статистического подхода Больцмана зависит от предположения о том, что перед столкновением молекулы ведут себя незави-
312


симо друг от друга. Это предположение относительно начального состояния газа известно под названием ги­потезы молекулярного хаоса. Начальное состояние, воз­никающее в результате обращения скоростей, не удов­летворяет гипотезе молекулярного хаоса. Если систему заставить эволюционировать «вспять во времени», то создается новая ситуация, аномальная в том смысле, что некоторым молекулам, сколь бы далеко друг от друга они ни находились в момент обращения скорос­тей, предопределено встретиться в заранее установлен­ный момент времени и подвергнуться заранее установ­ленному преобразованию скоростей.
Обращение скоростей порождает высокоорганизо­ванную систему, и гипотеза молекулярного хаоса пере­стает выполняться. Различные столкновения, как бы под влиянием предустановленной гармонии, порождают поведение газа, которое внешне вполне «целенаправ­ленно».
Но это еще не все. Что означает переход от поряд­ка к хаосу? В предложенной Эренфестами модели урн ответ ясен: система эволюционирует до тех пор, пока распределение шаров не становится равномерным. В других случаях ситуация не столь проста. Мы можем воспользоваться численным моделированием и начать со случайного распределения взаимодействующих час­тиц. Со временем (на какое-то мгновение) может обра­зоваться правильная решетка. Происходит ли в этом случае переход от порядка к хаосу? Ответ на этот во­прос далеко не очевиден. Для того чтобы понять поря­док и хаос, нам необходимо прежде всего определить те объекты, к которым мы применяем эти понятия. Пе­реход от динамики к термодинамике, как показал Больцман, совершается особенно легко в разреженных газах. Но в плотных системах, где молекулы взаимо­действуют между собой, переход этот не столь очевиден.
Именно из-за трудностей, возникающих при рас­смотрении плотных систем с взаимодействующими час­тицами, яркая пионерская теория Больцмана осталась незавершенной.

4. Динамика и термодинамика — два различных мира
Мы уже упоминали о том, что траектории несовме­стимы с понятием необратимости. Но поведение траек­торий — отнюдь не единственный язык, на котором мы
313


можем сформулировать динамику. В качестве альтерна­тивы сошлемся на теорию ансамблей, развитую Гиббсом и Эйнштейном7,18 и представляющую особый ин­терес при изучении систем, состоящих из большого чис­ла молекул. Существенно новым элементом в теории ансамблей Гиббса—Эйнштейна явилась возможность сформулировать динамическую теорию независимо от точного задания каких бы то ни было начальных усло­вий.
В теории ансамблей физические системы рассматри­ваются в фазовом пространстве. Динамическое состоя­ние точечной частицы (материальной точки) определя­ется ее положением (вектором с тремя компонентами) и импульсом (тоже вектором с тремя компонентами). Такое состояние можно представить двумя точками (каждая из которых принадлежит «своему» трехмер­ному пространству) или одной точкой в шестимерном пространстве координат и импульсов. Это и есть фазо­вое пространство. Геометрическое представление дина­мических состояний одной точечной частицы обобщает­ся на случай произвольной системы п частиц. Для того чтобы задать состояние такой системы, необходимо ука­зать nr6 чисел, или точку в 6n-мерном фазовом про­странстве. Эволюции во времени системы п частиц бу­дет соответствовать траектория в фазовом простран­стве.
Мы уже говорили о том, что точные начальные ус­ловия макроскопической системы никогда не известны. Однако ничто не мешает нам представить систему ан­самблем точек, т. е. «облаком» точек, соответствующих различным динамическим состояниям, совместимым с той информацией о системе, которой мы располагаем. Каждая область фазового пространства может содер­жать бесконечно много представляющих точек. Их плотность служит мерой вероятности найти рассматри­ваемую систему в данной области. Вместо того чтобы рассматривать бесконечно много дискретных точек, удобнее ввести непрерывное распределение представля­ющих точек в фазовом пространстве. Пусть r(q1, ..., q3n, p1, ..., p3n) — плотность распределения представляющих точек в фазовом пространстве, где q1, ..., q3n — коорди­наты п точек, a p1, ..., p3n — импульсы тех же точек (каждая точка имеет три координаты и три импульса). Плотность r есть плотность вероятности найти динами-
314


ческую систему в окрестности точки q1, ..., q3n, p1, ..., p3n фазового пространства.
При таком подходе плотность r может показаться идеализацией, искусственной конструкцией, а траекто­рия точки в фазовом пространстве «непосредственно» соответствующей описанию «естественного» поведения системы. Но в действительности идеализацией являет­ся точка, а не плотность. Дело в том, что начальное состояние никогда не бывает известно с бесконечной степенью точности, позволяющей стянуть область в фа­зовом пространстве в отдельную точку. Мы можем лишь определить ансамбль траекторий, выходящих из ан­самбля представляющих точек, соответствующих тому, что нам известно относительно начального состояния системы. Функция плотности r отражает уровень на­ших знаний о системе: чем точнее знания, тем меньше область в фазовом пространстве, на которой плотность отлична от нуля, т. е. та область, где может находить­ся система. Если бы плотность была равномерно рас­пределена по всему фазовому пространству, то утверж­дать что-либо относительно состояния системы было бы невозможно. Она могла бы находиться в любом из состояний, совместимых с ее динамической структурой.
При таком подходе точка соответствует максимуму знания, которым мы можем располагать о системе. Та­кой максимум есть результат предельного перехода, все возрастающей точности нашего знания. Как мы уви­дим в гл. 9, фундаментальная проблема состоит в том, чтобы выяснить, какой предельный переход реально осуществим. Непрестанное повышение точности означа­ет, что от одной области в фазовом пространстве, где плотность r отлична от нуля, мы переходим к другой, меньшей, которая содержится в первой. Такое стягива­ние мы можем продолжать до тех пор, пока область, содержащая систему, не станет сколь угодно малой. Но при этом, как мы увидим в дальнейшем, необходимо соблюдать осторожность: «сколь угодно малая» не оз­начает «нулевая», и априори ниоткуда не следует, что наш предельный переход непременно приведет к непро­тиворечивому предсказанию отдельной однозначно оп­ределенной траектории.
Теория ансамблей Гиббса—Эйнштейна — естест­венное продолжение теории Больцмана. Функцию плот­ности r в фазовом пространстве можно рассматривать
315


как аналог функции распределения скоростей f, кото­рую использовал Больцман. Но по своему физическо­му содержанию PPP «богаче», чем f. Функция плотности r так же, как и f, определяет распределение скоростей, но, помимо этого, r содержит и другую информацию, в частности вероятность найти две частицы на опреде­ленном расстоянии друг от друга. В функцию плотно­сти PPP входит и все необходимое для определения кор­реляций между частицами, о которых шла речь в пре­дыдущем разделе. Более того, r содержит полную ин­формацию о всех статистических свойствах системы п тел.
Опишем теперь эволюцию функции плотности в фа­зовом пространстве. На первый взгляд это еще более дерзкая задача, чем та, которую поставил перед собой Больцман: описание временной эволюции функции рас­пределения скоростей. Но это не так. Канонические уравнения Гамильтона, о которых шла речь в гл. 2, по­зволяют нам получить точное эволюционное уравнение для r без дальнейших приближений. Это так называе­мое уравнение Лиувилля, к которому мы еще вернемся в гл. 9. Пока же отметим лишь одно важное следствие из гамильтоновой динамики: плотность r эволюциони­рует в фазовом пространстве как несжимаемая жид­кость (если представляющие точки в какой-то момент времени занимают в фазовом пространстве область объ­емом V, то объем области остается постоянным во вре­мени). Форма области может изменяться произвольно, но объем ее при всех деформациях сохраняется.
Таким образом, теория ансамблей Гиббса открыва­ет возможность строгого сочетания статистического под­хода (исследования «популяции», описываемой плот­ностью r) и законов динамики. Она допускает также более точное представление состояния термодинамиче­ского равновесия. Например, в случае изолированной системы ансамбль представляющих точек соответству­ет системам с одной и той же энергией Е. Плотность r отлична от нуля только на микроканонической поверх­ности в фазовом пространстве, отвечающей заданному значению энергии. Первоначально плотность r может быть распределена по микроканонической поверхности произвольно. В состоянии равновесия плотность r пе­рестает изменяться во времени и не должна зависеть от выбора начального состояния. Следовательно, при-
316


Рис. 28. Временнaя эволюция в фазовом пространстве «объема», содержащего представляющие точки системы: величина объема остается неизменной, а форма искажается. Положение в фазовом пространстве задается координатой q и импульсом р.
ближение к равновесному состоянию имеет простой смысл в терминах эволюции плотности r: функция рас­пределения r становится постоянной на всей микроканонической поверхности. Каждая точка такой поверх­ности с равной вероятностью может представлять си­стему. Это соответствует микроканоническому ансамб­лю.
Приближает ли теория ансамблей хоть сколько-ни­будь к решению проблемы необратимости? Теория Больцмана описывает термодинамическую энтропию с помощью функции распределения скоростей f. Для это­го Больцману пришлось ввести свою H-функцию. Как мы уже знаем, система эволюционирует во времени до тех пор, пока распределение скоростей не становится максвелловским, и на протяжении всей эволюции H функция монотонно убывает. Можно ли теперь в бо­лее общем плане принять за основу возрастания энтро­пии эволюцию распределения r в фазовом пространст­ве к микроканоническому ансамблю? Достаточно ли для этого вместо больцмановской функции H, выра­женной через f, взять гиббсовскую функцию HG, зави­сящую точно таким же образом от r? К сожалению, ответы на оба вопроса отрицательны. Если мы рассмот­рим уравнение Лиувилля, описывающее эволюцию плот­ности r в фазовом пространстве, и учтем сохранение объема «фазовой жидкости», о котором уже упомина-
317


лось, то вывод последует незамедлительно: функция HG постоянна и поэтому не может быть аналогом энт­ропии. По отношению к теории Больцмана последнее обстоятельство кажется не столько продвижением впе­ред, сколько шагом назад!
Несмотря на этот негативный аспект, вывод Гиббса остается весьма важным. Мы уже неоднократно отме­чали расплывчатость и. неоднозначность понятий поряд­ка и хаоса. Постоянство функции HG свидетельствует о том, что в рамках динамической теории не существу­ет никакого изменения порядка! «Информация», выра­жаемая функцией HG, остается постоянной. Сохранение информации можно понимать следующим образом: столкновения порождают корреляции. В результате столкновений скорости рандомизируются, становятся случайными, что позволяет нам описывать весь про­цесс как переход от порядка к хаосу. Вместе с тем по­явление корреляции в результате столкновений свиде­тельствует об обратном процессе: о переходе от хаоса к порядку! Теория Гиббса показывает, что оба процес­са — прямой и обратный — в точности компенсируют друг друга.
Итак, мы приходим к важному выводу: независимо от выбора представления (будь то движение по траек­ториям или теория ансамблей Гиббса—Эйнштейна) нам не удастся построить теорию необратимых процес­сов, которая выполнялась бы для любой системы, удов­летворяющей законам классической (или квантовой) механики. У нас нет даже способа говорить о переходе от порядка к хаосу! Как следует понимать эти отрица­тельные результаты? Любая ли теория необратимых процессов находится в неразрешимом конфликте с ме­ханикой (классической или квантовой)? Нередко высказывалось предложение включить космологические чле­ны, которые учитывали бы влияние расширяющейся Вселенной на уравнения движения и порождали бы стрелу времени. С подобной идеей трудно согласиться. С одной стороны, не вполне ясно, как вводить эти кос­мологические члены. С другой стороны, точные динами­ческие эксперименты, по-видимому, отвергают сущест­вование космологических членов, по крайней мере если говорить о земных масштабах, которые мы и рассмат­риваем в данном случае (достаточно вспомнить о пре­цизионных космических экспериментах, поставленных


с помощью искусственных спутников Земли и под­твердивших с высокой точностью уравнения Ньютона). Вместе с тем, как уже неоднократно подчеркивалось, мы живем в плюралистическом мире, в котором обра­тимые и необратимые процессы сосуществуют в одной и той же расширяющейся Вселенной.
Еще более радикальный вывод состоит в том, чтобы встать на точку зрения Эйнштейна и считать время как необратимость иллюзией, которая никогда не найдет се­бе места в объективном мире физики. К счастью, су­ществует другой выход, который мы подробно рас­смотрим в гл. 9. Необратимость, как мы неоднократно отмечали, не является универсальным свойством, а это означает, что не следует ожидать общего вывода необратимости из динамики.
Теория ансамблей Гиббса вводит лишь один допол­нительный, но очень важный элемент по сравнению с динамикой траекторий: наше незнание точных началь­ных условий. Маловероятно, чтобы одно лишь это не­знание приводило к необратимости.
Таким образом, не следует удивляться, что нас постигла неудача. Ведь мы так и не сформулировали те специфические особенности, которыми должна обладать динамическая система для того, чтобы приводить к не­обратимым процессам.
Почему так много ученых с готовностью приняли субъективную интерпретацию необратимости? Возмож­но, привлекательность субъективной интерпретации от­части объясняется тем, что, как мы знаем, необратимое возрастание энтропии сначала связывалось с несовер­шенством манипуляций, производимых над системой, и неполнотой нашего контроля над идеально обратимыми операциями.
Но субъективная интерпретация становится явно абсурдной, если мы оставляем в стороне малосущест­венные ассоциации с технологическими проблемами. Не следует забывать также о том историческом кон­тексте, в котором второе начало термодинамики об­рело интерпретацию стрелы времени. Если принять субъективную интерпретацию, то химическое сродство, теплопроводность, вязкость, т. е. все свойства, связан­ные с необратимым производством энтропии, окажутся зависимыми от наблюдателя. Кроме того, та роль, ко­торую играют в биологии явления организации, связан-
319


ные с необратимостью, не позволяет считать их просты­ми иллюзиями, обусловленными нашим незнанием. Раз­ве мы сами, живые существа, способные наблюдать и производить манипуляции, — не более чем фикции, вы­званные несовершенством наших органов чувств? Разве различие между жизнью и смертью — иллюзия?
Таким образом, последние достижения термодинами­ческой теории увеличили остроту конфликта между ди­намикой и термодинамикой. Попытки свести результа­ты термодинамики к аппроксимациям, обусловленным несовершенством нашего знания, оказались несостоя­тельными, когда была понята конструктивная роль энт­ропии и открыта возможность усиления флуктуаций. Наоборот, динамику трудно отвергнуть во имя необра­тимости: в движении идеального маятника нет никакой необратимости. Существование двух конфликтующих миров — мира траекторий и мира процессов — не вызы­вает сомнений. Мы не можем отрицать существование одного из них, утверждая существование другого.
В какой-то степени имеется определенная аналогия между этим конфликтом и тем, с которым связано за­рождение диалектического материализма. В гл. 5 и 6 мы описали природу, которую можно было бы назвать «исторической», т. е. способной к развитию и иннова­ции. Идея истории природы как неотъемлемой состав­ной части материализма принадлежит К. Марксу и бы­ла более подробно развита Ф. Энгельсом. Таким обра­зом, последние события в физике, в частности открытие конструктивной роли необратимости, поставили в есте­ственных науках вопрос, который давно задавали материалисты. Для них понимание природы означало пони­мание ее как способной порождать человека и челове­ческое общество.
Кроме того, в то время, когда Энгельс писал «Диа­лектику природы», физические науки отвергали меха­нистическое мировоззрение и склонялись ближе к идее исторического развития природы. Энгельс упоминает три фундаментальных открытия: энергии и законов, уп-равляющих ее качественными преобразованиями; клет­ки как основы всех органических существ и открытие Дарвином эволюции видов. Исходя из этих трех вели­ких открытий, Энгельс пришел к выводу, что механи­стическое мировоззрение мертво. Вместе с тем механи­цизм ставил перед диалектическим материализмом ряд
320


принципиальных и далеко не простых вопросов. Како­вы соотношения между общими законами диалектики и столь же универсальными законами механического движения? Становятся ли последние неприменимыми после того, как достигнута определенная стадия раз­вития, или же они просто неверны или неполны? Нель­зя еще раз не задать и наш предыдущий вопрос: как вообще могут быть связаны между собой мир процес­сов и мир траекторий19?
Но сколь ни легко критиковать субъективную ин­терпретацию необратимости и отмечать еe слабые сто­роны, выйти за ее рамки и сформулировать «объектив­ную» теорию необратимых процессов необычайно труд­но. В истории попыток создания этого предмета звучат и трагические ноты. Многие склонны считать, что имен­но отчетливое понимание принципиальных трудностей, стоящих на пути к созданию объективной теории необ­ратимых процессов и казавшихся непреодолимыми, привело Больцмана в 1906 г. к самоубийству.
5. Больцман и стрела времени
Как мы уже упоминали, Больцман сначала полагал, будто ему удалось доказать, что стрела времени опре­деляется эволюцией динамических систем от менее ве­роятных состояний к более вероятным или от состояний с меньшим числом комплексов к состояниям с боль­шим числом комплексов (число комплексов монотонно возрастает со временем). Обсуждали мы и возражения Пуанкаре и Цермело. Пуанкаре доказал, что всякая замкнутая динамическая система со временем возвра­щается в сколь угодно малую окрестность своего ис­ходного состояния. Иначе говоря, все состояния дина­мической системы так или иначе повторимы. Могла ли в таком случае стрела времени быть связана с возра­станием энтропии? После мучительных размышлений Больцман изменил свою позицию. Он оставил попытки доказать существование объективной стрелы времени и выдвинул новую идею, которая в известном смысле сво­дила закон возрастания энтропии к тавтологии. Больц­ман считал теперь, что стрела времени — не более чем соглашение, водимое нами (или, быть может, всеми живыми существами) в мир, в котором не существует объективного различия между прошлым и будущим.
321


Вот что писал, например, Больцман в ответ на крити­ку Цермело:
«Имеется выбор между двумя представлениями. Можно предположить, что вся Вселенная сейчас нахо­дится в некотором весьма невероятном состоянии. Но можно мыслить зоны — промежутки времени, по исте­чении которых снова наступают невероятные собы­тия, — такими же крошечными по сравнению с продол­жительностью существования Вселенной, как расстоя­ние от Земли до Сириуса ничтожно по сравнению с ее размерами.
Тогда во всей Вселенной (которая в противном слу­чае повсюду находилась бы в тепловом равновесии, т. е. была бы мертвой) имеются относительно неболь­шие участки порядка масштаба нашей звездной систе­мы (мы будем называть их отдельными мирами), ко­торые в течение относительно небольших по сравнению с эоном промежутков времени значительно отклоняют­ся от теплового равновесия, а именно: среди этих миров одинаково часто встречаются состояния, вероятности которых возрастают и уменьшаются. Таким образом, для Вселенной в целом два направления времени явля­ются неразличимыми, так как в пространстве нет верха и низа. Но точно так же, как мы в некотором опреде­ленном месте земной поверхности называем «низом» направление к центру Земли, так и живое существо, которое находится в определенной временной фазе од­ного из таких отдельных миров, назовет направление времени, ведущее к более невероятным состояниям, по-другому, чем противоположное (первое — как направ­ленное к «прошлому», к началу последнее — к «буду­щему», к концу), и вследствие этого названия будет об­наруживать «начало» для этих малых областей, выде­ленных из Вселенной, всегда в некотором невероятном состоянии.
Этот метод представляется мне единственным, с по­мощью которого можно осмыслить второе начало, теп­ловую смерть каждого отдельного мира без того, чтобы предполагать одностороннее изменение всей Вселенной от некоторого определенного начального состояния по направлению к некоторому итоговому конечному со­стоянию»20.
Идея Больцмана наглядно изображена на диаграм­ме, предложенной Карлом Поппером (рис. 29). Стре-
322


Рис. 29. Схематическое изображение больцмановской космологической интерпретации стрелы времени по Попперу (см. текст).
ла времени столь же произвольна, как и вертикальное направление, определяемое гравитационным полем.
Комментируя Больцмана, Поппер заметил следую­щее:
«Идея Больцмана поражает своей смелостью и красотой. Вместе с тем она заведомо неприемлема, по крайней мере для реалиста. Она объявляет одностороннее изменение иллюзией. В таком случае трагическую гибель Хиросимы также следует считать иллюзией. Но тогда и весь наш мир становится иллюзией вместе со всеми нашими попытками узнать о нем нечто новое. Тем самым идея Больцмана (как и любой идеализм) обрекает себя на поражение. Идеалистическая гипоте­за Больцмана имеет характер ad hoc гипотезы и про­тиворечит его собственной реалистической и не без страстности отстаиваемой антиидеалистической фило­софии и неутолимой жажде знания»21.
Мы полностью согласны с комментариями Поппера и считаем, что настало время опять вернуться к задаче, которую некогда ставил перед собой Больцман. Двад­цатый век стал свидетелем великой концептуальной революции в физике, что не могло не породит новые на­дежды на объединение динамики и термодинамики. Ныне мы вступаем в новую эру в истории времени, эру, в которой бытие и становление могут быть объединены в непротиворечивую картину.
323


Глава 9. НЕОБРАТИМОСТЬ — ЭНТРОПИЙНЫЙ БАРЬЕР
1. Энтропия и стрела времени
В предыдущей главе мы описали некоторые трудности микроскопической теории необратимых процессов. Ее связь с динамикой, классической или квантовой, не может быть простой в том смысле, что необратимость и сопутствующее ей возрастание энтропии не может быть общим следствием динамики. Микроскопическая теория необратимых процессов требует наложения дополни­тельных, более специфических условий. Мы вынуждены принять плюралистический мир, в котором обратимые и необратимые процессы сосуществуют. Но такой плю­ралистический мир принять нелегко.
В своем «Философском словаре» Вольтер утверж­дал по поводу предопределения следующее: «...все управляется незыблемыми законами ... все заранее предустановлено ... все необходимо обусловле­но... Есть люди, которые, испуганные этой истиной, до­пускают лишь половину ее, подобно должникам, вруча­ющим кредиторам половину своего долга с просьбой от­срочить выплату остального. Одни события, говорят та­кие люди, необходимы, другие — нет. Было бы странно, если бы часть того, что происходит, была бы должна происходить, а другая часть не должна была бы проис­ходить... Я непременно должен ощущать неодолимую потребность написать эти строки, вы — столь же не­одолимую потребность осудить меня за них. Мы оба одинаково глупы, оба — не более чем игрушки в руках предопределения. Ваша природа состоит в том, чтобы творить дурное, моя — в том, чтобы любить истину и опубликовать ее вопреки вам»1.
324


Сколь ни убедительно звучат такого рода априорные аргументы, они тем не менее могут вводить в за­блуждение. Рассуждение Вольтера выдержано в ньютоновском духе: природа всегда подобна самой себе. В этой связи небезынтересно отметить, что ныне мы находимся в том самом странном мире, о котором с та­кой иронией писал Вольтер. К своему изумлению, мы открыли качественное многообразие природы.
Неудивительно поэтому, что люди в нерешительности колебались между двумя крайностями: исключени­ем необратимости из физики (сторонником этого направления был, как мы уже отмечали, Эйнштейн2) и признанием необратимости как важной особенности природных явлений (выражителем этого направления стал Уайтхед со своей концепцией процесса). В настоя­щее время ни у кого не вызывает сомнений (см. гл. 5 и 6), что необратимость существует на макроскопичес­ком уровне и играет важную конструктивную роль. Следовательно, в микроскопическом мире должно быть нечто проявляющееся на макроскопическом уровне, по­добное необратимости.
Микроскопическая теория должна учитывать два тесно связанных между собой элемента. Прежде всего в своих попытках построить микроскопическую модель энтропии (H-функции Больцмана), монотонно изменя­ющейся со временем, мы должны следовать Больцману. Именно такое изменение должно задавать стрелу времени. Возрастание энтропии изолированной системы должно выражать старение системы.
Стрелу времени нам часто не удается связать с энт­ропией рассматриваемого процесса. Поппер приводит простой пример системы, в которой развивается одно­сторонне направляемый процесс и, следовательно, воз­никает стрела времени.
«Предположим, что мы отсняли на кинопленку об­ширную водную поверхность. Первоначально она по­коилась, а затем в воду бросили камень. Просматривая отснятый при этом фильм от конца к началу, мы уви­дим сходящиеся круговые волны нарастающей ампли­туды. Сразу же после того, как гребень волны достиг­нет наибольшей высоты, круглая область невозмущенной воды сомкнется в центре. Такую картину нельзя рассматривать как возможный классический процесс Для создания ее потребовалось огромное число коге-
325


рентных генераторов волн, расположенных далеко от центра, действие которых для того, чтобы быть объяс­нимым, должно выглядеть (как в фильме) так, словно всеми генераторами мы управляем из центра. Но если мы захотим просмотреть от конца к началу исправлен­ный вариант фильма, то столкнемся с теми же трудно­стями»3.
Действительно, какими бы техническими средствами мы ни располагали, всегда будет существовать опре­деленное расстояние от центра, за пределами которого мы не сможем генерировать сходящуюся волну. Одно­направленные процессы существуют. Нетрудно пред­ставить себе и многие другие процессы того же типа, что и процесс, рассмотренный Поппером —мы никогда не увидим, как энергия собирается со всех сторон к звезде, — или обратные ядерные реакции, протекающие с поглощением энергии.
Кроме того, существуют и другие стрелы времени, например космологическая стрела (о которой превос­ходно написал в своей книге «Этот правый, левый мир» Мартин Гарднер4). Предполагая, что Вселенная нача­лась с большого взрыва, мы тем самым подразумеваем существование временного порядка на космологическое уровне. Размеры Вселенной продолжают возрастать, но мы не можем отождествить радиус Вселенной с энтро­пией: внутри Вселенной, как мы уже упоминали, проис­ходят и обратимые, и необратимые процессы. Аналогич­ным образом в физике элементарных частиц существу­ют процессы, приводящие к нарушению T-симметрии. Последнее означает, что уравнения, описывающие эво­люцию системы при +t, отличны от уравнений, описы­вающих эволюцию системы при —t. Однако нарушение Т-симметрии не мешает нам включать ее в обычную (гамильтонову) формулировку динамики. Определить энтропию с помощью нарушения Т-симметрии невоз­можно.
В этой связи нельзя не вспомнить знаменитую дис­куссию между Эйнштейном и Ритцем, опубликованную в 1909 г.5. Совместная публикация Эйнштейна и Ритца крайне необычна. Она весьма коротка — занимает ме­нее печатной страницы. По существу, в ней лишь кон­статируется расхождение во взглядах. Эйнштейн счи­тал, что необратимость является следствием введенных Больцманом вероятностных понятий. Ритц же отводил
326


решающую роль различию между запаздывающими и опережающими волнами. Это различие напоминает нам аргументацию Поппера. Волны, которые мы наблюда­ем в пруду, — запаздывающие. Они появляются после того, как мы бросили камень.
И Эйнштейн и Ритц существенно обогатили дискус­сию о необратимости, но каждый из них акцентировал внимание лишь на каком-то одном аспекте проблемы. В гл. 8 мы упоминали о том, что вероятность уже предполагает направленность времени и, следователь­но, не может служить основанием при выводе стрелы времени. Мы упоминали и о том, что исключение та­ких процессов, как опережающие волны, не обязатель­но приводит к формулировке второго начала. Необхо­димы аргументы как одного, так и другого типа.
2. Необратимость как процесс нарушения симметрии
Прежде чем обсуждать проблему необратимости, полезно напомнить, как можно вывести другой тип нару­шения симметрии, а именно нарушение пространствен­ной симметрии. В уравнениях реакции с диффузией ту же роль играют «левое» и «правое» (уравнения диф­фузии инвариантны относительно инверсии пространст­ва r®—r). Тем не менее, как мы знаем, бифуркации могут приводить к решениям, симметрия которых нару­шена. Например, концентрация какого-нибудь из ве­ществ, участвующих в реакции, справа может оказать­ся больше, чем слева. Симметрия уравнений реакций с диффузией требует лишь, чтобы решения с нарушен­ной симметрией появлялись парами, а не поодиночке.
Разумеется, существует немало уравнений реакции с диффузией без бифуркаций и, следовательно, без на­рушений пространственной симметрии. Нарушение пространственной симметрии происходит лишь при весьма специфических условиях. Это обстоятельство крайне важно для понимания нарушений временной симмет­рии, которая представляет для нас особый интерес. Нам необходимо найти системы, в которых уравнения движения допускают существование режимов с низкой симметрией.
Как известно, уравнения движения инвариантны от­носительно обращения времени t®—t. Однако реше-
327


ния этих уравнений могут соответствовать эволюции, в которой симметрия относительно обращения времени утрачивается. Единственное условие, налагаемое сим­метрией уравнений, состоит в том, что решения с нару­шенной временной симметрией должны встречаться па­рами. Например, если мы находим решение, стремя­щееся к равновесному состоянию в далеком будущем (а не в далеком прошлом), то непременно должно су­ществовать решение, которое стремится к равновесно­му состоянию в далеком прошлом (а не в далеком бу­дущем). Решения с нарушенной симметрией возникают только парами.
Столкнувшись с подобной ситуацией, мы можем сформулировать внутренний смысл второго начала. Оно обретает статус принципа отбора, утверждающего, что в природе реализуется и наблюдается лишь один из двух типов решений. В тех случаях, когда оно при­менимо, второе начало термодинамики выражает внут­реннюю поляризацию природы. Оно не может быть следствием самой динамики. Второе начало является дополнительным принципом отбора, который, будучи реализованным, распространяется динамикой. Еще не­сколько лет назад выдвинуть подобную программу бы­ло бы решительно невозможно. Но за последние деся­тилетия динамика достигла замечательных успехов, и мы теперь располагаем всем необходимым для того, чтобы понять в деталях, как решения с нарушенной симметрией возникают в «достаточно сложных» дина­мических системах, и что, собственно, означает на мик­роскопическом уровне правило отбора, выражаемое вторым началом термодинамики. Именно это мы и хо­тим показать в следующем разделе.
3. Пределы классических понятий
Начнем с классической механики. Как мы уже упо­минали, если основным первичным элементом считать траекторию, то мир был бы таким же обратимым, как и те траектории, из которых он состоит. В «тра-екторном» описании нет места ни энтропии, ни стреле времени. Но в результате непредвиденного развития событий применимость понятия траек­тории оказалась более ограниченной, чем мож-
328


но было бы ожидать. Вернемся к теории ансамб­лей Гиббса и Эйнштейна, о которой мы говорили в гл. 8. Как известно, Гиббс и Эйнштейн ввели в физику фазовое пространство для того, чтобы учесть наше «не­знание» начального состояния системы большого числа частиц. Для Гиббса и Эйнштейна функция распределе­ния в фазовом пространстве была лишь вспомогатель­ным средством, выражающим незнание de facto ситуации, которая однозначно определена de jure. Но вся проблема предстает в новом свете, если можно по­казать, что для некоторых типов систем бесконечно точное определение начальных условий приводит к внутренне противоречивой процедуре. Но коль скоро это так, тот факт, что нам всегда известна не отдельная траектория, а группа (или ансамбль) траекторий, выражает уже не только ограниченность нашего зна­ния — он становится исходным пунктом нового подхода к исследованию динамики.
В простейших случаях никакой проблемы не возни­кает. Рассмотрим в качестве примера маятник. В зави­симости от начальных условий маятник может либо ко­лебаться, либо вращаться вокруг точки подвеса. Для того чтобы маятник вращался, его кинетическая энер­гия должна быть достаточно велика, иначе он «упа­дет назад», так и не достигнув вертикального положе­ния. Двум типам движения — колебаниям и вращени­ям — соответствуют две различные области фазового пространства. Причина, по которой эти области не пе­ресекаются, весьма проста: для вращения необходим больший запас кинетической энергии, чем для колеба­ния (см. рис. 30).
Если измерения позволяют установить, что система первоначально находится в заданной области, мы мо­жем с полной уверенностью предсказать, будет ли ма­ятник совершать колебания или вращаться вокруг точ­ки подвеса. Повысив точность измерений, мы можем локализовать начальное состояние маятника в более узкой области, целиком лежащей внутри предыдущей. И в том, и в другом случае поведение системы извест­но при любых t: ничего нового или неожиданного слу­читься не может.
Одно из наиболее удивительных открытий XX в. со­стоит в том, что такого рода описание не соответству­ет поведению динамических систем в общем случае, по-
329


Рис. 30. Представление движения маятника в пространстве координат V и q, где V — скорость, q — угловое отклонение, а) Ти­пичные траектории в пространстве (V, q); b) заштрихованные области соответствуют колебаниям, а области вне их — вращению маятника.
скольку «большинство» траекторий динамических си­стем неустойчиво6. Обозначим траектории одного типа (например, соответствующие «колебательным режи­мам») знаком +, а траектории другого типа (соответ­ствующие «вращательным режимам») знаком U. Вме­сто картины, изображенной на рис. 30, где области ко­лебательных и вращательных режимов разделены, мы получим в общем случае причудливую смесь состояний, что делает переход к отдельной точке весьма неодно­значным (см. рис. 31). Даже если известно, что началь­ное состояние нашей системы принадлежит области А, мы не можем заключить, что проходящая через него
330


Рис. 31. Схематическое изображение любой произвольно малой области фазового пространства V динамически неустойчивой системы. Как и в случае маятника, существуют траектории двух типов (обозначенные + и U), но, в отличие от маятника, траектории обоих типов встречаются в сколь угодно малой области.
траектория принадлежит типу +: траектория вполне может оказаться типа U. Увеличение точности измере­ний и связанный с ним переход от области А к более узкой области В также ничего не дает, так как неопре­деленность в типе траектории сохраняется. Во всех сколь угодно малых областях всегда существуют со­стояния, принадлежащие каждому из двух типов траек­торий7.
Для таких систем траектории становятся ненаблю­даемыми. Неустойчивость свидетельствует о достиже­нии пределов ньютоновской идеализации. Нарушается независимость двух основных элементов ньютоновской динамики: закона движения и начальных условий. За­кон движения вступает в конфликт с детерминирован­ностью начальных условий. В этой связи невольно вспоминается мысль Анаксагора о неисчерпаемости творческих возможностей частиц (семян), составляю­щих природу. По Анаксагору, любой предмет содержит в каждой своей части бесконечное множество качест­венно различных семян. В нашем случае любая об-
331


ласть фазового пространства содержит огромное мно­жество качественно различных режимов поведения.
С этой точки зрения детерминистическая траектория применима лишь в ограниченных пределах. А посколь­ку не только на практике, но и в теории мы не можем описывать систему на языке траекторий и вынуждены, использовать функцию распределения, соответствую­щую конечной (сколь угодно малой) области фазового пространства, нам остается лишь предсказывать стати­стическое будущее системы,
Наш друг Леон Розенфельд имел обыкновение го­ворить, что понятия могут быть поняты лишь через их пределы. В этом смысле можно утверждать, что мы достигли ныне лучшего понимания классической меха-пики, создание которой проложило путь к современно­му естествознанию.
Как возникла новая точка зрения? Для того чтобы ответить на этот вопрос, нам придется описать те глу­бокие изменения, которые претерпела динамика в XX в. Хотя по традиции динамику принято считать архети­пом полной, замкнутой отрасли знания, в действитель­ности она подверглась коренным преобразованиям.

4. Возрождение динамики
В первой части нашей книги мы рассказали о дина­мике XIX в. Именно такую динамику излагают многие учебники. Прототипом динамической системы в XIX в. было принято считать интегрируемую систему. Решить уравнения движения означало «удачно» выбрать коор­динаты — так, чтобы соответствующие импульсы были инвариантами движения. Такой подход исключал взаи­модействие между частями системы. Ставка на ин­тегрируемые системы провалилась. Как уже упомина­лось, в конце XIX в. Брунс и Пуанкаре доказали, что большинство динамических систем, начиная со знаме­нитой проблемы трех тел, неинтегрируемы.
С другой стороны, сама идея приближения к равно­весию, сформулированная на языке теории ансамблей, требовала выхода за пределы идеализации интегрируе­мых систем. В гл. 8 мы видели, что в теории ансамб­лей изолированная система находится в равновесии, когда она представлена «микроканоническим ансамб­лем» — все точки на поверхности заданной энергии
332


Рис. 32. Временнaя эволюция ячейки в фазовом пространстве р, q. «Объем» ячейки и ее форма сохраняются во времени. Большая часть фазового пространства недоступна для системы.
равновероятны. Это означает, что для системы, стремя­щейся к равновесию, энергия должна быть единствен­ной величиной, сохраняющейся в ходе эволюции сис­темы. Энергия должна быть единственным инвариан­том. При любых начальных условиях система, эволю­ционируя, должна «побывать» во всех точках поверх­ности заданной энергии. Для интегрируемых систем энергия — далеко не единственный инвариант. Число инвариантов совпадает с числом степеней свободы, по­скольку у интегрируемой системы каждый обобщенный импульс остается постоянным. Следовательно, интег­рируемая система «заключена» на весьма ограничен­ном участке поверхности постоянной энергии (рис. 32) — пересечении всех инвариантных поверхностей.
Чтобы избежать этих трудностей, Максвелл и Больцман ввели новый, совершенно иной тип динами­ческой системы. Для таких систем энергия является единственным инвариантом, а сами системы получили название эргодических систем (рис. 33).
Выдающийся вклад в развитие теории эргодических систем внесли Дж. Биркгоф, фон Нейман, Хопф, Кол­могоров и Синай (разумеется, наш перечень далеко не полон)8,9,10. Ныне мы знаем, что существуют обшир­ные классы динамических (но не гамильтоновых) си-
333


Рис. 33. Типичная эволюция в фазовом пространстве ячейки, соответствующей эргодической системе. «Объем» и форма ячейки со­храняются во времени, но на этот раз ячейка перемещается по всему фазовому пространству.
стем, которые эргодичны. Известно также, что даже сравнительно простые системы могут обладать более сильными свойствами, чем эргодичность. Для таких си­стем движение в фазовом пространстве становится сильно хаотическим (хотя в полном соответствии с уравнением Луивилля — см. гл. 7 — объем в фазовом пространстве сохраняется).
Предположим, что наше знание начальных условий позволяет нам локализовать систему в малой ячейке фазового пространства. Наблюдая за эволюцией ячей­ки, мы увидим, как она начнет деформироваться и из­гибаться, испуская, подобно амебе, «псевдоножки» по всем направлениям и распространяясь в виде волокон, которые постепенно становятся все тоньше, пока нако­нец не заполнят все пространство. Ни один самый ис­кусный рисунок не может по достоинству передать
334


Рис. 34. Типичная эволюция в фазовом пространстве ячейки, соответствующей системе с перемешиванием. Объем по-прежнему со­храняется, но форма уже не остается неизменной: ячейка постепенно размазывается по всему фазовому пространству.
всей сложности реальной ситуации. Действительно, в ходе эволюции системы с перемешиванием две точки, сколь угодно близкие в начальный момент времени, могут разойтись в разные стороны. Даже если бы мы располагали столь обширной информацией о системе, что начальная ячейка, образованная представляющими ее точками, была бы очень мала, динамическая эволю­ция превратила бы эту миниатюрную область в настоя­щее геометрическое «чудовище», пронизывающее фа­зовое пространство своими нитями-щупальцами.
Продемонстрируем различие между устойчивыми и неустойчивыми системами на нескольких простых при­мерах. Рассмотрим двухмерное фазовое пространство. Через одинаковые промежутки времени станем произ­водить преобразования координат, при которых старая абсцисса р переходит в новую абсциссу р—q, а старая ордината q — в новую ординату р. На рис. 35 показа­но, что произойдет, если применить эти преобразования
335


Рис. 35. Преобразование объема в фазовом пространстве, по­рождаемое дискретным преобразованием: абсцисса р переходит в р—q, ордината q переходит в р. Преобразование циклическое: после шестикратного повторения преобразования исходная ячейка перехо­дит в себя.
к квадрату: квадрат деформируется, но после шести­кратного действия преобразования мы возвращаемся к исходному квадрату. Система устойчива: соседние точ­ки преобразуются в соседние. Кроме того, рассмотрен­ное нами преобразование циклическое (после шести операций восстанавливается исходный квадрат).
Рассмотрим теперь два примера сильно неустойчи­вых систем. Первый пример чисто математический, вто­рой имеет непосредственное отношение к физике. Пер­вая система — преобразование, названное математика­ми по понятным соображениям преобразованием пекаря9,10 Берется квадрат и сплющивается в прямоуголь­ник. Половина прямоугольника отрезается, накладыва­ется на другую половину, а получившийся квадрат снова «раскатывается» в прямоугольник. Последова-
336


Рис. 36. Реализация «преобразования пекаря» В и обратного преобразования В-1. Траектории черной и белой точек позволяют понять, как происходит каждое преобразование.
тельность операций, представленная на рис. 36, может быть повторена сколько угодно раз.
Каждый раз квадрат разбивается на части, которые перекладываются в другом порядке. Квадрат в этом примере соответствует фазовому пространству. «Пре­образование пекаря» переводит каждую точку квадра­та в однозначно определенную новую точку. Хотя по­следовательность точек-образов вполне детерминистична, «преобразование пекаря» обнаруживает также ста­тистические свойства. Пусть начальное условие для си­стемы состоит в том, что область А квадрата первона­чально равномерно заполнена представляющими точ­ками. Можно показать, что, после того как преобразо­вание будет повторено достаточное число раз, началь­ная ячейка А, каковы бы ни были ее размеры и распо­ложение в квадрате, распадется на отдельные несвяз­ные части (рис. 37). Следовательно, любая область квадрата, независимо от ее размеров, всегда содер­жит различные траектории, которые при каждом «дроб­лении» области расходятся. Таким образом, несмотря
337


Рис. 37. Временнaя эволюция неустойчивой системы. Область А со временем делится на две области A' и А", каждая из которых в свою очередь делится на две подобласти.
на то что эволюция каждой точки в отдельности обра­тима и детерминистична, описание эволюции любой, даже сколь угодно малой области носит, по существу, статистический характер.
Другим примером простой системы с неожиданно сложным поведением может служить рассеяние твер­дых шаров. Рассмотрим маленький шарик, отражаю­щийся от больших случайно распределенных шаров. Предположим, что большие шары неподвижны. Такую модель физики называют моделью, или газом, Лоренца в честь выдающегося голландского физика Гендрика Антона Лоренца.
Траектория малого подвижного шарика вполне оп­ределена. Но стоит лишь нам ввести в начальные ус­ловия небольшую неопределенность, как в результате последовательных столкновений эта неопределенность усилится. Со временем вероятность найти малый ша­рик равномерно распределится по всему объему, заня­тому газом Лоренца. Каково бы ни было число преоб-
338


Рис. 38. Схематическое изображение неустойчивости траекто­рии маленького шарика, отражающегося от больших шаров. Малей­шая неточность в задании положения маленького шарика делает невозможным предсказание большого шара, с которым столкнется маленький шарик после первого отражения.

разований, газ никогда не вернется в исходное состоя­ние.
В двух последних примерах динамические системы были сильно неустойчивы. Ситуация, с которой мы сталкиваемся здесь, напоминает неустойчивости в тер­модинамических системах (см. гл. 5). Произвольно ма­лые различия в начальных условиях усиливаются. В результате переход от ансамблей в фазовом прост­ранстве к индивидуальным траекториям становится невозможным. Описание на языке теории ансамблей мы вынуждены принять за исходный пункт. Статистические понятия перестают быть лишь приближениями к неко­торой «объективной истине». Перед такими неустойчи­выми системами демон Лапласа оказался бы столь же бессильным, как и мы.
339


Высказывание Эйнштейна «бог не играет в кости» хорошо известно. Ему созвучно высказывание Пуанка­ре о бесконечно мощном духе, беспредельно осведомленном в законах природы, для которого вероятности просто не могли бы существовать. Однако Пуанкаре сам же указал путь к решению проблемы11. Он заме­тил, что когда мы бросаем игральные кости и прибе­гаем к теории вероятностей, то это отнюдь не означает, будто динамика неверна. Применение вероятностных соображений означает нечто другое. Мы используем понятие вероятности потому, что в любом диапазоне начальных условий, сколь бы малым он ни был, суще­ствует «много» траекторий, приводящих к выпадению каждой из граней кости. Именно это и происходит с неустойчивыми динамическими системами. Господь бог, если бы пожелал, мог бы вычислить траектории в не­стабильном динамическом мире. При этом он получил бы тот же результат, который нам позволяет получить теория вероятностей. Разумеется, всеведущему богу с его абсолютным знанием было бы нетрудно избавиться от всякой случайности.
Итак, мы можем констатировать, что тесная взаи­мосвязь между неустойчивостью и вероятностью, не­сомненно, существует. Это весьма важное обстоятельст­во, и к его обсуждению мы сейчас перейдем.
5. От случайности к необратимости
Рассмотрим последовательность квадратов, на которые действует «преобразование пекаря». Эта последо­вательность изображена на рис. 39. Представим себе, что заштрихованные области заполнены чернилами, а незаштрихованные — водой. При t=0 мы имеем так называемое производящее разбиение квадрата. При­няв его за исходное, мы построим серию разбиений либо на горизонтальные полосы, если отправимся в бу­дущее, либо на вертикальные полосы, если начнем дви­гаться в прошлое. В обоих случаях мы получим базис­ные разбиения. Произвольное распределение чернил по квадрату формально представимо в виде суперпози­ции базисных разбиений. Каждому базисному распре­делению можно поставить в соответствие внутреннее время, равное просто числу «преобразований пекаря», которые необходимо проделать, чтобы перейти от про-
340


Рис. 39. Начав с «производящего разбиения» (см. текст) в мо­мент времени 0 и многократно повторив «преобразование пекаря», мы получили горизонтальные полосы. Двигаясь в прошлое, мы по­лучили бы вертикальные полосы.
изводящего распределения к данному12. Следовательно, системы такого типа допускают своего рода внутрен­ний возраст*.
Внутреннее время Т сильно отличается от обычного механического времени, поскольку зависит от глобальной топологии системы. Можно даже говорить об «овременивании» пространства, тем самым вплотную при­ближаясь к идеям, недавно выдвинутым географами, которые ввели понятие хроногеографии13. Взглянув на «структуру города или ландшафта, мы видим времен­ные элементы как взаимосвязанные и сосуществующие. Бразилиа или Помпеи** вполне соответствовали бы оп­ределенному внутреннему возрасту, в какой-то мере аналогичному одному из базисных разбиений в «пре­образовании пекаря». Наоборот, современный Рим с его зданиями, построенными в самые различные перио­ды, соответствовал бы среднему времени точно так же, как произвольное разбиение разложимо на элементы,
отвечающие различным внутренним временам.
Посмотрим еще раз на рис. 39. Что произойдет, ес­ли мы продвинемся далеко в будущее? Зазоры между горизонтальными чернильными полосами будут стано­виться все уже и уже. Какова бы ни была точность
* Нетрудно видеть, что это внутреннее время, которое мы обозначим через Т, в действительности представляет собой опера­тор, аналогичный операторам, введенным в квантовой механике (см. гл 7). Действительно, произвольное разбиение квадрата обладает не однозначно определенным, а лишь «средним» временем, соответствующим суперпозиции базисных разбиений, из которых оно состоит.
** Бразилиа — город построенный в короткий срок по проекту Нимейера. Помпеи — город, переставший существовать в результате извержения Везувия. В первом случае город не имеет прошлого, во втором — будущего. — Прим. перев.
341


наших измерений, спустя некоторое время она будет превзойдена, и мы заключим, что чернила равномерно распределены по всему объему. Неудивительно поэто­му, что такого рода приближение к «равновесию» мож­но описать с помощью стохастических процессов типа цепей Маркова, о которых мы упоминали в гл. 8. Не­давно это утверждение было доказано со всей матема­тической строгостью14, но сам по себе результат пред­ставляется вполне естественным. Со временем чернила равномерно распределяются по объему так же, как ша­ры в модели Эренфестов равномерно распределялись по урнам (см. гл. 8). Но если мы заглянем в прошлое, снова начав с производящего разбиения при t=0, то увидим то же самое явление. Чернила будут распреде­ляться вертикальными полосами, и снова, углубив­шись в прошлое достаточно далеко, мы обнаружим равномерное распределение чернил по объему. Это по­зволяет нам сделать вывод о том, что и этот процесс допускает описание с помощью цепи Маркова, но на­правленной в прошлое. Таким образом, из неустойчи­вых динамических процессов мы получаем две цепи Маркова: одну, стремящуюся к равновесию в будущем, другую — в прошлом. Мы считаем, что этот результат весьма интересен, и хотели бы его прокомментировать. Внутреннее время дает нам новое, «нелокальное» описание.
Хотя «возраст» системы (т. е. соответствующее раз­биение) нам известен, мы тем не менее не можем сопо­ставить ему однозначно определенную локальную тра­екторию. Мы знаем лишь, что система находится где-то в заштрихованной части квадрата (см. рис. 39). Анало­гичным образом, если известны точные начальные ус­ловия, соответствующие какой-то точке системы, то мы не знаем ни разбиения, которому она принадлежит, ни возраста системы. Следовательно, для таких систем существуют два взаимодополнительных описания. Си­туация здесь несколько напоминает ту, с которой мы уже встречались в гл. 7 при рассмотрении квантовой механики.
Существование новой альтернативы — нелокального описания — открывает перед нами путь к переходу от динамики к вероятностям. Системы, для которых такой переход возможен, мы называем внутренне случайными системами.
342


В классических детерминистических системах мы можем говорить о вероятностях перехода из одной точ­ки в другую лишь в весьма вырожденном смысле: вероятность перехода равна единице, если две точки ле­жат на одной динамической траектории, и нулю, если они не лежат на одной траектории.
В настоящей вероятностной теории нам понадобятся вероятности, принимающие, к отличие от вероятностей типа «нуль—единица», любые значения от пуля до единицы. Как такое возможно? Здесь перед нами во весь рост встает конфликт между субъективистскими взглядами на вероятность и ее объективными интер­претациями. Субъективная интерпретация соответствует случаю, когда отдельные траектории неизвестны. Вероятность (и в конечном счете связанная с ней необ­ратимость) при таком подходе имеет своим истоком наше незнание. К счастью, существует другая, объек­тивная интерпретация: вероятность возникает в резуль­тате альтернативного описания динамики, нелокального описания, возможного лишь для сильно неустойчи­вых динамических систем.
При таком подходе вероятность становится объек­тивным свойством, порождаемым, так сказать, внутри динамики и отражающим фундаментальную структуру динамической системы. Мы уже подчеркивали важ­ность основного открытия Больцмана — установления связи между энтропией и вероятностью. Для внутрен­не случайных систем понятие вероятности обретает ди­намический смысл. Теперь нам необходимо совершить переход от внутренне случайных систем к необрати­мым системам. Как мы уже знаем, неустойчивые дина­мические процессы порождают по две цепи Маркова.
Взглянем на эту двойственность с другой точки зрения. Рассмотрим распределение, сосредоточенное не на всей поверхности квадрата, а на отрезке прямой. Отрезок может быть вертикальным или горизонталь­ным. Выясним, что произойдет с этим отрезком под действием «преобразований пекаря», обращенных в бу­дущее. Результат их показан на рис. 40: вертикальный отрезок рассекается на части и в далеком будущем стягивается в точку. Наоборот, горизонтальный отрезок при каждом «преобразовании пекаря» удваивается, и в далеком будущем его образы («копии») равномерно покроют весь квадрат. Ясно, что при движении вспять
343


Рис. 40. Сжатие и растяжение слоев при «преобразовании пе­каря». Со временем сжимающийся слой А1 сокращается (последова­тельные этапы сокращения обозначены А1, В1, C1). Растягивающиеся слои удваиваются (последовательные этапы удвоения обозначены А2, В2, С2).
во времени (в прошлое) наблюдается обратная карти­на. По очевидным причинам вертикальный отрезок на­зывается сжимающимся, а горизонтальный — растягивающимся слоем.
Мы видим, что аналогия с теорией бифуркаций полная. Сжимающийся слой и растягивающийся слой соответствуют двум реализациям динамики, каждая из которых связана с нарушением симметрии и появлени­ем несимметричных режимов парами. Сжимающийся слой отвечает равновесному состоянию в далеком буду­щем, растягивающийся — в далеком прошлом. Мы по­лучаем, таким образом, две цепи Маркова с противо­положной ориентацией во времени.
Теперь нам необходимо совершить переход от внут­ренне случайных систем к системам внутренне необра­тимым. Для этого нам необходимо понять, чем, собст­венно, отличается сжимающийся слой от растягиваю­щегося. Нам известна еще одна система, столь же не­устойчивая, как и «преобразование пекаря», — систе­ма, описывающая рассеяние твердых шаров. Для этой системы растягивающиеся и сжимающиеся слои име­ют простой физический смысл. Сжимающийся слой со­ответствует множеству твердых шаров, скорости кото­рых случайным образом распределены в далеком прош-
344


лом и становятся параллельными в далеком будущем. Растягивающийся слой соответствует обратной ситуа­ции: скорости сначала параллельны, а затем их распре­деление становится случайным. Различие между сжи­мающимися и растягивающимися слоями очень напо­минает различие между расходящимися и сходящими­ся волнами в примере Поппера. Исключение сжимаю­щихся слоев соответствует экспериментально установленному факту: как бы ни изощрял свое хитроумие экс­периментатор, ему никогда не удастся добиться, чтобы скорости в системе оставались параллельными после произвольного числа столкновений. Исключая сжима­ющиеся слои, мы оставляем тем самым лишь одну из двух введенных нами цепей Маркова. Иначе говоря, второе начало становится принципом отбора началь­ных условий. Оно допускает лишь такие начальные условия, при которых система эволюционирует к равно­весному состоянию в будущем.
Правильность такого принципа отбора подтвержда­ется динамикой. Нетрудно видеть, что в примере с «преобразованием пекаря» сжимающийся слой навсег­да остается сжимающимся, а растягивающийся — рас­тягивающимся. Подавляя одну из двух цепей Маркова, мы переходим от внутренне случайной к внутренне не­обратимой системе. В описании необратимости мы выде­ляем три основных элемента:
неустойчивость
­
внутренняя случайность
­
внутренняя необратимость
Самым сильным из них является внутренняя необрати­мость: случайность и неустойчивость следуют из не­го14,15.
Каким образом подобный вывод можно совместить с динамикой? Как известно, в динамике «информация» сохраняется, в то время как цепи Маркова, забывая пре­дысторию, утрачивают информацию (вследствие чего энтропия возрастает; см. гл. 8). Никакого противоречия здесь нет: когда от динамического описания «преобра­зования пекаря» мы переходим к термодинамическому описанию, нам приходится изменять функцию распреде­ления. Связано это с тем, что «объекты», в терминах которых энтропия возрастает, отличаются от объектов,
345


рассматриваемых в динамике. Новая функция распре­деления r соответствует внутренне ориентированному во времени описанию динамической системы. Мы не можем останавливаться на математических аспектах перехода от старой функции распределения к новой. Скажем лишь, что преобразование, переводящее одну функцию распределения в другую, должно быть нека­ноническим (см. гл. 2). Следовательно, прийти к термо­динамическому описанию мы можем лишь ценой отказа от обычных понятий динамики.
Примечательно, что такое преобразование существу­ет, в результате чего оказывается возможным объеди­нить динамику и термодинамику, физику бытия и физи­ку становления. Позднее в этой главе и в заключитель­ном разделе книги мы еще вернемся к новым термоди­намическим объектам. Подчеркнем лишь, что в состоянии равновесия всякий раз, когда энтропия достигает своего максимума, эти объекты должны вести себя случайным образом.
Заслуживает внимания и то, что необратимость воз­никает, так сказать, из неустойчивости, наделяющей на­ше описание неустранимыми статистическими особенно­стями. Действительно, что означала бы стрела времени в детерминистическом мире, в котором и прошлое и бу­дущее содержатся в настоящем? Стрела времени ассо­циируется с переходом из настоящего в будущее имен­но потому, что будущее не содержится в настоящем и мы совершаем переход из настоящего в будущее. Построение необратимости на основе случайности чре­вато многими последствиями, выходящими за рамки собственно естествознания. Этих последствий мы кос­немся в заключительном разделе нашей книги, а теперь кратко поясним, в чем заключается различие между со­стояниями, разрешенными вторым началом, и состоя­ниями, которые второе начало запрещает.
6. Энтропийный барьер
Время течет в одном направлении: из прошлого в бу­дущее. Мы не можем манипулировать со временем, за­ставить его идти вспять, в прошлое. Путешествие во времени занимало воображения многих писателей: от безымянных создателей «Тысячи и одной ночи» до Гер­берта Уэллса с его «Машиной времени». В небольшом
346


произведении В. Набокова «Посмотри на арлекинов!»16 описываются муки рассказчика, которому не удается переключиться с одного направления времени на другое, чтобы «повернуть время вспять». В пятом томе своего капитального труда «Наука и цивилизация в Китае» Джозеф Нидэм описывает мечту китайским алхимиков: «свою высшую цель те видели не в превращении метал­лов в золото, а в манипулировании временем, достиже­нии бессмертия путем резкого замедления всех процес­сов распада в природе17. Теперь мы лучше понимаем, почему время невозможно «повернуть назад».
Бесконечно высокий энтропийный барьер отделяет разрешенные начальные состояния от запрещенных. Барьер этот никогда не будет преодолен техническим прогрессом: он бесконечно высок. Нам не остается ни­чего другого, как расстаться с мечтой о машине време­ни, которая перенесет нас в прошлое. Энтропийный барьер несколько напоминает другой барьер: существо­вание предельной скорости распространения сигналов скорости света. Технический прогресс может приблизить нас к скорости света, но, согласно современным физи­ческим представлениям, мы никогда не сможем превзой­ти ее.
Для того чтобы понять происхождение энтропийного барьера, нам потребуется вернуться к выражению для H-функции, возникающему в теории цепей Маркова (см. гл. 8). Сопоставим с каждым распределением чис­ла соответствующее значение H-функции. Можно ут­верждать, что каждое распределение обладает вполне определенным информационным содержанием. Чем вы­ше информационное содержание, тем труднее реализо­вать его носитель. Покажем, что начальное распреде­ление, запрещенное вторым началом, обладало бы бес­конечно большим информационным содержанием. Имен­но поэтому такие запрещенные распределения невоз­можно ни реализовать, ни встретить в природе.
Напомним сначала, какой смысл имеет введенная в гл. 8 H-функция. Разделим фазовое пространство на клетки, или ячейки. С каждой ячейкой k сопоставим ве­роятность Рравн(k) попасть в нее в равновесном состоя­нии и вероятность Р(k,t) оказаться в ней в неравновес­ном состоянии.
H -функция есть мера различия между P(k,t) иРравн(k) . В состоянии равновесия, когда различие
347


Рис. 41. Растягивающиеся (последовательность А) и сжимаю­щиеся (последовательность С) слои пересекают различное число кле­ток («ящиков»), на которые разделено фазовое пространство «преоб­разования пекаря». Все «квадраты», принадлежащие данной последо­вательности, относятся к одному моменту времени t=2, но число кле­ток, на которые разделен каждый квадрат, зависит от начала отсчета времени системы ti.
между вероятностями исчезает, H -функция обращается в нуль. Чтобы сравнить его с «преобразованием пекаря» и двумя порождаемыми им цепями Маркова, необходи­мо уточнить, как выбираются соответствующие ячейки. Предположим, что мы рассматриваем систему в момент времени 2 (см. рис. 39) и что в исходном состоянии система находилась в момент времени ti. Согласно на­шей динамической теории, клетки соответствуют всем возможным пересечениям разбиений от t=ti до t=2. На рис. 39 мы видим, что, когда ti отходит в прошлое,
348


ячейки становятся все более тонкими, поскольку нам приходится вводить все больше и больше вертикальных подразделений. Это отчетливо видно на рис. 41, где-в последовательности В мы получаем при движении сверху вниз ti-=1, 0, —1 и, наконец, ti=—2. Нетрудно видеть, что число ячеек возрастает при этом с 4 до 32.
Коль скоро мы располагаем ячейками, естественно сравнить неравновесное распределение с равновесным в каждой ячейке. В рассматриваемом нами примере неравновесное распределение есть либо растягивающийся слой (последовательность А), либо сжимающий­ся слой (последовательность С). Обратим внимание на то, что по мере сдвига ti в прошлое растягивающийся слой занимает все большее число ячеек: при ti=—1 он занимает 4 ячейки, при ti=—2 — уже 8 ячеек и т. д. В результате, воспользовавшись формулой из гл. 8, мы получаем конечный «ответ», даже если число ячеек неограниченно возрастает при ti®?.
Сжимающийся слой в отличие от растягивающегося при любых ti всегда локализован в 4 ячейках. Это при­водит к тому, что H-функция для сжимающегося слоя обращается в бесконечность, когда ti уходит в прош­лое. Таким образом, различие между динамической си­стемой и цепью Маркова состоит в том, что в случае динамической системы необходимо рассматривать бес­конечно много ячеек. Приготовить или наблюдать мож­но лишь такие меры или вероятности, которые в преде­ле при бесконечно большом числе ячеек дают конечную информацию или конечную H-функцию. Это исключает сжимающиеся слои18. По той же причине необходимо исключить и распределения, сосредоточенные в одной точке. Начальные условия, соответствующие одной точ­ке в неустойчивой системе, соответствовали бы беско­нечной информации. Следовательно, ни реализовать, ни наблюдать их невозможно. И в этом случае второе нача­ло выступает в роли принципа отбора.
В классической схеме начальные условия были про­извольными. Для неустойчивых систем произвол исклю­чается. Каждое начальное условие обладает в случае неустойчивых систем определенным информационным содержанием, которое зависит от динамики системы (подобно тому как в «преобразовании пекаря» для вы­числения информационного содержания мы прибегли к последовательному делению ячеек). Начальные усло-
349


вия и динамика перестают быть независимыми. Второе начало как принцип отбора представляется нам настоль­ко важным, что мы хотели бы привести еще один при­мер, на этот раз связанный с динамикой корреляций.
7. Динамика корреляций
В гл. 8 мы кратко обсудили эксперимент с обраще­нием скоростей. Возьмем разреженный газ и проследим за его эволюцией во времени. При t=t0 обратим скорости всех молекул газа. Газ вернется в начальное состоя­
Рис. 42. Рассеяние частиц. Первоначально скорости всех частиц равны. После соударения равенство скоростей нарушается и рас­сеянные частицы коррелированы с рассеятелем (корреляции здесь и далее изображены волнистыми линиями).
ние. Мы уже обращали внимание на то, что для воспро­изведения своего прошлого газу необходимо некое хра­нилище информации — своего рода «память». Такой па­мятью являются корреляции между частицами19.
Рассмотрим сначала облако частиц, движущихся к мишени (тяжелой неподвижной частице). Схематиче­ски ситуация изображена на рис. 42. В далеком прош­лом корреляций между частицами не было. Рассеяние приводит к двум эффектам (см. гл. 8): оно «разбрасы­вает» частицы (делает распределение скоростей более симметричным) и, кроме того, порождает корреляции между рассеянными частицами и рассеивателем. Корре­ляции станут заметными, если обратить скорости (на­пример, с помощью сферического зеркала). Эта ситуа­ция изображена на рис. 43 (волнистыми линиями ус­ловно показаны корреляции). Таким образом, роль рас-
350


сеяния сводится к следующему. При прямом рассеянии распределение скоростей становится более симметрич­ным и возникают корреляции между частицами. При обратном рассеянии распределение скоростей становится менее симметричным, а корреляции исчезают. Таким образом, учет корреляций приводит к основному раз­личию между прямым и обратным рассеянием.
Аналогичные рассуждения применимы и к системе многих тел. Здесь также возможны ситуации двух ти­-
Рис. 43. Влияние обращения скоростей после соударения: после нового «обращенного» соударения корреляции подавлены и скоро­сти всех частиц равны.
пов. В одном случае (прямой процесс) некоррелирован­ные частицы налетают, рассеиваются и порождают кор­релированные частицы (рис. 44). В другом случае (об­ратный процесс) коррелированные частицы налетают, корреляции при столкновениях нарушаются и после-столкновении частицы уже не коррелированы (рис. 45).
Прямой и обратный процессы отличаются последо­вательностью столкновений и корреляций во времени. В первом случае имеют место корреляции послестолкновительиыс («постстолкновительные»). Имея в виду раз­личие между пред- и послестолкновительными корреля­циями, вернемся к эксперименту с обращением скоро­стей. Начнем при t=0 — с начального состояния, соот­ветствующего корреляциям между частицами. В интер­вале времени от t=0 до t=t0 система эволюционирует «нормально»: в результате столкновений распределение скоростей приближается к распределению Максвелла. Кроме того, столкновения порождают послестолкновительные корреляции между частицами. При t=t0 проис­ходит обращение скоростей и возникает качественно но­вая ситуация. Послестолкновительные корреляции ста-
351


новятся предстолкновительными. В интервале времени от t=t0 до t=2t0 эти предстолкновительные корреляции исчезают, распределение скоростей становится менее симметричным, и к моменту времени t=2t0 полностью
восстанавливается некоррелированное состояние. Таким образом, история системы делится на два этапа. На первом этапе столкновения трансформируются в корре-
Рис. 44. Возникновение корреляций после соударения (корреляции условно изображены волнистыми линиями).
Рис. 45. Разрушение предстолкновительных корреляций (волнистые линии) при столкновениях.
ляции, на втором этапе происходит обратное превраще­ние корреляций в столкновения. Оба типа процессов — прямой и обратный — не противоречат законам дина­мики. Кроме того, как мы уже упоминали в гл. 8, полная «информация», описываемая динамикой, остается постоянной. Мы видели также, что в больцмановском описании эволюция от t=0 до t=t0 соответствует обычному убыванию H-функции, а в интервале от t=t0 до t=2t0 эволюция протекала бы аномально: H-функция возрастала бы, а энтропия убывала. Но это означало бы, что можно придумать эксперименты, как лаборатор­ные, так и численные, в которых нарушалось бы второе начало! Необратимость на интервале [0, t0] компенси­ровалась бы «антинеобратимостью» на интервале [t0, 2t0 ].
352


Такое положение нельзя признать удовлетворитель­ным. Все трудности устраняются, если перейти к новому «термодинамическому представлению», в рамках которо­го динамика, как в «преобразовании пекаря», становит­ся вероятностным процессом, аналогичным цепи Марко­ва. Следует также учесть, что обращение — процесс не
Рис. 46. Временная эволюция H-функции в эксперименте с об­ращением скоростей. В момент времени t0 происходит обращение скоростей — H-функция претерпевает разрыв. В момент времени 2t0 система находится в таком же состоянии, как в момент времени 0, — H-функцця возвращается к своему начальному значению. При всех t, за исключением t=t0, H-функция убывает. Важно подчеркнуть, что при t=t0, H-функция принимает два различных значения.
«естественный». Для обращения скоростей к молекулам извне должна поступить «информация». Для того чтобы обратить скорости, необходимо существо, аналогич­ное демону Максвелла, а за демона Максвелла прихо­дится «платить». Изобразим зависимость H-функции от времени (для какого-нибудь вероятностного процесса). Типичный график такой зависимости представлен на рис. 46. При нашем подходе (в отличие от больцмановского) эффект корреляций при переопределении H-функции сохраняется. Следовательно, в точке обращения скоростей t0 функция H должна претерпевать скачок,
353


поскольку мы внезапно создаем в этой точке аномаль­ные предстолкновительные корреляции, которые должны нарушиться позднее. Скачок H-функции соответствует энтропии, или информационной цене, которую нам при­ходится платить.
Итак, мы получаем адекватное представление вто­рого начала: в любой момент времени H-функция убы­вает (энтропия возрастает). Единственным исключением является точка t0: H-функция претерпевает в ней скачок в тот самый момент, когда система открыта. Лишь воз­действуя на систему извне, можно «обратить» скоро­сти.
Нельзя не отметить еще одно важное обстоятельство: при t=t0 новая H-функция принимает два различных значения, одно — для системы до обращения скоростей, другое — для системы после обращения скоростей. Энт­ропия системы до обращения и после обращения скоро­стей различна. Это напоминает ситуацию, происходя­щую при «преобразовании пекаря», когда сжимающий­ся и растягивающийся слои — скорости, переходящие друг в друга при обращении.
Предположим, что, прежде чем производить обраще­ние скоростей, мы достаточно долго выжидаем. В этом случае послестолкновительные корреляции имели бы произвольный радиус и энтропийная цена за обращение скоростей была бы непомерно велика. А поскольку об­ращение скоростей стало бы нам «не по карману», его исключили бы. На физическом языке это означает, что второе начало запрещает устойчивые предстолкнови­тельные корреляции на больших расстояниях.
Поразительна аналогия с макроскопическим описа­нием второго начала. Тепло и механическая энергия эк­вивалентны с точки зрения сохранения энергии (см. гл. 4 и 5), но отнюдь не второго начала. Кратко говоря, механическая энергия более «высокого сорта» (более когерентна), чем тепло, и всегда может быть превраще­на в тепло. Обратное неверно. Аналогичное различие существует на микроскопическом уровне между столк­новениями и корреляциями. С точки зрения динамики столкновения и корреляции эквивалентны. Столкнове­ния порождают корреляции, а корреляции могут разру­шать последствия столкновений. Но между столкнове­ниями и корреляциями имеется существенное различие. Мы можем управлять столкновениями и порождать
354


корреляции, но мы не в состоянии так управлять корреляциями, чтобы уничтожить последствия, вызванные столкновениями в системе. Этого существенного разли­чия недостает в динамике, но его можно учесть в тер­модинамике. Следует заметить, что термодинамика нигде не вступает в конфликт с динамикой. Термодина­мика вносит важный дополнительный элемент в наше понимание физического мира.
8. Энтропия как принцип отбора
Нельзя не удивляться тому, как сильно микроскопи­ческая теория необратимых процессов напоминает тра­диционную макроскопическую теорию. И в той, и в дру­гой теории энтропия имеет негативный аспект. В мак­роскопической теории энтропия запрещает некоторые процессы, например перетекание тепла от холодного предмета к теплому. В микроскопической теории энтро­пия запрещает некоторые классы начальных условий. Различие между тем, что запрещено, и тем, что разре­шено, поддерживается во времени законами динамики. Из негативного аспекта возникает позитивный: сущест­вование энтропии вместе с ее вероятностной интерпре­тацией. Необратимость не возникает более, как чудо, на некотором макроскопическом уровне. Макроскопическая необратимость лишь делает зримой ориентированную во времени поляризованную природу того мира, в котором мы живем.
Как мы уже неоднократно подчеркивали, в природе существуют системы с обратимым поведением, допус­кающие полное описание в рамках законов классической или квантовой механики. Но большинство интересую­щих нас систем, в том числе все химические и, следова­тельно, все биологические системы, ориентировано во времени на макроскопическом уровне. Их отнюдь не иллюзорная однонаправленность во времени отражает нарушение временной симметрии на микроскопическом уровне. Необратимость существует либо на всех уров­нях, либо не существует ни на одном уровне. Она не может возникнуть, словно чудо, при переходе с одного уровня на другой.
Мы также неоднократно отмечали, что необрати­мость является исходным пунктом других нарушений
355


симметрии. Например, по общему мнению, различие между частицами и античастицами могло возникнуть только в неравновесном мире. Это утверждение может быть распространено на многие другие ситуации. Впол­не вероятно, что с необратимостью через отбор подхо­дящей бифуркации связана и киральная симметрия. Многие из активно проводимых ныне исследований по­священы выяснению того, каким образом необратимость можно «вписать» в структуру материи.
Возможно, читатель обратил внимание на то, что при выводе микроскопической необратимости основной ак­цент мы делали на классической динамике. Но представ­ления о корреляциях и различии между пред- и послестолкновительными корреляциями применимы не только к классическим, но и к квантовым системам. Исследова­ние квантовых систем более сложно, чем исследование классических, что обусловлено различием между клас­сической и квантовой механикой. Даже малые класси­ческие системы, например система, состоящая из не­скольких твердых шаров, могут обладать внутренней необратимостью. Но для того чтобы достичь внутрен­ней необратимости в квантовой механике, необходимы большие системы (со многими степенями свободы), ко­торые встречаются в жидкости, газах или теории поля. Ясно, что исследование больших систем сопряжено со значительно большими математическими трудностями. Именно это не позволяет нам рассказать здесь о них подробнее. Тем не менее общая ситуация, с которой мы познакомились на примерах классических систем, сохра­няется и в квантовой теории: необратимость там возни­кает вследствие ограниченной применимости понятия волновой функции, обусловленной той или иной разно­видностью квантовой неустойчивости.
Применима в квантовой механике и идея о столкнове­ниях и корреляциях. Как и в классической теории, вто­рое начало запрещает существование в квантовой тео­рии дальнодействующих предстолкновительных корре­ляций.
Переход к вероятностному процессу сопровождается введением новых сущностей. Второе начало как эволю­ция от порядка к хаосу может быть понято именно в терминах этих новых понятий. Второе начало приво­дит к новой концепции материи, к описанию которой мы сейчас переходим.
356


9. Активная материя
Связав энтропию с динамической системой, мы тем самым возвращаемся к концепции Больцмана: вероят­ность достигает максимума в состоянии равновесия. Структурные единицы, которые мы используем при опи­сании термодинамической эволюции, в состоянии равно­весия ведут себя хаотически. В отличие от этого в слабо неравновесных условиях возникают корреляции и коге­рентность.
Здесь мы подходим к одному из наших главных вы­водов: на всех уровнях, будь то уровень макроскопи­ческой физики, уровень флуктуаций или микроскопиче­ский уровень, источником порядка является неравновесность. Неравновесность есть то, что порождает «поря­док из хаоса». Но, как мы уже упоминали, понятие порядка (или беспорядка) сложнее, чем можно было бы думать. Лишь в предельных случаях, например в разреженных газах, оно обретает простой смысл в со­ответствии с пионерскими трудами Больцмана.
Сравним еще раз динамическое описание физическо­го мира с помощью сил и полей и термодинамическое описание. Как уже упоминалось, нетрудно составить программы численных экспериментов, в которых взаимо­действующие частицы, первоначально распределенные случайным образом, в некоторый момент времени рас­полагаются в узлах правильной решетки. Динамическая интерпретация этого явления гласит: возникновение порядка обусловлено игрой сил взаимодействия между частицами. Термодинамическая интерпретация утверж­дает иное: наблюдается общая тенденция к установле­нию хаоса (система изолирована), но хаоса, проявляю­щегося в совершенно других структурных единицах (в рассматриваемой модели это — коллективные моды, охватывающие большое число частиц). В этой связи, по-видимому, уместно напомнить неологизм, введенный нами в гл. 6 для обозначения новых структурных еди­ниц, которые ведут себя некогерентно, несогласованно в состоянии равновесия системы; мы назвали их «гипнонами», или «сомнамбулами», поскольку в состоянии равновесия они движутся как во сне, «не замечая» друг друга. Каждый из гипнонов может обладать сколь угод­но сложной структурой (достаточно вспомнить о том, на­сколько сложны молекулы ферментов), но в состоянии
357


равновесия их сложность обращена «внутрь» и никак не проявляется «снаружи». Например, внутри молекулы существует интенсивное электрическое поле, но в раз­реженном газе этим полем можно пренебречь: оно ни­как не сказывается на поведении других молекул.
Одним из главных предметов исследования в совре­менной физике является проблема элементарных частиц. Известно, что элементарные частицы далеко не элемен­тарны. По мере того как мы поднимаемся по шкале энергий, перед нами открываются все новые и новые «слои» в структуре элементарных частиц. Но что такое элементарная частица? Можно ли считать, например, что планета Земля — элементарная частица? Разумеет­ся, нельзя, потому что часть энергии Земли приходится на ее взаимодействие с Солнцем, Луной и другими пла­нетами. Понятие же элементарной частицы подразуме­вает «автономию», с трудом поддающуюся описанию с помощью обычных понятий. Взять, например, хотя бы электроны и фотоны. При рассмотрении их мы сталки­ваемся с дилеммой: либо отдельные частицы не сущест­вуют (часть энергии «обобществлена» электронами и фотонами, т. е. приходится на коллективные моды сис­темы электронов и протонов), либо, если исключить взаимодействие, существуют свободные (не взаимодей­ствующие) электроны и фотоны. Даже если бы мы зна­ли, как можно каждую частицу заэкранировать от дру­гих, исключение взаимодействия представляется слиш­ком радикальной мерой. Электроны поглощают или ис­пускают фотоны. Выход из создавшегося затруднения мог бы состоять в переходе к физике процессов. В этом случае структурные единицы (элементарные частицы) соответствовали бы определению гипнонов, так как в со­стоянии равновесия они ведут себя независимо. Мы надеемся, что наша гипотеза вскоре получит эксперимен­тальное подтверждение. Особенно подкрепило бы ее об­наружение стрелы времени, выражающей глобальную эволюцию природы, непосредственно во взаимодействии атомов с фотонами (или другими нестабильными элемен­тарными частицами).
Широко обсуждается в современной науке и пробле­ма космической эволюции. Каким образом мир мог быть столь «упорядоченным» на первых этапах эволю­ции после большого взрыва? Тем не менее порядок не­обходим, если мы хотим понять космическую эволюцию
358


как постепенное движение от порядка к хаосу.
Для удовлетворительного решения проблемы нам не­обходимо знать, адекватны ли гипноны экстремальным условиям с колоссальными температурами и плотностью материи, характерными для ранних этапов развития Вселенной. Разумеется, одной термодинамике не под силу решить эти проблемы, как не в силах решить их и одна динамика, даже в высшей своей форме — теории поля. Именно поэтому объединение динамики и термо­динамики открывает новые перспективы. Независимо от всяких прогнозов нельзя не удивляться разительным переменам, происшедшим в естествознании с тех пор, как было сформулировано второе начало (т. е. за какие-нибудь сто пятьдесят лет). Сначала физикам казалось, будто атомистические представления противоречат по­нятию энтропии. Больцман пытался спасти механисти­ческое мировоззрение ценой сведения второго начала к вероятностному утверждению, весьма важному для практических приложений, но не имеющему фундамен­тального значения. Мы не знаем, каким будет оконча­тельное решение, но современная ситуация коренным образом отличается от ситуации полуторавековой дав­ности. Материя теперь не есть нечто данное. В современ­ной теории она «конструируется» из более элементарного понятия в терминах квантованных полей. В этом конст­руировании важная роль отводится термодинамическим понятиям (необратимости, энтропии)*.
Подведем итоги достигнутого. В первой и второй части нашей книги неоднократно подчеркивалось, что на уровне макроскопических систем первостепенное зна­чение имеет второе начало (и связанное с ним понятие необратимости).
В третьей части мы стремились показать, что в на­стоящее время открывается возможность выхода за рамки макроскопического уровня, и продемонстриро­вать, что означает необратимость на микроскопическом уровне.
Переход от макроскопического уровня к микроско­пическому требует коренного пересмотра наших взгля­дов на фундаментальные законы физики. Только пол­ностью избавившись от классических представлений
* Речь, очевидно, идет о понятии материи в специально науч­ном, физическом, а не философском смысле. — Прим. перев.
359


(как в случае достаточно нестабильных систем), мы можем говорить о «внутренней случайности» и «внут­ренней необратимости».
Для таких систем мы можем ввести новое расширен­ное описание времени с помощью оператора Т. Как бы­ло показано на примере «преобразования пекаря» (гл. 9 «От случайности к необратимости»), этот оператор имеет в качестве собственных функций разбиения фазо­вого пространства (см. рис. 39).
Таким образом, ситуация, с которой мы сталкиваем­ся, очень напоминает ситуацию, сложившуюся в кванто­вой механике. Существуют два возможных описания: либо мы выбираем точку в фазовом пространстве и тог­да не знаем, какому разбиению она принадлежит и, сле­довательно, каков ее внутренний возраст, либо мы зна­ем внутренний возраст, но тогда нам известно только разбиение, а не точная локализация точки.
После того как мы ввели внутреннее время Т, энтро­пию можно использовать как принцип отбора для пе­рехода от начального описания с помощью функции распределения r к новому описанию с помощью функ­ции распределения r^[1], которая обладает внутренней стре­лой времени, согласующейся со вторым началом термо­динамики. Основное различие между r и r^проявляется в разложениях этих функций по собственным функциям оператора Т (см. гл. 7 «Рождение квантовой механи­ки»). В функцию r все внутренние возрасты независи­мо от того, принадлежат ли они прошлому или будуще­му, входят симметрично. В функции r^ в отличие от r прошлое и будущее играют различные роли: прошлое входит в r^, а будущее остается неопределенным. Асимметрия прошлого и будущего означает, что сущест­вует стрела времени. Новое описание обладает важной особенностью, заслуживающей того, чтобы ее отметить: начальные условия и законы изменения перестают быть независимыми. Состояние со стрелой времени возникает под действием закона, также наделенного стрелой вре­мени и трансформирующего состояние, но сохраняющего стрелу времени.
В нашей книге мы рассматривали главным образом классическую ситуацию20. Но все сказанное применимо и к квантовой механике, в которой ситуация несколько сложнее, поскольку существование постоянной Планка
360


лишает смысла понятие траектории и тем самым при­водит к своего рода делокализации в фазовом простран­стве. Таким образом, квантовомеханическая делокализация накладывается на делокализацию, вызванную необратимостью.
В гл. 7 мы подчеркивали, что две великие револю­ции в физике XX в. связаны с включением в фундамен­тальную структуру физики двух запретов, чуждых клас­сической механике: невозможности распространения сигналов со скоростью больше скорости света и невоз­можности одновременного измерения координат и им­пульса.
Неудивительно, что и второе начало, также ограни­чивающее наши возможности активного воздействия на материю, приводит к глубоким изменениям в структуре основных законов физики.
Нам бы хотелось закончить третью часть нашей кни­ги предостережением. Феноменологическую теорию не­обратимых процессов ныне можно считать вполне сло­жившейся. В отличие от нее микроскопическая теория необратимых процессов делает лишь первые шаги. Когда читалась верстка этой книги, в нескольких лабо­раториях подготавливались эксперименты для проверки правильности микроскопической теории. Пока эти экс­перименты не будут выполнены, умозрительный элемент в новой теории неизбежен.
361


ЗАКЛЮЧЕНИЕ. С ЗЕМЛИ НА НЕБО: НОВЫЕ ЧАРЫ ПРИРОДЫ
В любой попытке сблизить обла­сти опыта, относящиеся к духовной и физической сторонам нашей натуры, время занимает ключевую позицию.
А. С. Эддингтон1
1. Открытая наука
Наука, несомненно, подразумевает активное воздей­ствие на природу, но вместе с тем она является попыт­кой понять природу, глубже проникнуть в вопросы, ко­торые задавало не одно поколение людей. Один из этих вопросов звучит как лейтмотив (почти как наважде­ние), на страницах этой книги, как, впрочем, и в исто­рии естествознания и философии. Речь идет об отноше­нии бытия и становления, неизменности и изменения.
В начале нашей книги мы упоминали о вопросах, над которыми размышляли еще философы-досократики. Не накладывается ли изменение, порождающее все ве­щи и обрекающее их на гибель, извне на некую инерт­ную материю? Не является ли изменение результатом внутренней независимой активности материи? Необхо­дима ли внешняя побуждающая сила или становление внутренне присуще материи? Естествознание XVII в. встало в оппозицию к биологической модели спонтан­ной и автономной организации живых существ. Но тогда же естествознанию пришлось столкнуться с другой фун­даментальной альтернативой. Является ли природа внут­ренне случайной? Не является ли упорядоченное пове­дение лишь преходящим результатом случайных столк­новений атомов и их неустойчивых соединении?
Одним из главных источников неотразимой привле­кательности современной науки было ощущение, что она открывала вечные законы, таившиеся в глубине нескон­чаемых преобразований природы, и тем навсегда изгна­ла время и становление. Открытие порядка в природе рождало чувство интеллектуальной уверенности. Вот что пишет об этом французский социолог Леви-Брюль:
362


«У нас существует постоянное ощущение интеллек­туальной уверенности, столь прочной, что, кажется, не­что не в состоянии ее поколебать. Ибо даже если пред­положить, что мы внезапно наткнулись на какое-нибудь совершенно таинственное явление, причины которого со­вершенно ускользают от нас, то мы все же совершенно убеждены в том, что наше неведение является временным, что такие причины у данного явления существуют, что раньше или позже они будут вскрыты. Таким обра­зом, природа, среди которой мы живем, является для нас, так сказать, уже заранее «интеллектуализированной», умопостигаемой: она вся — порядок и разум, как и тот ум, который ее мыслит и среди которой он дви­жется. Наша повседневная деятельность вплоть до са­мых незначительных своих деталей предполагает пол­ную и спокойную веру в неизменность законов приро­ды»2.
Ныне наша уверенность «в рациональности» природы оказалась поколебленной отчасти в результате бурного роста естествознания в наше время. Как было отмечено в «Предисловии», наше видение природы претерпело коренные изменения. Ныне мы учитываем такие аспек­ты изменения, как множественность, зависимость от времени и сложность. Некоторые из сдвигов, происшед­ших в наших взглядах на мир, описаны в этой книге.
Мы искали общие, всеобъемлющие схемы, которые допускали бы описание на языке вечных законов, но обнаружили время, события, частицы, претерпевающие различные превращения. Занимаясь поиском симметрии, мы с удивлением обнаружили на всех уровнях — от эле­ментарных частиц до биологии и экологии — процессы, сопровождающиеся нарушением симметрии. Мы описа­ли в нашей книге столкновение между динамикой с при­сущей ей симметрией во времени и термодинамикой, для которой характерна односторонняя направлен­ность времени.
На наших глазах возникает новое единство: необра­тимость есть источник порядка на всех уровнях. Необра­тимость есть тот механизм, который создает порядок из хаоса. Как могли столь радикальные изменения в на­ших взглядах на природу произойти за сравнительно короткое время — на протяжении последних десятиле­тий? Мы убеждены, что столь быстрая и глубокая пе­рестройка наших взглядов на мир свидетельствует о
363


значительной роли, отводимой в нашем восприятии при­роды построениям нашего разума. Эту мысль велико­лепно выразил Нильс Бор в беседе с Вернером Гейзенбергом во время экскурсии в замок Кронберг:
«Разве не странно, как изменяется этот замок, стоит лишь на миг вообразить, что здесь жил Гамлет? Как ученые, мы твердо знаем, что замок построен из кам­ней, и восхищаемся тем, как искусно сложил их архи­тектор. Камни, зеленая, потемневшая от времени крыша, деревянная резьба в церкви — вот и весь замок. Ничто из названного мной не должно было бы измениться от того, что здесь жил Гамлет, и тем не менее все пол­ностью изменяется. Стены и крепостные валы начинают говорить на другом языке... Мы знаем о Гамлете лишь то, что его имя встречается в хронике XIII в. ...Но каж­дый знает, какие вопросы Шекспир заставил его зада­вать, в какие глубины человеческого духа он проник, поэтому Гамлет не мог не обрести свое место на зем­ле — здесь, в Кронберге»3.
Вопрос о природе реальности был центральным в увлекательном диалоге между Эйнштейном и Таго­ром4. Эйнштейн подчеркивал, что наука должна быть. независима от существования наблюдателя. Такая пози­ция привела его к отрицанию реальности времени как необратимости, эволюции. Тагор же утверждал, что, даже если бы абсолютная истина могла существовать, она была бы недоступна человеческому разуму. Инте­ресно, что в настоящее время эволюция науки происхо­дит в направлении, указанном великим индийским поэтом. Что бы мы ни называли реальностью, она от­крывается нам только в процессе активного построения, в котором мы участвуем. По меткому выражению Д. С. Котари, «простая истина состоит в том, что ни измерение, ни эксперимент, ни наблюдение невозможны без соответствующей теоретической схемы»5.
2. Время и времена
На протяжении более трех столетий в физике господ­ствовало мнение о том, что время по существу представ­ляет собой геометрический параметр, позволяющий описывать последовательность динамических состояний. Эмиль Мейерсон6 предпринял попытку представить ис-
364


торию современной науки как постепенную реализацию того, что он считал основной категорией человеческого разума: сведения различного и изменяющегося к тождественному и неизмененному. Время подлежало полному исключению.
Ближе к нашему времени выразителем той же тенденции в формулировке физики без ссоотнесения с необ­ратимостью на фундаментальном уровне стал Эйнштейн.
Историческая сцена разыгралась 6 апреля 1922 г.7 в Париже на заседании Философского общества (Societe de Philosophiе), на котором Анри Бергсон в полемике с Эйнштейном пытался отстаивать множественность со­существующих «живых» времен. Ответ Эйнштейна был бесповоротен: он категорически отверг «время филосо­фов». Живой опыт не может спасти то, что отрицается наукой.
Реакция Эйнштейна в какой-то мере была обосно­ванна. Бергсон явно не понимал теорию относительно­сти Эйнштейна. Но отношение Эйнштейна к Бергсону не было свободно от предубеждения: duree (длитель­ность), бергсоновское «живое» время относится к числу фундаментальных, неотъемлемых свойств становления, необратимости, которую Эйнштейн был склонен прини­мать лишь на феноменологическом уровне. Мы уже упо­минали о беседах Эйнштейна с Карнапом (см. гл. 7). Для Эйнштейна различия между прошлым, настоящим и будущим лежали за пределами физики.
В этой связи большой интерес представляет перепис­ка между Эйнштейном и одним из ближайших друзей его молодости в цюрихский период Микеланджело (Ми­шелем) Бессо8. Инженер по профессии и естествоиспы­татель по призванию, Бессо в последние годы жизни все больше интересовался философией, литературой и проблемами, затрагивающими самую суть человеческого бытия. В своих письмах к Эйнштейну он непрестанно задавал одни и те же вопросы. Что такое необрати­мость? Как она связана с законами физики? И Эйн­штейн неизменно отвечал Бессо с терпением, которое он выказывал только к своему ближайшему другу: необра­тимость есть лишь иллюзия, обусловленная «неверны­ми» начальными условиями. Диалог двух друзей про­должался многие годы до кончины Бессо, который был старше Эйнштейна на восемь лет и умер за несколько месяцев до смерти Эйнштейна. В последнем письме
365


к сестре и сыну Бессо Эйнштейн писал: «Своим проща­нием с этим удивительным миром он [Мишель] ...не­сколько опередил меня. Но это ничего не значит. Для нас, убежденных физиков, различие между прошлым, настоящим и будущим — не более чем иллюзия, хотя и весьма навязчивая». В эйнштейновском стремлении по­стичь фундаментальные законы физики познаваемое отождествлялось с незыблемым.
Почему Эйнштейн столь упорно противился введе­нию необратимости в физику? Об этом можно лишь до­гадываться. Эйнштейн был очень одиноким человеком. У него было мало друзей, мало сотрудников, мало сту­дентов. Он жил в мрачную эпоху: две мировые войны, разгул антисемитизма. Неудивительно, что для Эйнштей­на наука стала своего рода средством преодоления бур­лящего потока времени. Сколь разителен контраст меж­ду установкой на «безвременную» науку и научными трудами самого Эйнштейна! Его мир полон наблюдате­лей-ученых, которые находятся в различных системах отсчета, движущихся относительно друг друга, или на различных звездах, отличающихся своими гравитацион­ными полями. Все эти наблюдатели обмениваются ин­формацией, передаваемой с помощью сигналов по всей Вселенной. Эйнштейна интересовал лишь объективный смысл этой коммуникации. Однако не будет преувели­чением сказать, что Эйнштейн, по-видимому, был весь­ма близок к признанию тесной взаимосвязи между пере­дачей сигналов и необратимостью. Коммуникация зало­жена в самой основе наиболее обратимого из процес­сов, доступных человеческому разуму, — прогрессивного роста знания.

3. Энтропийный барьер
В гл. 9 мы описали второе начало как принцип от­бора: каждому начальному условию соответствует не­которая «информация». Допустимыми считаются все начальные условия, для которых эта информация конеч­на. Но для обращения времени необходима бесконеч­ная информация; мы не можем создавать ситуации, ко­торые переносили бы нас в прошлое! Чтобы предотвра­тить путешествия в прошлое, мы возвели энтропийный барьер.
Нельзя не отметить интересную аналогию между эн-
366


тропийным барьером и представлением о скорости света как о максимальной скорости передачи сигналов. Суще­ствование предельной скорости распространения сигна­лов — один из основных постулатов теории относитель­ности Эйнштейна (см. гл. 7). Такой барьер необходим для придания смысла причинности. Предположим, что мы покинули бы Землю на фантастическом космическом корабле, способном развивать сверхсветовую скорость. Тогда мы смогли бы обгонять световые сигналы и тем самым переноситься в свое собственное прошлое. Энтро­пийный барьер также необходим для того, чтобы при­дать смысл передаче сигналов. Мы уже упоминали о том, что необратимость и передача сигналов тесно свя­заны между собой. Норберт Винер убедительно показал, к каким ужасным последствиям привело бы существова­ние двух направлений времени. Следующий отрывок из знаменитой «Кибернетики» Винера заслуживает того, чтобы привести его:
«Очень интересный мысленный опыт — вообразить разумное существо, время которого течет в обратном на­правлении по отношению к нашему времени. Для тако­го существа никакая связь с нами не была бы возмож­на. Сигнал, который оно послало бы нам, дошел бы к нам в логическом потоке следствий — с его точки зре­ния — и причин — с нашей точки зрения. Эти причины уже содержались в нашем опыте и служили бы есте­ственным объяснением его сигналов без предположения о том, что разумное существо послало сигнал. Если бы оно нарисовало нам квадрат, остатки квадрата пред­ставились бы предвестником последнего и квадрат ка­зался бы любопытной кристаллизацией этих остатков, всегда вполне объяснимой. Его значение казалось бы столь же случайным, как те лица, которые представля­ются при созерцании гор и утесов. Рисование квадрата показалось бы катастрофической гибелью квадрата — внезапной, но объяснимой естественными законами. У этого существа были бы такие же представления о нас. Мы можем, сообщаться только с мирами, имею­щими такое же направление времени»9.
Именно энтропийный барьер гарантирует единствен­ность направления времени, невозможность изменить ход времени с одного направления на противополож­ное.
На страницах нашей книги мы неоднократно обраща-
367


ли внимание на важность доказательства несуществования. Эйнштейн первым осознал важность такого рода доказательства, положив в основу понятия относитель­ной одновременности невозможность передачи инфор­мации со скоростью, большей, чем скорость света. Вся теория относительности строится вокруг исключения «ненаблюдаемых» одновременностей. Эйнштейн усматри­вал в этом шаге аналогию с запретом вечного двигате­ля в термодинамике. Однако некоторые современники Эйнштейна, например Гейзенберг, указывали на важное различие между несуществованием вечного двигателя и невозможностью передачи сигналов со сверхсветовы­ми скоростями. В термодинамике речь идет об утверж­дении, что некоторая ситуация не встречается в природе; в теории относительности утверждается невозмож­ность некоторого наблюдения, т. е. своего рода диалога, коммуникации между природой и тем, кто ее описы­вает. Воздвигнув квантовую механику на основе запре­та всего, что квантовый принцип неопределенности оп­ределяет как ненаблюдаемое, Гейзенберг считал себя следующим примеру Эйнштейна, несмотря на скепти­цизм, с которым Эйнштейн встретил квантовую меха­нику.
До тех пор пока мы считали, что второе начало вы­ражает лишь практическую невероятность того или ино­го процесса, оно не представляло теоретического инте­реса. У нас всегда оставалась надежда, что, достаточно поднаторев в технике, нам все же удастся преодолеть запрет, налагаемый вторым началом. Но, как мы виде­ли, этим надеждам не суждено было сбыться. Корень всех «бед» — в отборе допустимых состояний. Лишь после того, как возможные состояния отобраны, всту­пает в силу вероятностная интерпретация Больцмана. Именно Больцман впервые установил, что возрастание энтропии соответствует возрастанию вероятности, бес­порядка. Но интерпретация Больцмана основывается на предпосылке, что энтропия есть принцип отбора, на­рушающий временную симметрию. Любая вероятност­ная интерпретация становится возможной лишь после того, как временная симметрия нарушена.
Несмотря на то что мы многое почерпнули из больцмановской интерпретации энтропии, наша интерпретация второго начала зиждется на совсем другой основе, поскольку мы имеем последовательность
368


второе начало как принцип отбора, приводящий к нарушению симметрии
?
вероятностная интерпретация
?
необратимость как усиление беспорядка
Только объединение динамики и термодинамики с помощью введения нового принципа отбора придает второму началу фундаментальное значение эволюцион­ной парадигмы естественных наук. Этот пункт настолько важен, что мы остановимся на нем подробнее.
4. Эволюционная парадигма
Мир динамики, классической или квантовой, — мир обратимый. В гл. 8 мы уже отмечали, что в таком мире эволюция невозможна; «информация», представимая в динамических структурных единицах, остается постоян­ной. Тем большее значение имеет открывающаяся те­перь возможность установить эволюционную парадигму в физике, причем не только на макроскопическом, но и на всех уровнях описания. Разумеется, для этого необ­ходимы особые условия: мы видели, что сложность си­стемы должна превышать определенный порог. Впрочем, необычайная важность необратимых процессов свиде­тельствует о том, что большинство рассматриваемых нами систем удовлетворяет этому требованию. Приме­чательно, что восприятие ориентированного времени возрастает по мере того, как повышается уровень био­логической организации и достигает, по-видимому, куль­минационной точки в человеческом сознании.
Насколько велика общность этой эволюционной па­радигмы? Она охватывает изолированные системы, эволюционирующие к хаосу, и открытые системы, эво­люционирующие ко все более высоким формам слож­ности. Неудивительно, что метафора энтропии соблазни­ла авторов некоторых работ по социальным и экономи­ческим проблемам. Ясно, что, применяя естественно­научные понятия к социологии или экономике, необхо­димо соблюдать осторожность. Люди — не динамические объекты, и переход к термодинамике недопустимо фор­мулировать как принцип отбора, подкрепляемый дина­микой. На человеческом уровне необратимость обретает более глубокий смысл, который для нас неотделим от смысла нашего существования. С этой точки зрения
369


важно отметить, что во внутреннем ощущении необра­тимости мы не усматриваем более субъективное впечат­ление, отчуждающее нас от внешнего мира, а видим в нем своего рода отличительный признак нашего уча­стия в мире, находящемся во власти эволюционной па­радигмы.
Космологические проблемы известны своей необычай­ной трудностью. Мы до сих пор не знаем, какую роль играла гравитация на ранних этапах развития Вселен­ной. Возможна ли формулировка второго начала, вклю­чающая в себя гравитацию, или между термодинамикой и гравитацией существует своего рода диалектический баланс? Необратимость заведомо не могла бы появить­ся внезапно в мире с обратимым временем. Происхож­дение необратимости — проблема космологическая, и для решения ее необходимо проанализировать развитие Вселенной на ранних стадиях. Мы ставим перед собой более скромную задачу. Что означает необратимость сегодня? Как она связана с положением, которое мы за­нимаем в описываемом нами мире?

5. Актеры и зрители
Отрицание физикой становления породило глубокий раскол внутри самого естествознания и привело к от­чуждению его от философии. То, что первоначально бы­ло рискованной ставкой в духе господствовавшей ари­стотелевской традиции, со временем превратилось в дог­матическое утверждение, направленное против тех (хи­миков, биологов, медиков), для кого в природе сущест­вовало качественное многообразие. В конце XIX в. этот конфликт, протекавший внутри естествознания, был пе­ренесен на отношение между естествознанием и осталь­ной культурой, в особенности между естествознанием и философией. В гл. 3 мы рассказали об этом аспекте истории западноевропейской мысли с ее непрестанной борьбой за новое единство знания. «Живое» время, Lebenswelt (жизненный мир) представителей феномено­логии, противостоящий объективному времени физики, возможно, отвечали потребности возведения защитных сооружений, способных противостоять вторжению точ­ного естествознания.
Мы убеждены в том, что ныне эпоха безапелляцион­ных утверждений и взаимоисключающих позиций мино­вала. Физики не обладают более привилегией на экстер-
370


риториальность любого рода. Как ученые, они принадле­жат своей культуре и в свою очередь вносят немалый вклад в ее развитие. Мы достигли ситуации, близкой к той, которая была давно осознана в социологии. Еще Мерло-Понти подчеркивал необходимость не упускать из виду то, что он называл «истиной в длиной ситуации»:
«До тех пор пока мой идеал — абсолютный наблюда­тель, знание, безотносительное к какой бы то ни было точке зрения, моя ситуация является лишь источником ошибок. Но стоит лишь мне осознать, что через нее я связан со всеми действиями и всем знанием, имеющи­ми смысл для меня, и что она постепенно наполняется всем могущим иметь смысл для меня, и мой контакт с социальным в ограниченности моего бытия открывает­ся мне как исходный пункт всякой, в том числе и науч­ной, истины, а поскольку мы, находясь внутри истины и не имея возможности выбраться из нее наружу, имеем некоторое представление об истине, все, что я могу сделать, — это определить истину в рамках данной си­туации»10.
Именно этой концепции знания, объективного и дея­тельного, мы придерживались в нашей книге.
В своих «Темах»11 Мерло-Понти утверждал также, что «философские» открытия естествознания, концепту­альные преобразования его основ нередко происходят в результате негативных открытий, служащих толчком к пересмотру сложившихся взглядов и отправным пунк­том для перехода к противоположной точке зрения. До­казательства невозможности, или несуществования (будь то в теории относительности, квантовой механике или термодинамике), показали, что природу невозможно описывать «извне», с позиций зрителя. Описание при­роды — живой диалог, коммуникация, и она подчинена ограничениям, свидетельствующим о том, что мы — мак­роскопические существа, погруженные в реальный фи­зический мир.
Ситуацию, какой она представляется нам сегодня, можно условно изобразить в виде следующей диаг­раммы:
наблюдатель ® динамика
­
диссипативные структуры ?
­
необратимость ¬ случайность ¬ неустойчивые динамические системы
371


Мы начинаем с наблюдателя, измеряющего коорди­наты и импульсы и исследующего, как они изменяются во времени. В ходе своих измерений он совершает от­крытие: узнает о существовании неустойчивых систем и других явлений, связанных с внутренней случайностью и внутренней необратимостью, о которых мы говорили в гл. 9. Но от внутренней необратимости и энтропии мы переходим к диссипативным структурам в сильно неравновесных системах, что позволяет нам понять ориентированную во времени деятельность наблюдателя.
Не существует научной деятельности, которая не была бы ориентированной во времени. Подготовка экс­перимента требует проведения различия между «до» и «после». Распознать обратимое движение мы можем только потому, что нам известно о необратимости. Из нашей диаграммы видно, что, описав полный круг, мы вернулись в исходную точку и теперь видим себя как неотъемлемую часть того мира, который мы описываем.
Наша схема не априорна — она выводима из некото­рой логической структуры. Разумеется, в том, что в при­роде реально существуют диссипативные структуры, нет никакой логической необходимости. Однако непрелож­ный «космологический факт» состоит в следующем: для того чтобы макроскопический мир был миром обитае­мым, в котором живут «наблюдатели», т. е. живым миром, Вселенная должна находиться в сильно нерав­новесном состоянии. Таким образом, наша схема соот­ветствует не логической или эпистемологической истине, а относится к нашему состоянию макроскопических существ в сильно неравновесном мире. Наша схема об­ладает еще одной существенной отличительной особен­ностью: она не предполагает никакого фундаментально­го способа описания. Каждый уровень описания следует из какого-то уровня и в свою очередь влечет за собой другой уровень описания. Нам необходимо множество уровней описания, ни один из которых не изолирован от других, не претендует на превосходство над другими.
Мы уже отмечали, что необратимость — явление от­нюдь не универсальное. Эксперименты в условиях термо­динамического равновесия мы можем производить лишь в ограниченных областях пространства. Кроме того, зна­чимость временных масштабов варьируется в зависи­мости от объекта. Камень подвержен изменениям на от­резке времени масштаба геологической эволюции. Че-
372


ловеческие сообщества, особенно в наше время, имеют свои, существенно более короткие временные масштабы. Мы уже упоминали о том, что необратимость начинает­ся тогда, когда сложность эволюционирующей системы превосходит некий порог. Примечательно, что с увеличе­нием динамической сложности (от камня к человеческо­му обществу) роль стрелы времени, эволюционных рит­мов возрастает. Молекулярная биология показала, что внутри клетки все живет отнюдь не однообразно. Одни процессы достигают равновесия, другие, регулируемые ферментами, протекают в сильно неравновесных усло­виях. Аналогичным образом стрела времени играет в окружающем нас мире самые различные роли. С этой точки зрения (с учетом ориентации во времени всякой активности) человек занимает в мире совершенно ис­ключительное положение. Особенно важным, как уже говорилось в гл. 9, мы считаем то, что необратимость, или стрела времени, влечет за собой случайность. «Вре­мя — это конструкция». Значение этого вывода, к ко­торому независимо пришел Валери12, выходит за рамки собственно естествознания.

6. Вихрь в бурлящей природе
В нашем обществе с его широким спектром «позна­вательных технологий» науке отводится особое место. Наука — это поэтическое вопрошание природы в том смысле, что поэт выступает одновременно и как созида­тель, активно вмешивающийся в природу и исследую­щий ее. Современная наука научилась с уважением от­носиться к изучаемой ею природе. Из диалога с при­родой, начатого классической наукой, рассматривавшей природу как некий автомат, родился совершенно другой взгляд на исследование природы, в контексте которого активное вопрошание природы есть неотъемлемая часть ее внутренней активности.
В начале «Заключения» мы уже говорили о том, что существовавшее некогда ощущение интеллектуальной уверенности было поколеблено. Ныне мы располагаем всем необходимым для того, чтобы спокойно обсудить, как соотносятся между собой наука (естествознание) и философия. Мы уже упоминали о конфликте между Эйнштейном и Бергсоном. В некоторых сугубо физиче­ских вопросах Бергсон, несомненно, заблуждался, но
373


его задача как философа состояла в том, чтобы попы­таться выявить в физике те аспекты времени, которым, по его мнению, физики пренебрегали.
Анализ следствий и согласованности фундаменталь­ных понятий, являющихся одновременно физическими и философскими, несомненно, сопряжен с определенным риском, но диалог между естествознанием и философией может оказаться весьма плодотворным. В этом нетрудно убедиться даже при беглом знакомстве с идеями Лейб­ница, Пирса, Уайтхеда и Лукреция.
Лейбниц ввел необычное понятие «монад» — не сооб­щающихся с внешним миром и между собой физических сущностей, «не имеющих окон, через которые что-нибудь может попасть в них или выйти из них наружу». От взглядов Лейбница нередко просто отмахивались как от безумных. Но, как мы видели в гл. 2, существование преобразования, допускающего описание с помощью не­которых невзаимодействующих элементов, — свойство, присущее всем интегрируемым системам. Эти невзаимо­действующие элементы при движении переносят свое собственное начальное состояние, но в то же время, по­добно монадам, сосуществуют со всеми другими элемен­тами в «предустановленной» гармонии: в таком пред­ставлении состояние каждого элемента, хотя оно пол­ностью самоопределено, до мельчайших деталей отра­жает состояние всей системы.
С этой точки зрения все интегрируемые системы можно рассматривать как «монадные» системы. В свою очередь монадология Лейбница допускает перевод на язык динамики: Вселенная есть интегрируемая систе­ма13. Таким образом, монадология является наиболее последовательным описанием Вселенной, из которого исключено всякое становление. Обращаясь к попыткам Лейбница понять активность материи, мы сможем луч­ше ощутить глубину пропасти, отделяющей наше время от XVII в. Естествознание еще не располагало тогда не­обходимыми средствами. На основе чисто механической модели мира Лейбниц не мог построить теорию, объяс­няющую активность материи. Тем не менее некоторые из его идей, например тезис о том, что субстанция есть активность или что Вселенная есть взаимосвязанное це­лое, сохранили свое значение и в наше время обрели но­вую форму.
К сожалению, мы не можем уделить достаточно места
374


трудам Чарлза С. Пирса. Приведем лишь один весьма примечательный отрывок:
«Вы все слышали о диссипации энергии. Обнаруже­но, что при любых трансформациях энергии часть ее превращается в тепло, а тепло всегда стремится выров­нять температуру. Под воздействием собственных необходимых законов энергия мира иссякает, мир движется к своей смерти, когда повсюду перестанут действовать силы, а тепло и температура распределяется равномерно...
Но хотя ни одна сила не может противостоять этой тенденции, случайность может и будет препятствовать ей. Сила в конечном счете диссипативна, случайность в конечном счете копцентративна. Диссипация энергии по непреложным законам природы в силу тех же законов сопровождается обстоятельствами, все более и более благоприятными для случайной концентрации энергии. Неизбежно наступит такой момент, когда две тенден­ции уравновесят друг друга. Именно в таком состоя­нии, несомненно, находится ныне весь мир»14.
Как и монадология Лейбница, метафизика Пирса бы­ла сочтена еще одним примером того, насколько филocoфия оторвана от реальности. Ныне же идеи Пирса пред­стают в ином свете — как пионерский шаг к пониманию плюрализма, таящегося в физических законах.
Философия Уайтхеда переносит нас на другой конец спектра. Для Уайтхеда бытие неотделимо от становле­ния. В своем труде «Процесс и реальность» он утверж­дал: «Выяснение смысла высказывания «все течет» снова есть одна из главных задач метафизики»15. В наше вре­мя и физика, и метафизика фактически совместно при­ходят к концепции мира, в которой процесс становления является первичной составляющей физического бытия и (в отличие от монад Лейбница) существующие эле­менты могут взаимодействовать и, следовательно, рож­даться и уничтожаться.
Упорядоченный мир классической физики или учение о параллельных изменениях в монадологии Лейбница напоминают столь же параллельное, упорядоченное и вечное падение атомов Лукреция в бесконечно протя­женном пространстве. Мы уже упоминали о клинамене и неустойчивости ламинарных течений. Но можно пойти и дальше. Как отметил Серр16, у Лукреция бесконечное падение служит моделью, на которой зиждется наша
375


концепция естественного происхождения возмущения, служащего толчком к рождению вещей. Если бы верти­кальное падение не было «беспричинно» возмущаемо клинаменом (в результате чего равномерно падавшие атомы начинают сталкиваться и образовывать скопле­ния), не возникла бы природа. Все, что воспроизводи­лось бы, было лишь многократным повторением связи между эквивалентными причинами и следствиями, под­чиняющимися законам рока (foedera fati).
Denique si semper motus conectitur omnis
et uetere exoritur [semper] novus ordine certo
nec declinando faciunt primordia motus
principium quoddam qiod fati foedera rumpat,
ex infinito ne causam causa sequatur,
libera per terras unde haec animantibus exstat..?17
Лукреций, можно сказать, «изобрел» клинамен в том же смысле, в каком «изобретаются» археологические объекты: прежде чем начинать раскопки, необходимо «угадать», что развалины древнего сооружения находят­ся в данном месте. Если бы существовали одни лишь обратимые траектории, то откуда бы взялись необрати­мые процессы, производимые нами и служащие в приро­де источником нашего опыта субъективного пережива­ния? Там, где утрачивают определенность траектории, где перестают действовать foedera fati, управляющие упорядоченным и монотонным миром детерминистиче­ского изменения, начинается природа. Там начинается и новая наука, описывающая рождение, размножение и гибель естественных объектов. «На смену физике паде­ния, повторения строгой причинной связи пришла сози­дающая наука об изменении и сопутствующих ему усло­виях»18. На смену законам рока — foedera fati — при­шли законы природы — foedera naturae, — означавшие, как подчеркивал Серр, и законы природы, т. е. локаль­ные, особые, исторические зависимости, и союз, как не­которую форму контакта с природой.
Так в физике Лукреция мы снова обнаруживаем от­крытую нами в современном знании связь между акта­ми выбора, лежащими в основе физического описания, и философской, этической или религиозной концепцией положения, занимаемого человеком в природе. Физике универсальных зависимостей и взаимосвязей противо­поставляется другая наука, которая уже не стремится искоренить возмущение или случайность во имя закона
376


и неукоснительного подчинения предустановленному по­рядку. Классическая наука от Архимеда до Клаузиуса противостояла науке о хаотических и бифуркационных изменениях.
«Именно в этом греческая мудрость достигает одной из своих величайших вершин. Там, где человек пребыва­ет в окружающем мире и сам выходит из этого мира, находится среди окружающей его материи и сам сотво­рен из нее, он перестает быть чужестранцем и стано­вится другом, членом семьи, равным среди равных. Он заключает пакт с вещами. Наоборот, многие другие науки основаны на нарушении этого пакта. Человек чужд миру, рассвету, небу, вещам. Он ненавидит их и сражается с ними. Все окружающее для человека — опасный враг, с которым нужно вести борьбу не на жизнь, а на смерть и которого во что бы то ни стало необходимо покорить... Эпикур и Лукреций жили в уми­ротворенной Вселенной, где наука о вещах совпадала с наукой о человеке. Я — возмущение, вихрь в бурля­щей природе»19.

7. За пределами тавтологии
Мир классической науки был миром, в котором мог­ли происходить только события, выводимые из мгновен­ного состояния системы. Любопытно отметить, что эта концепция, которую мы проследили до Галилея и Нью­тона, уже в их время не была новой. В действительно­сти ее можно отождествить с аристотелевским представ­лением о божественном и неизменном небе. По мнению Аристотеля, точное математическое описание примени­мо только к небесному миру. Во «Введении» к нашей книге мы посетовали на то, что наука развеяла волшеб­ные чары, окутывавшие окружающий нас мир. Но развеянием чар мы, как ни парадоксально, обязаны про­славлению земного мира, взявшего на себя тем самым часть высокой миссии чистого разума, который Аристо­тель относил к возвышенному и совершенному небесно­му миру. Классическая наука отрицала становление и многообразие природы, бывшие, по Аристотелю, атрибу­тами низменного подлунного мира. Классическая наука как бы низвела небо на землю. Но не это входило в на­мерения отцов современной науки. Подвергнув сомнению утверждение Аристотеля о том, что математика кончает­ся там, где начинается природа, они усматривали свою
377


задачу не в поиске незыблемого, скрывающегося за из­меняемым, а в расширении изменчивой, преходящей и тленной природы до границ мира. В своем «Диалоге о двух главнейших системах мира» Галилей высказы­вает удивление по поводу тех, кто склонен думать, что мир стал бы благороднее оттого, что после потопа оста­лось бы только море льда или если бы земля обладала твердостью яшмы, с трудом поддающейся резцу. Пусть те, кто думает, будто Земля станет прекраснее оттого, что превратится в хрустальный шар, сами обратятся в алмазные статуи под взглядом Медузы Горгоны!
Выяснилось, однако, что объекты, выбранные пер­выми физиками для проверки применимости количест­венного описания, — идеальный маятник с его консер­вативным движением, простые машины, орбиты планет и т.д., — соответствуют единственному математическому описанию, воспроизводящему божественное совершенст­во и идеальность небесных тел Аристотеля.
Подобно богам Аристотеля, объекты классической динамики замкнуты в себе. Они ничего не узнают извне. Каждая точка системы в любой момент времени знает все, что ей необходимо знать, а именно распределение масс в пространстве и их скорости. Каждое состояние содержит всю истину о всех других состояниях, совме­стимых с наложенными на систему связями; каждое может быть использовано для предсказания других со­стояний, каково бы ни было их относительное располо­жение на оси времени. В этом смысле описание, пре­доставляемое наукой, тавтологично, так как и прош­лое, и будущее содержится в настоящем.
Коренное изменение во взглядах современной науки, переход к темпоральности, к множественности, можно рассматривать как обращение того движения, которое низвело аристотелевское небо на землю. Ныне мы возно­сим землю на небо. Мы открываем первичность времени и изменения повсюду, начиная с уровня элементарных частиц и до космологических моделей.
И на макроскопическом, и на микроскопическом уровнях естественные науки отказались от такой кон­цепции объективной реальности, из которой следовала необходимость отказа от новизны и многообразия во имя вечных и неизменных универсальных законов. Есте­ственные науки избавились от слепой веры в рациональ­ное как нечто замкнутое и отказались от идеала дости-
378


жимости окончательного знания, казавшегося почти достигнутым. Ныне естественные науки открыты для всего неожиданного, которое больше не рассматривает­ся как результат несовершенства знания или недоста­точного контроля.
Эту открытость современного естествознания Серж Московиси удачно охарактеризовал как «кеплеровскую революцию», чтобы отличить ее от «коперниканской ре­волюции», которая сохранила идею абсолютной точки зрения. Во многих высказываниях различных авторов, приведенных во «Введении», естествознание связывалось с развенчанием «волшебных чар», окутывавших окру­жающий мир. Следующий отрывок из работы Московичи позволит читателю составить представление об изме­нениях, происходящих ныне в естественных науках:
«Наука оказалась вовлеченной в дерзкое это пред­приятие, наше предприятие, для того чтобы обновить все, к чему она прикасается, и согреть все, во что она проникает, — землю, на которой мы живем, и истины, наделяющие нас способностью жить. И каждый раз это не отзвук чьей-то кончины, не достигающий нашего слуха погребальный звон, а вечно звонкий голос воз­рождения и начала человечества и материальности, за­фиксированных на какой-то миг и их эфемерной неиз­менности. Именно поэтому великие открытия соверша­ются не на смертном одре, как это было с Коперником, а достигаются в награду мечтам и страсти, как это бы­ло с Кеплером»20.

8. Созидающий ход времени
Часто говорят, что, не будь И. С. Баха, у нас не бы­ло бы «Страстей по Матфею», а теория относительности рано или поздно была бы создана и без Эйнштейна. Предполагается, что развитие науки детерминистично в отличие от непредсказуемого хода событий, присущего истории искусств. Оглядываясь назад на причудливую и подчас загадочную историю естествознания (в нашей книге мы пытались бегло обрисовать лишь ее основные вехи на протяжении трех последних столетий), нельзя не усомниться в правильности подобных утверждений. Имеются поистине удивительные примеры фактов, кото­рые не принимались во внимание только потому, что культурный климат не был подготовлен к включению их в самосогласованную схему. Открытие химических часов
379


восходит, по-видимому, к XIX в., но тогда химические часы противоречили идее монотонного перехода в рав­новесное состояние. Метеориты были выброшены из Венского музея потому, что в описании солнечной систе­мы для них не нашлось места. Окружающая нас куль­турная среда играет активную роль в формировании тех вопросов, которые мы задаем, но, не вдаваясь в пробле­мы стиля и общественного признания, мы можем указать ряд вопросов, к которым возвращается каждое поколение.
Одним из таких вопросов, несомненно, является во­прос о времени. Здесь мы несколько расходимся с То­масом Куном, проанализировавшим формирование «нор­мальной» науки21. Научная деятельность наиболее полно отвечает взглядам Куна, если ее рассматривать в усло­виях современного университета, в стенах которого ис­следовательская работа сочетается с подготовкой буду­щих исследователей. Анализ Куна, если подходить к не­му как к описанию науки в целом, позволяющему сде­лать выводы о том, каким должно быть знание, по суще­ству, сводится к новой психосоциальной версии позити­вистской концепции развития науки, концепции, которая делает акцент на тенденции к все возрастающей специа­лизации и обособлению друг от друга различных обла­стей и направлений, отождествляет «нормальное» науч­ное поведение с поведением «серьезного», «молчаливо­го» исследователя, не желающего напрасно тратить время на «общие» вопросы относительно значимости проводимой им работы для науки в целом, а предпочи­тающего заниматься решением частных проблем, и ис­ходит из независимости развития науки от культурных, экономических и социальных проблем.
Академическая структура, в рамках которой обретает существование описываемая Куном «нормальная наука», сформировалась в XIX в. Кун подчеркивает, что, повто­ряя в форме упражнений решения парадигматических задач предыдущих поколений, студенты изучают поня­тия, лежащие в основе предстоящей им исследователь­ской работы. Тем самым будущие исследователи пости­гают критерии, по которым задача может быть призна­на интересной, а решение приемлемым. Переход от сту­дента к самостоятельному исследователю происходит постепенно. Ученый продолжает решать проблемы, ис­пользуя аналогичные методы.
380


Описание «нормального» развития науки, предложен­ное Куном, даже если говорить о современности, к ко­торой оно имеет самое непосредственное отношение, от­ражает лишь один специфический аспект научной дея­тельности. Важность этого аспекта варьируется в зави­симости от индивидуальных исследователей и институ­циональной обстановки.
Трансформацию парадигмы Кун рассматривает как кризис: вместо того чтобы оставаться молчаливым, почти невидимым правилом, неизреченным каноном, па­радигма ставится под сомнение. Вместо того чтобы ра­ботать в унисон, члены ученого сообщества начинают задавать «принципиальные» вопросы и сомневаться в законности применяемых ими методов. Группа, однород­ная по своей подготовке, начинает распадаться. Выяв­ляются различия в точках зрения исследователей, куль­турном опыте и философских убеждениях, и эти разли­чия зачастую оказываются решающими в открытии но­вой парадигмы. В свою очередь возникновение новой па­радигмы способствует еще большему обострению дебатов. Соперничающие парадигмы подвергаются проверке, по­ка, наконец, ученый мир не определит победителя. С по­явлением нового поколения ученых тишина и единодушие восстанавливаются вновь. Создаются новые учебники, и опять все идет гладко, «без сучка и задоринки».
С этой точки зрения нельзя не признать, что движу­щей силой научной инновации оказывается весьма кон­сервативное поведение научных сообществ, упорно при­меняющих к природе одни и те же методы, одни и те же понятия и всегда наталкивающихся на столь же упорное сопротивление со стороны природы. И когда природа окончательно отказывается отвечать на принятом языке, разражается кризис, сопровождающийся своего рода на­силием, проистекающим из утраты уверенности. На этом этапе все интеллектуальные ресурсы сосредоточиваются на поиске нового языка. Таким образом, ученым прихо­дится иметь дело с кризисами, обрушивающимися на них помимо их воли.
Размышляя над проблемами, затронутыми в нашей книге, мы подчеркиваем в качестве важных аспекты, существенно отличающиеся от тех, к которым примени­мо описание Куна. Мы подробно остановились на преем­ственности, не на «очевидной», а на скрытой преемст­венности проблем — тех трудных вопросах, которые от-
381


вергаются многими как незаконные или ложные, но про­должают приковывать к себе внимание одного поколе­ния за другим (таковы, например, вопросы о динамике сложных систем, об отношении необратимого мира хи­мии и биологии к обратимому описанию, предлагаемому классической физикой). То, что такие вопросы представ­ляют интерес, вряд ли удивительно. Для нас проблема скорее состоит в том, чтобы понять, почему такие во­просы пребывали в забвении после работ Дидро, Шталя, Венеля и других мыслителей.
За последние сто лет разразилось несколько кризи­сов, весьма точно соответствующих описанию Куна, и ни один из них никогда не был целью сознательной дея­тельности ученых. Примером может служить хотя бы от­крытие нестабильности элементарных частиц или расши­ряющейся Вселенной. Но новейшая история науки ха­рактеризуется также рядом проблем, сознательно и чет­ко поставленных учеными, сознававшими, что эти проб­лемы имеют как естественнонаучный, так и философ­ский аспекты. Ученые отнюдь не обязательно должны вести себя подобно «гипнонам»!
Важно подчеркнуть, что описанную нами новую фазу развития науки — включение необратимости в физику — не следует рассматривать как своего рода «откровение», обладание которым ставит его владельца в особое поло­жение, отдаляя его от культурного мира, в котором тот живет. Напротив, это развитие отражает и внутреннюю логику науки, и современную культурную и социальную обстановку.
В частности, можно ли считать случайным, что пов­торное открытие времени в физике происходит в период небывалого ускорения истории человечества? Ссылка на культурную обстановку, конечно, не может быть полным ответом, но игнорировать культурный фон также не представляется возможным. Мы не можем не учитывать сложные отношения между «внутренними» и «внешними» детерминантами производства научных понятий.
В предисловии к нашей книге мы подчеркнули, что название ее французского варианта (La nouvelle allian­ce) отражает происходящее в наше время сближение «двух культур». Возможно, слияние двух культур нигде не ощущается столь отчетливо, как в проблеме микро­скопических оснований необратимости, рассмотренной нами в части III.
382


Как уже неоднократно упоминалось, и классическая, и квантовая механика основаны на произвольных на­чальных условиях и детерминистических законах (для траектории или волновых функций). В некотором смыс­ле законы делают явным то, что уже присутствует в начальных условиях. Иная ситуация возникает с по­явлением необратимости: начальные условия возникают как результат предыдущей эволюции и при последую­щей эволюции преобразуются в состояния того же класса.
Мы подходим, таким образом, к центральной проб­леме западной онтологии: проблеме отношения бытия ц становления. Краткий обзор этой проблемы приведен в гл. 3. Примечательно, что именно eй посвящены такие две значительные работы, как «Процесс и реальность» Уайтхеда и «Бытие и время» Хайдеггера. Оба автора поставили перед собой задачу выйти за рамки отожде­ствления бытия с безвременностью, традиционного для «царского пути» западной философии со времен Плато­на и Аристотеля22.
Вполне очевидно, что бытие не может быть сведено ко времени, очевидно и то, что мы не можем говорить о бытии, лишенном каких бы то ни било временных «коннотаций». Направление, в котором происходит раз­витие микроскопической теории необратимости, напол­няет новым содержанием умозрительные построения Уайтхеда и Хайдеггера.
Более подробное изложение этой проблемы увело бы нас слишком далеко в сторону от основной темы. Мы надеемся обсудить ее в другой работе. Следует заме­тить, однако, что начальные условия, воплощенные в со­стоянии системы, ассоциируются с бытием, а законы, управляющие темпоральным изменением системы, — со становлением.
Мы считаем, что бытие и становление должны рас­сматриваться не как противоположности, противореча­щие друг другу, а как два соотнесенных аспекта реаль­ности.
Состояние с нарушенной временной симметрией воз­никает из закона с нарушенной временной симметрией, распространяющего ее на состояние, принадлежащее той же категории, что и начальное.
В недавно опубликованной монографии (русский пе­ревод: Пригожин И. От существующего к возникаю-
383


щему. М., 1985, с. 216) один из авторов высказал в за­ключение следующую мысль:
«Для большинства основателей классической науки (и даже для Эйнштейна) наука была попыткой выйти за рамки мира наблюдаемого, достичь вневременного мира высшей рациональности — мира Спинозы. Но быть может, существует более тонкая форма реальности, ох­ватывающая законы и игры, время и вечность».
Именно в этом направлении и развивается микроско­пическая теория необратимых процессов.

9. Состояние внутреннего мира
Мы полностью разделяем следующее мнение Герма­на Вейля:
«Ученые глубоко заблуждались бы, игнорируя тот факт, что теоретическая конструкция — не единственный подход к явлениям жизни; для нас одинаково открыт и другой путь — понимание изнутри [интерпретация]... О себе самом, о моих актах восприятия, мышлении, во­левых актах, ощущениях и действиях я черпаю непо­средственное знание, полностью отличное от теорети­ческого знания, представляющего «параллельные» про­цессы в мозгу с помощью символов. Именно эта внут­ренняя осведомленность о себе самом является основой, позволяющей мне понимать тех, с кем я встречаюсь и кого сознаю как существо того же рода, к которому принадлежу я сам, с которым я связан иногда столь тесно, что разделяю с ними радость и печаль»23.
Вплоть до недавнего времени существовал разитель­ный контраст: внешний мир в противоположность испы­тываемой нами внутренней спонтанной активности и не­обратимости, по традиции, было принято рассматривать как автомат, подчиняющийся детерминистическим при­чинным законам. Ныне между двумя мирами происходит заметное сближение. Наносит ли это ущерб естествен­ным наукам?
Идеалом классической науки была «прозрачная» кар­тина физической Вселенной. В каждом случае предпо­лагалась возможность указать причину и ее следствие. Но когда возникает необходимость в стохастическом описании, причинно-следственная часть усложняется. Мы не можем говорить более о причинности в каждом отдельном эксперименте. Имеет смысл говорить лишь о статистической причинности. С такой ситуацией мы
384


столкнулись довольно давно — с возникновением кванто­вой механики, но с особой остротой она дала о себе знать в последнее время, когда случайность и вероят­ность стали играть существенную роль даже в классиче­ской динамике и химии. С этим и связано основное от­личие современной тенденции по сравнению с классичес­кой: в противоположность «прозрачности» классическо­го мышления она ведет к «смутной» картине мира.
Следует ли усматривать в этом поражение человеческого разума? Трудный вопрос. Как ученые, мы не рас­полагаем свободой выбора. При всем желании невоз­можно описать для вас мир таким, каким он вам нра­вится. Мы способны смотреть на мир лишь через призму сочетания экспериментальных результатов и новых теоретических представлений. Мы убеждены в том, что новая ситуация отражает в какой-то мере ситуацию в деятельности нашего головного мозга. В центре вни­мания классической психологии находилось сознание — «прозрачная» деятельность. Современная психология придает больший вес «непрозрачному» функционирова­нию бессознательного. Возможно, в этом находят свое отражение некоторые функциональные особенности че­ловеческого существования. Вспомним Эдипа, ясность его ума при встрече со сфинксом и непрозрачность и темноту при столкновении с тайной своего рождения. Слияние открытий в исследованиях окружающего нас мира и мира внутри нас является особенностью описы­ваемого нами последнего этапа в развитии науки, и эта особенность не может не вызывать удовлетворения.
Трудно избежать впечатления, что различие между существующим во времени, необратимым, и существую­щим вне времени, вечным, лежит у самых истоков че­ловеческой деятельности, связанной с операциями над различного рода символами. С особенной наглядностью это проявляется в художественном творчестве. Так, уже один аспект преобразования естественного объекта, на­пример камня, в предмет искусства прямо соотнесен с нашим воздействием на материю. Деятельность худож­ника нарушает временную симметрию объекта. Она ос­тавляет след, переносящий нашу временную дисимметрию во временную дисимметрию объекта. Из обрати­мого, почти циклического уровня шума, в котором мы живем, возникает музыка, одновременно и стохастиче­ская, и ориентированная во времени.
385


10. Обновление природы
В настоящий момент мы переживаем глубокие изме­нения в научной концепции природы и в структуре че­ловеческого общества в результате демографического взрыва, и это совпадение весьма знаменательно. Эти изменения породили потребность в новых отношениях между человеком и природой так же, как и между че­ловеком и человеком. Старое априорное различие меж­ду научными и этическими ценностями более неприемле­мо. Оно соответствовало тем временам, когда внешний мир и наш внутренний мир находились в конфликте, были почти «ортогональны» друг другу. Ныне мы знаем, что время — это некоторая конструкция и, следователь­но, несет некую этическую ответственность.
Идеи, которым мы уделили в книге достаточно много внимания, — идеи о нестабильности флуктуаций — начи­нают проникать в социальные науки. Ныне мы знаем, что человеческое общество представляет собой необы­чайно сложную систему, способную претерпевать огром­ное число бифуркаций, что подтверждается множеством культур, сложившихся на протяжении сравнительно ко­роткого периода в истории человечества. Мы знаем, что столь сложные системы обладают высокой чувствитель­ностью по отношению к флуктуациям. Это вселяет в нас одновременно и надежду, и тревогу: надежду на то, что даже малые флуктуации могут усиливаться и из­менять всю их структуру (это означает, в частности, что индивидуальная активность вовсе не обречена на бес­смысленность); тревогу — потому, что наш мир, по-ви­димому, навсегда лишился гарантий стабильных, не­преходящих законов. Мы живем в опасном и неопреде­ленном мире, внушающем не чувство слепой уверенно­сти, а лишь то же чувство умеренной надежды, которое некоторые талмудические тексты приписывают богу Книги Бытия:
«Двадцать шесть попыток предшествовали сотворе­нию мира, и все они окончились неудачей. Мир человека возник из хаоса обломков, оставшихся от прежних попы­ток. Он слишком хрупок и рискует снова обратиться в ничто. «Будем надеяться, что на этот раз получи­лось», — воскликнул бог, сотворив мир, и эта надежда сопутствовала всей последующей истории мира и чело­вечества, подчеркивая с самого начала этой истории, что та отмечена печатью неустранимой неопределенности»24.

386


ПРИМЕЧАНИЯ
Введение
1 Berlin I. Against the Current. /Selected Writings. Ed. H. Har­dy.—N. Y.: The Viking Press, 1980, p. XXVI.
2 Тitus Lucretius Carus. De Natura Rerum, Book I, v. 267—270. Ed. and comm. C. Bailey. — Oxford: Oxford University Press, 1947. 3 vols. [Русский перевод: Лукреций. О природе вещей. /Перевод с латинского, вступительная статья и комментарий Ф. А. Петровского.—М.: Изд-во АН СССР, 1958, стих 267—270, с. 32—33.]
З Lenoble R. Histoire de 1'idee de nature.—Paris: Albin Michel, 1969.
4 Pasса1 В. Pensees, frag 792. — In: Pasсa1 В. Oeuvres Comp­letes.—Paris; Brunschwig—Boutroux—Gazier, 1904—1914. [Частич­ный русский перевод: Ларошфуко Ф. Максимы. Паскаль Б. Мысли. Лабрюйер Ж. Характеры.—М.: Художественная литера­тура, 1974. Серия «Библиотека всемирной литературы».]
5 Monod J. Chance and Necessity.—N. Y.: Vintage Books, 1972, p. 172—173.
6 Viсо G. The New Science. /Trans. T. G. Bergin and М. H. Frisch.—N. Y.; 1968, par. 331.
7 Bottero J. Symptomes, signes, ecritures.—In: Vernant J. P. et al. Divitanition et rationalite.—Paris: Seuil, 1974. Дру­гие статьи этого сборника также представляют интерес в связи с за­тронутой нами темой.
8 Коуrе A. Galileo Studies.—Hassocks: The Harvester Press, 1978.
9 Popper К. Objective Knowledge.—Oxford: Clarendon Press, 1972. [Русский перевод: Поппер К. Объективное знание. Эволю­ционный подход.—В кн.: Поппер К. Логика и рост научного знания. Избранные работы./Пер. с англ. Составление, редакция и вступительная статья В. H. Садовского.—М.: Прогресс, 1983, с. 439—557.1
10 Forman P. Weimar Culture, Causality and Quantum Theory, 1918—1927; Adaptation by German Physicists and Mathematicians to an Hostile Intellectual Environment. Historical Studies in Physical Sciences, 1971, vol. 3. p. 1—115.
11 Needham J., Ronan C. A. A Shorter Science and Civiliza­tion in China. Vol. I.—Cambridge: Cambridge University Press, l978, p. 170.
387


12 Eddington A. The Nature of the Physical World.—Ann Arbor: University of Michigan Press, 1958, p. 68—80.
13 Ibid., p. 103.
14 Berlin I. Against the Current./ Selected Writings. Ed. H. Har­dy.—N. Y.: The Viking Press, 1980. p. 109.
15 Popper K. Unended Quest. — La Salle, III.: Open Court Publishing Company, 1976, p. 161—162.
16 Вrunо G. 5th dialogue, «De la causa». — In.: Вrunо G. Opere Italiane. T. I.—Bari, 1907. [Русский перевод: Бруно Дж.О при­чине, начале и едином. Диалог пятый. — В кн.: Б р у н о Д ж. Диало­ги/Под ред. и вступительная статья М. А. Дынника.—М.: Госполитиздат, 1949.] См. также Leclere I. The Nature of Physical Exis­tence. — L.: George Alien & Unwin, 1972.
17 Valery P. Cahiers. 2 vols. /Ed. Mrs. Robinson-Valery. — Pa­ris: Gallimard, 1973—1974.
18 Schrodinger E. Are there Quantum Jumps? The British Journal for the Philosophy of Science, 1952, v. 3, p. 109—110. [Рус­ский перевод: Шредингер Э. Существуют ли квантовые скач­ки? — В кн.: Шредингер Э. Избранные труды по квантовой ме­ханике.—М.: Наука, 1976, с. 261. Серия «Классики науки».] При­веденный нами отрывок из статьи Шредингера с негодованием про­цитировал П. Бриджмен в своей работе, опубликованной в сб.: Deter­minism and Freedom in the Age of Modern Science/Ed. S. Hook.— N. Y.: New York University Press, 1958.
19 Einstein A. Prinzipien der Forschung. Rede zur 60. Geburstag von Max Planck (1918).—In.: Einstein A. Mein Weltbild: Ullstein Verlag, 1977, S. 107—110. Англ. перевод: Einstein A. Ideas and Opinions.—N. Y.: Crown, 1954, pp. 224—227. [Русский перевод: Эйнштейн А. Мотивы научного исследования. — В кн.: Эйнштейн А. Собрание научных трудов Т. 4.—М.: Наука, 1967, с. 39-41.]
20 Durrenmatt F. The Physicists.—N. Y. -Grove, 1964. [Рус­ский перевод: Дюрренматт Ф. Физики/Пер. Н. Оттена.—В кн.: Дюрренматт Ф. Комедии-—М.: Искусство, 1969, с. 345—411.]
21 Moscovici S. Essai sur 1'histoire humaine de la nature.— Paris: Flammarion, 1977. «Collection Champs».
22 Needham J., Rоnan C. A. A Shorter Science and Civiliza­tion in China. Vol. I.—Cambridge: Cambridge University Press, 1978, p. 87.
23 Моnоd J. Chance and Necessity. — N. Y.: Vintage Books, 1972, p. 180.
Глава 1
1 Desaguliers J. T. The Newtonian System of the World, The Best Model of Government: an Allegorical Poem, 1728.—In: Fairсhi1d H. N. Religious Trends in English Poetry. Vol. I. — N. Y.: Columbia University Press, 1939, p. 357.
2 Ibid., p. 358.
3 Эту неоднозначность культурного влияния ньютоновской моде­ли как в плане эмпирическом («Оптика»), так и в плане системати­ческом («Начала») подчеркивал и пояснял Герд Бухдаль (Вuсhdahl G. The Image of Newton and Locke in the Age of Reason. — L.: Sheed & Ward, 1961. Newman History and Philosophy of Science Series.).
388


4 La Science et la diversite des cultures. — Paris: UNESCO, PUF, 1974, pp. 15—16.
5 Gillispie C C. The Edge of Objectivity. — Princeton, N. J.: Princeton University Press, 1970, pp. 199—200.
6 Heidegger M. The Question Concerning Technology. — N. Y.: Harper & Row, 1977, p. 20,.
7 Ibid., p. 21.
8 Ibid., p. 16.
9 Stent G. The Coming of the Golden Age. — In: Paradoxes of Progress.—San Francisco: Freeman & Company, 1978.
10 См., например, Davies P. Other Worlds.—Toronto: J. M. Dent & Sons, 1980.
11 Koestler A. The Roots of Coincidence. — L.: Hulchinson, 1972, p. 138—139.
12 Коуre A Newtonian Studies.—Chicago: University of Chica­go Press, 1968, p. 23—24.
13 Во втором томе своей «Структурной антропологии» (Levi-Strauss С. Structural Anthropology II. Race and History. — N. Y.: Basic Books, 1976.) Клод Леви-Строc анализирует условия, которые привели к неолитической и промышленной революциям. Предлагаемая им модель включает в себя цепные реакции и катализ (процесс с кинетикой, характеризуемой существованием порога и резким ускорением при переходе через порог), что свидетельствует о внутренней близости проблем устойчивости и флуктуации, обсуждаемых нами в гл. 6, и некоторых аспектов «структурного подхода» в антрополо­гии.
14 «Внутри каждого общества логика мифа исключает диалог: мифы группы не обсуждаются, они трансформируются, когда их на­чинают считать повторяющимися» (Levi-Strauss C. L'Homme Nu.—Paris: Plon, 1971, p. 585). Таким образом, мифическое мышле­ние следует отличать от критического (естественнонаучного и фило­софского) диалога скорее по практическим условиям его воспроиз­ведения, чем по внутренней неспособности того или другого носителя к рациональному мышлению. Практика критического диалога прида­ла космологическим рассуждениям, претендующим на истинность, столь заметное динамичное ускорение.
15 Вряд ли нужно говорить, что столкновение между аристоте­левской и галилеевской наукой — одна из главных тем в работах Александра Койре.
16 Признание абсурдности подобного предположения противоре­чит многовековой идее о том, что природу можно «обмануть», если воспользоваться достаточно хитроумным устройством. Историю уси­лий по созданию вечного двигателя, доведенную до XX века, см. в книге: Ord Hume A. Perpetual Motion: The History of an Obses­sion.—N. Y.: St. Martin's Press, 1977. [Русский перевод: Орд-Хьюм А. У. Дж. Вечное движение. История одной навязчивой идеи.—М.: Знание, 1980.]
17 Азарт ученого, обусловленный риском «экспериментальных игр», Поппер возводит в норму. В работе The Logic of Scientific Dis­covery Поппер утверждает, что ученый должен заниматься поиском и самых невероятных (т. e. наиболее рискованных) гипотез, дабы затем опровергнуть их наряду с соответствующими теориями.
18 Feynman R. The Character of Physical Law.—Cambridge, Mass. M. I. T. Press, 1967, Ch. 2. [Русский перевод: Фейнман Р. Характер физических законов.—М.: Мир, 1968, с. 35.]
389

<<

стр. 2
(всего 3)

СОДЕРЖАНИЕ

>>