<<

стр. 3
(всего 3)

СОДЕРЖАНИЕ



19 Needham J. Science and Society in East and West.—In: The Grand Titration.— L: Alien & Unwin, 1969.
20 Whitehead A. N, Science and the Modern World,—N. Y.: The Free Press, 1967, p. 12.
21 Needham J. Science and Society in East and West. — In:
The Grand Titration. — L.: Alien & Unwin, 1969, p. 308.
22 Ibid., p. 330.
23 На то, что христианская метафора мира как грандиозной ма­шины лишает мир божественного начала—«дедивинизирует» его,— обратил внимание Р. Хойкас (Hooykaas R. Religion and the Rise of Modern Science.—Edinburgh, L.: Scottish Academic Press, 1972, pp. 14—16.)
24 Whitehead A. N. Science and the Modern World.—N. Y.: The Free Press, 1967, p. 54.
25 Знаменитые строки о языке природы, записанном математи­ческими знаками, приведены в небольшом полемическом сочинении Галилея «Пробирных дел мастер» (II Saggiatore). См. также Galilei G. The Dialogue Concerning the Two Chief World Systems. 2nd rev. ed. — Berkeley: University of California Press, 1967. [Русский пе­ревод: Галилей Г. Диалог о двух главнейших системах мира — птолемеевой и коперниковой. — М. — Л.: Гостехиздат, 1948.]
26 Не будет преувеличением сказать, что наука заведомо торже­ствовала в академиях, созданных во Франции, Пруссии и России абсолютными монархами. Бен Дэвид (David В. The Scientist's Role in Society.—Englewood Cliffs, N. J.: Prentice Hall, 1971. Foundations of Modern Sociology Series) подчеркнул различие между физиками этих стран, занимавшихся физикой как чисто теоретической наукой, окруженной романтическим ореолом, и английскими физиками, оза­боченными множеством эмпирических и технических проблем. Бен Дэвид предположил существование связи между преклонением перед технической наукой и удалением от политической власти социального класса, поддерживающего «научное движение».
27 В биографии Д'Аламбера Томас Хенкинс (Наnkins T. Jean d'Alambert, Science and .......................—Oxford: Clarendon Press, 1970) обращает внимание на то, насколько замкнуто и малочисленно было первое истинно научное сообщество, понимаемое в современном смысле, т. е. сообщество физиков и математиков XVIII в., и сколь тесными были связи членов сообщества с абсолютными монархами.
28 Эйнштейн А. Мотивы научного исследования.—В кн.: Эйнштейн А. Собрание научных трудов, т. 4.—М.: Наука, 1967, с. 40.
29 Масh Е. The Economical Nature of Physical Inquiry. — In: Mach Е. Popular Scientific Lectures.—Chicago: Open Court Publishing Company, 1895, pp. 197—198. [Русский перевод в кн.: Мах Э. Научнопопулярные очерки.—Спб.: Образование, 1909.]
30 Donne J. An Anatomy of the World...—L.: Catalog of the British Museum, 1611. (Анатомия мира, в коей ...изложены бренность и обреченность на гибель всего мира.)
Глава 2
1 Дополнительные сведения по этому вопросу можно почерпнуть а работах: Наnkins Т. The Reception of Newton's Second Law of Motion in the Eighteenth Century. Archives Internationales d'Histoire
390


des Sciences. 1967, v. XX, pp. 42—65; Соhen I. B. Newton's Second Law and the Concept of Force in the Principia. The Annus Mirabilis of Sir Isaac Newton, Tricentennial Celebration. The Texas Quaterly. 1967, v. X, No. 3, p. 25—127. В следующих четырех разделах наше изложение' в части, касающейся атомизма и законов сохранения. опирается на книгу: Scott W. The Conflict Between Atomism and Conservation Theory.—L.: Macdonald. 1970.
2 Koyre A. Galileo Studies. — Hassocks: The Harvester Press, 1978,p. 89—94.
3 В своем историко-критическом очерке развития механики (Mach Е. The Science of Mechanics: A Critical and Historical Account of Its Development—La Salle, II].: Open Court Publishing Company, 1960 [Русский перевод: Max Э. Механика. Историко-критический очерк её развития. — СПб, 1909.]) Эрнст Мах подчеркивал двойственный характер современной динамики, являющейся с одной стороны, наукой о траекториях, а с другой стороны, основой инженерных расчетов.
4 По крайней мере такого мнения придерживаются историки, приступившие к изучению впечатляющих по своему объему алхими­ческих работ Ньютона, которые ранее полностью игнорировались или объявлялись «не имеющими научной ценности». См., например: Dobbs J. В. The Foundations of Newton's Alchemy.—Cambridge University Press, 1975; Westfall R. Newton and the Hermetic Tradition. — In: Science, Medicine and Society./Ed. by A. G. Debus. — L.: Heinemann, 1972; Westfall R. The Role of Alchemy in Newton's Career.—In: Reason, Experiment and Mysticism./Ed. by М. L. Righini Bonelli and W. R. Shea.—I-.: Macmillan, 1975. Лорду Кейнсу, сы­гравшему решающую роль в собирании алхимических работ Ньюотона, принадлежат следующие слова (приведенные в указанной выше книге Доббса, с. 13): «Ньютон не был первым представителем века разума. Он был последним из вавилонян и шумеров, последним великим умом, взиравшим на видимый и духовный мир такими же глазами, как и те, кто почти десять тысяч лет назад приступили к созда­нию нашего интеллектуального достояния».
5 В своей книге Доббс (Dobbs В. J. The Foundations of New­ton's Alchemy.—Cambridge: Cambridge University Press, 1975) иссле­довал также роль «медиатора», посредством которого два вещества становятся более «социабельными». В этой связи мы могли бы на­помнить о важной роли, отводимой медиатору в «Избирательном сродстве» Гете (англ. перевод: Gоethе J. W. Elective Affinities.— Greenwood, 1976). В химии Гете по далеко ушел от Ньютона.
6 История «ошибки» Ньютона подробно изложена в книге: Наnkins Т. Jean d'Alembert, Science and Enlightment.—Oxford: Claren­don Press. 1970, p. 29—ЗГ)
7 Buffon G. L. Reflexions sur la toi d'attraction. Приложение к работе Бюффона «Introduction a Histoire des mineraux» (1774).— In: Buffon G. L. Oevres Completes, t. IX.—Paris: Gamier Freres, p. 75, 77.
8 Buffon G. L. Histoire naturelle. De la Nature, Seconde Vue (1765).—In: Metzger H. Newton, Stahl, Boerhaave et la doctrine chimique.—Paris: Blanchard, 1974, p. 57—58.
9 Переход французских химиков на позиции Бюффона описан у Тэкрея (Thackray A. Atom and Power: An Assay on Newtonian Matter Theory and Development of Chemistry.—Cambridge, Mass.; Harvard University Press, 1970, p. 199—233). «Химическая статика»
391


Бертолле дополнила программу Бюффона и завершила ее, поскольку ученики Бертолле отказались от попыток понять химические реакции в терминах, совместимых с ньютоновскими понятиями.
10 В наши намерения не входит объяснение причин расцвета в за­ката ньютонианства в Европе, но мы хотим подчеркнуть существо­вание по крайней мере хронологической связи между политическими событиями и этапами профессионализации науки. См.: Crosland М. The Society of Arcueil: A View of French Science at the Time of Napo­leon. — L.: Heinemann, 1960; Crosland М. Gay Lussac. — Cambrid­ge: Cambridge University Press, 1978.
11 Томас Кун усматривает в этой роли научных учреждений (воспитании будущего поколения ученых, т. е. обеспечения собствен­ного воспроизводства) главную отличительную особенность научной деятельности в том виде, в каком она известна нам сегодня. Эту же проблему рассматривали и другие авторы (см.: Crosland М.,. Нahn М., Fаrrаr W. In: The Emergence of Science in Western. Europe./Ed. М. Crosland.-˜L.: Macmillan, 1975).
12 Светские салоны, столь презираемые философами, напри­мер Гастоном Башляром во Франции, следует расценивать как. проявление открытого характера науки XVIII в. Мы можем с доста­точным основанием говорить о регрессе в XIX в., по крайней мере-если иметь в виду научную культуру. Об этом можно судить по мно­жеству локальных академий и кругов, в которых научные вопросы обсуждались непрофессионалами.
13 Цитировано по кн.: Schianger J. Len metaphores de l'organisme. — Paris: Vrin, 1971, p. 108.
14 Мaxwеll J. С. Science and Free Will. — In: Сampbell L., Garnet W. The Life of James Clerc Maxwell. — L.: Macmillan, 1882, p. 443.
15 Затронутая нами проблема является одной из основных тем французского философа Мишеля Серра. См., например, главу <Усилия» в его книге: Sеrrеs М. La naissance de la physique dans le texte de Lucrece.—Paris: Minuit, 1977. Стараниями сотрудников От­деления французских исследований университета Джона Гопкинса некоторые работы Серра ныне доступны в переводе на английский язык. См.: Serres М. Hermes: Literature, Science, Philosophy.— Baltimore: The John Hopkins University Press, 1982.
16 О дальнейшей судьбе демона Лапласа см. в кн.: Cassirer Е. Determinism and Indeterminism in Modern Physics. — New Haven, Conn.: Yale University Press, 1956, p. 3—25.
Глава З
1 Nisbet R. History of the Idea of Progress.—N. Y.: Basic Books, 1980., p. 4.
2 Diderot D. d'AIembert's Dream.—Harmondworth: Penguin Books. 1976, p.166—167.
3 Ibid., p. 158—159.
4 Didегоt D. Pensees sur 1'Interpretation de la Nature (1754) — In: Diderot D. Oeuvres Completes, t. II. — Paris: Gamier Freres, 1875, p.11.
5 В своем «Сне» Дидро приписывает это мнение врачу Бордо.
6 См., например: Lovejoy A. The Great Chain of Beings.— Cambridge, Mass.: Harvard University Press, 1973.
392


7 Историк Гиллиспи высказал предположение о существовании взаимосвязи между протестом против математической физики, гла­шатаем которого в «Энциклопедии» выступал Дидро, и враждебным отношением деятелей Французской революции к официальной нау­ке, проявившимся наиболее ярко в закрытии академии и казни .Ла­вуазье. Это очень спорный вопрос. Можно лишь с уверенностью сказать, что триумф ньютоновской системы во Франции совпал с проводимой Наполеоном организацией научных и учебных учрежде­ний, ознаменовавшей окончательную победу государственной акаде­мии над ремесленниками. См.: Gillispie С. С. The Encyclopedia and the Jacobin Philosophy of Science: A Study in Ideas and Conse­quences. — In: Critical Problems in the History of Science./Ed. M. Cla-gett.—Madison, Wis.: University of Wisconsin Press, 1959, p. 255—289.
8 Stahl G. E. Veritable Distinction a elablir entre le mixte et le vivant du corps humain. — In: S t a h 1 G. E. Oeuvres medicophilosophiques et npratiques, t.II - Monlpellier: Pitral et Fils, 1861, p. 279-282.
9 Описание трансформации значения термина «организация» от Шталя до романтиков см. в кн.: Schlanger J. Les metaphores de l'organisme.—Paris: Vrin, 1971.
10 Гегель Г. В. Ф. Энциклопедия философских наук. Т. 1. Фи­лософия природы.—М.: Мысль, 1975, § 261.
11 К такому выводу приходит, в частности, Найт (Knight. The German Science in Romantic Period. — In: The Emergence of Science in Western Europe./Ed. M. Crosland.—L.: Macmillan, 1975).
12 Вergsоn H. La pensee et le mouvant. — In: Вегgsоn H. Oeuvres. — Paris: Editions du Centenaire PUF, 1970, p. 1285. Англий­ский перевод: Вergsоn H. The Creative Mind. — Totowa, N. J.: Littlefield, Adams, 1975, p. 42.
l3 Ibid., p. 1287; английский перевод, с. 44.
14 Ibid., p. 1286: английский перевод, с. 44.
15 Bergson H. L'evolution creatrice. — In: Bergson H. Oeuvres.—Paris: Editions du Centenaire, PUF, 1970, p. 784. Английский перевод: Bergson H Creative Evolutio.—L.: Macmillan, 1911, p. 361.
16 Ibid., p. 538: английский перевод, с 54
17 Ibid., p. 784; английский перевод, с. 361.
18 Bergson H. La pensee et le mouvant. — In: Bergson H. Oeuvres—Paris: Editions du Centenaire, PUF, 1970, p 1273; англий­ский перевод: Bergson H. The Creative Mind.—Totowa, N. J.: Littlefield, Adams 1975i, p. 32.
19 Ibid., p. 1274; английский перевод, с. 33.
20 Whitehead A. N. Science and the Modern World.—N. Y.: The Free Press, 1967, p. 55.
21 Whitehead A. N. Process and Reality: An Essay in Cosmology.—N. Y.: The Free Press, 1969, p. 20.
22 Ibid., p. 26.
23 Джозеф Нидэм и Конрад Уоддингтон признавали важность влияния Уайтхеда на предпринятые ими попытки позитивного описания организма как целого.
24 Helmholt z H. Ober die Erhaltung der Kraft (1847). Англий­ский перевод—в кн.: Brush S. Kinetic Theory. Vol. I. The Nature
of Gases and Heat.—Oxford: Pergamon Press, 1965, p. 92. [Русский перевод: Гельмгольц Г. О сохранении силы./Изд. 2-е. — М. — Л.:
393


1934.] См. также: Elkana Y. The Discovery of the Conservation of Energy.—L.: Hutchinson Educational, 1974; Heimann P. M. Helmholtz and Kant: The Metaphysical Foundations of Uber die Erhaltung der Kraft. Studies in the History and Philosophy of Sciences, 1974, v. 5, p. 205-238.
25 Reichenbach H. The Direction of Time. — Berkeley: Univer­sity of California Press, 1956, p. 16—17. [Русский перевод: Рейхенбах Г. Направление времени.—M.: ИЛ, 1962, с. 32.]
Глава 4
1 Относительно новизны этих проблем см. Scott W. The Con­flict Between Atomism and Conservation Theory. Book II.—L.: Macmillan, 1970. Относительно индустриального контекста возникнове­ния затронутых нами понятий см. Саrdwеll D. From Watt to Clausius.—L.: Heinemann, 1971. Особый интерес в этом отношении представляет сближение, с одной стороны, потребностей развития промышленности, а с другой — позитивистских упрощений, достигае­мых с помощью операциональных определений.
2 Нerivеl J. Joseph Fourier: The Man and the Physicist. — Ox­ford: Clarendon Press, 1975. В этой биографии приведены весьма лю­бопытные сведения: из своего путешествия с Бонапартом в Египет Фурье «вывез» лихорадку, вызывавшую постоянные теплопотери.
3 Более подробно см. введение в кн.: Соmpte A. Philosophie Premiere. — Paris: Herman, 1975; а также «Auguste Compte autotraduit dans 1'encyclopedie». — In: La Traduction. — Paris: Minuit, 1974 и «Nuage».—In: La Distribution.—Paris: Minuit, 1977.
4 Smith С. Natural Philosophy and Thermodynamics: William Thomson and the Dynamical Theory of Heat. The British Journal for the Philosophy of Science, 1976, v. 9, p. 293—319; Crosland M., Smith C. The Transmission of Physics from France to Britain, 1800— 1840. Historical Studies in the Physical Sciences, 1978. v. 9, p. 1—61.
5 Излагая последующие вехи открытия закона сохранения энер­гии, мы придерживаемся работы: Elkana Y. The Discovery of the Conservation of Energy Principle, а также известной статьи Томаса Куна (Kuhn Т. Enerby Conservation as an Example of Simultaneous Discovery), первоначально опубликованной в сборнике Critical Prob­lems in the History of Science и включенной впоследствии в книгу: Kuhn Т. The Essential Tension.—Chicago: University of Chicago Press, 1977.
6 Элькана подробно проследил медленную кристаллизацию по­нятия «энергия». См. его книгу: (п. 5) и статью; Elkana Y. Helmholtz's Kraft: An Illustration of Concepts in Flux. Historical Studies in the Physical Sciences, 1970, v. 2, p. 263—298.
7 Joule J. Matter, Living Force and Heat. — In: The Scientific Papers of James Prescott Joule. Vol. I.—L.: Taylor & Francis, 1884, p. 265—276 (цитата — на с. 273).
8 Английский перевод двух основополагающих работ Майера «О силах неорганической природы» и «Движения организмов и их связь с метаболизмом» см. в сб.: Energy: Historical Development of a Concept. /Ed. R. B. Lindsay.—Stroudsburg, Pa.: Benchmarks Pa­pers on Energy 1, Dowden, Hutchinson & Ross, 1975. [Русский пере­вод: Майер Р. Закон сохранения и превращения энергии.—M.— Л.: ГТТИ, 1933.]
394


9 Веntоn E. Vitalism in the Nineteenth Century Scientific Thought: A Typology and Reassessment. Studies in History and Philosophy of Science, 1974, 5, p. 17—48.
10 Helmholtz H. Uber die Erhaltung der Kraft (1847). [Рус­ский перевод: Гельмгольц Г. О сохранении силы. 2-е изд. -- M. —
Л.: ГТТИ, 1934, с. 32—33.]
11 Deleuze G. Nietzsche et la philosophic.—Paris: PUF, 1973, pp. 48—55.
12 В своем исследовании романа Э. Золя «Доктор Паскаль» (Serres M. Feux et signaux de brume.—Paris: Grassel, 1975, p. 109) Мишель Серр писал: «Век, практически успевщий к выходу романа подойти к концу, начинался с величественной незыблемости солнечной системы, а теперь был исполнен тревоги по поводу непрестанной деградации огня. Отсюда острая позитивная дилемма: идеальный цикл без потерь, вечный и позитивно-значный, т. е. космология Солнца, или цикл с потерями, утрачивающий свое тождество, необратимый, преходящий и презренный, т. е. космология, или термогония, огня, обреченного на затухание или исчезновение без какой-либо иной альтернативы. Кое-кто спит и видит Лапласа. Но Карно и другие навсегда разрушили уютную обитель, нишу, где можно было мирно почивать. Кое-кто спит—это несомненно, но тогда культурные архаизмы, вернувшись в другую дверь или даже в ту же самую дверь, едва та успеет закрыться, вновь пробуждаются со всей силой: негасимый огонь, очищающее пламя или огонь зла?»
13 Преемственность идей Карно-отца и Карно-сына отмечали Кардвелл (Cardwell D. From Watt to Clausius. L.: Heinernann, 1971) и Скотт (Scott W. The Conflict Between Atomism and Conser­vation Theory.—L.: Macdonald, 1970).
14 Davies P. The Runaway Universe.—N. Y.: Penguin Books, 1980, p. 197.
15 Dyson F. Energy in the Universe. Scientific American, 1971, v. 225, p. 50—59.
16 Особенно важно было понять, что в отличие от того, с чем мы сталкиваемся в механике, отнюдь не всё происходящее с термодина­мической системой может быть охарактеризовано как её «состояние». В термодинамике наблюдается обратная ситуация. См. Daub E. Entropy and Dissipation. Historical Studies in the Physical Sciences, 1970, vol. 2, p. 321—354.
17 В своей научной автобиографии (Planck M. Scientific Auto­biography.—L.: Williams and Norgate, 1950) [русский перевод: Научная автобиография.—В кн.: Планк M. Избранные труды.— M.: Наука. 1975, с. 644-663. Серия «Классики естествознания»] Макс Планк вспоминает, в какой изоляции он оказался, когда обратил внимание на специфические особенности теплоты и отметил, что в свя­зи с превращением тепла в другую форму энергии возникает проблема необратимости. Энергетисты, например Оствальд, утверждали, что все формы энергии должны иметь одинаковый статус. С их точки зрения падение тела одного уровня по высоте на другой происходит под действием "производящей разности" такого же рода, как и в случае переноса тепла между двумя телами с различной температу­рой. Оствальдовское сравнение игнорирует решающее различие меж­ду идеальным обратимым процессом (например, механическим движе­нием) и внутренне необратимым процессом (например, распростране­нием тепла). Считая все виды энергии однотипными, Оствалъд зани­мает позицию, аналогичную той, которую некогда занимал Лагранж,
395


считавший сохранение энергии свойством, присущим лишь предель­ным случаям, которые только и поддаются строгому анализу. Оствальд считал сохранение энергии свойством любого процесса, происходя­щего в природе, но видел в сохранении разностей энергии (необхо­димых для протекания любого процесса, так как только разность способна порождать другую разность) абстрактный идеал, единст­венный объект рациональной науки.
18 Разбиение приращения энтропии на два различных члена было впервые осуществлено в работе: Prigogine I. Etude Thermodynamique des Phenomenes Irreversibles. These d'agregation presentee a la faculte des sciences de l'Universile Libre de Bruxelles (1945).— Paris: Dunod, 1947.
19 Сlausius R. Annalen der Physik, 1865, Bd. 125, S. 353.
20 Planck M. The Unity of the Physical Universe. A Survey of Physics. Collection of Lectures and Essays.—N. Y.: E. P. Dutton, 1925, p. 16. [Русский перевод: Единство физической картины мира. — В кн.: Планк M. Избранные труды.—M.: Наука, 1975, с. 620. Серия «Классики естествознания».]
21 Сaillоis R. La dyssimetrie. — In: Coherences aventureuses. Collections Idees.— Paris: Gallimard, 1973, p. 198.
Глава 5
1 Содержание этой и следующей глав во многом заимствовано из работ: Glansdorf P., Prigogine I. Thermodynamic Theory of Structure, Stability and Fluctuations. — N. Y.: John Wiley & Sons, 1971 [русский перевод: Гленсдорф П., Пригожин И. Термоди­намическая теория структуры, устойчивости и флуктуации.—M.: Мир, 1973] и N i с о 1 is G., Prigоgine I. Self-Organization in NonEquilibrium Systems.—N. Y.: John Wiley & Sons, 1977. [Русский перевод: Николис Г., Пригожин И. Самоорганизация в неравно­весных системах. От диссипативных структур к упорядоченности че­рез флуктуации.—M.: Мир, 1979.]
2 Nietzsche F. Der Wille zur Macht. — In: Nietzsche F. Samtliche Werke.—Stuttgart: Kroner, 1964. Aphorism 630. [Русский перевод: Ницше Ф. Полное собрание сочинений. Т. 9. Воля к вла­сти. Опыт переоценки всех ценностей.—M.: Московское книгоизда­тельство, 1910.]
3 Какое точное содержание можно вложить в общий закон воз­растания энтропии? Для физика-теоретика, такого, как де Донде, химическая активность, во многом еще неясная и не доступная ра­циональному подходу механики, была достаточно загадочной, чтобы стать синонимом необратимого процесса. Так, например, химия, на вопросы которой физики никогда не давали правильные ответы, и новая загадка необратимости совместно бросают физикам вызов, игнорировать который более уже невозможно. См.: DeDonder Th.. L'Affinite.—Paris: Gauthier — Villars, 1962; Onsager L. Phys. Rev., 1931, 37, 405.
4 Serres M. La naissance de la physique dans le texte de Lucrece.—Paris: Minuit, 1977.
5 Более подробно о химических колебательных системах см. в работе: Winfree A. Rotating Chemical Reactions Scientific American, 1974, v. 230, p. 82—95.
6 Gоldbeter A., Niсоlis G. An Alosteric Model with Positive Feedback Applied to Glycolitic Oscillations. Progress in Theoreti-
396


cal Biology, 1976, vol. 4, p. 65—160; Gоldbeter A., Сaplan S. R. Oscillatory Enzymes. Annual Review of Biophysics and Bioengineering, 1976, vol. 5, p. 449—473.
7 Hess В., Boiteux A., Kruger J. Cooperation of Glycolitic Enzymes. Advances in Enzyme Regulation, 1969, vol 7, p. 149—167; см. также: Hess В., Goldbeter A., Lefever R. Temporal, Spatial and Functional Order in Regulated Biochemical Cellular Systems. Advances in Chemical Physics, 1978. vol. XXXVIII, p. 363—413.
8 Hess B. Cell Foundation Symposium, 1975, vol. 31, p. 369.
9A Geresch G. Cell Aggregation and Differentiation in Dictyostelium Discoideum.— In: Developmental Biology, 1968, vol. 3, p. 157—197.
9B Goldbeter A., Segel L. A. Unified Mechanism for Relay and Oscillation of Cyclic AMP in Dictyostelium Discoideum. Proceedings of the National Academy of Sciences, 1977, vol. 74, p. 1543—1547.
10 См.: Gardner M. The Ambidextrous Universe.—N. Y.: Charles Scribner's Sons, 1979. [Русскии перевод: Гарднер М. Этот правый, левый мир.—М.: Мир, 1967. Серия «В мире науки и техники».]
11 Коndepudi D. К., Prigоgine I.. Physica, 1981, vol. 107А, р. 1—24; Kondepudi D. К. Physica, 1982, vol. 115A, p. 552—566. Вполне возможно, что химия позволяет визуализовать в макроскопи­ческом масштабе нарушение четности в слабом взаимодействии: Kondepudi D К, Nelson G. W. Phys. Rev. Lett., 1983, vol. 50, 14, p. 1023—1026.
12 Lefever R., Horsthemke W. Multiple Transitions Induced by Light Intensity Fluctuations in Illuminated Chemical Systems. Proceedings of the National Academy of Sciences, 1979, vol. 76, p. 2490—2494. См. также: Horsthemke W., Malek MansourM. Influence of External Noise on Nonequilibrium Phase Transitions. Zeitschr. fur Physik B, 1976, vol. 24, p. 307—313; Arnold L., Horsthemke W., Lefever R. White and Coloured External Noise and Transition Phenomena in Nonlinear Systems. Zeitschr. fur Physik B, 1978, vol. 29, p. 367—373; Horsthemke W. Nonequilibrium Transitions Induced by External White and Coloured Noise.—In: Dynamics of Synergetic Systems. /Ed. H. Haken.—Berlin: Springer Verlag, 1980. Относительно приложения к биологической проблеме см.: Lefe­ver R., Horsthemke W. Bistability in Fluctuating Environments: Implication in Tumor Immunology. Bulletin of Mathematic Biology, 1979, voL 41.
13 Swinneу H. L., Gо1lub J. P. The Transition to Turbulence, Physics Today, 1978, vol. 31, 8, p. 41—49.
14Feigenbaum M. J. Universal Behavior in Nonlinear Sys­tems. Los Alamos Science, 1980, 1, p. 4—27. [Русский перевод: Фейгенбаум М. Универсальность в поведении нелинейных систем. Успехи физических наук, 1983, т. 141, вып. 2, с. 343—374.]
15 Понятие креода является составной частью качественного опи­сания эмбрионального развития, предложенного Уоддингтоном более двадцати лет назад. Эволюция по Уоддингтону носит поистине би­фуркационный характер: прогрессивное зондирование, в ходе кото­рого эмбрион вырастает в «эпигенетический ландшафт», где стабиль­ные участки сосуществуют с участками, допускающими выбор одно­го из нескольких путей развития. См.: Waddington С, H. Тhe Strategy of Genes.—I..: Allen & Unwin, 1957. Креоды Уоддингтона
397


занимают центральное место в биологическом мышлении Рене То­ма. Таким образом, креоды могли бы стать своего рода точкой пере­сечения двух подходов: подхода, излагаемого нами (суть его состоит в том, чтобы, исходя из локальных механизмов, исследовать весь спектр порождаемых ими режимов коллективного поведения), и под­хода Тома (исходящего из глобальных математических понятий и связывающего вытекающие из них качественно различные формы и преобразования с феноменологическим описанием морфогенеза).
16 Kaufmann S. A., Shymko R. M„ Trabert К. Control of Sequential Compartment Formation in Drosophila. Science, 1978, vol. 199, p. 259—269.
17 Bergson H. Creative Evolution.—L.: Macmillan, 1911, p. 94—95,
18 Waddington C. H. The Evolution of the Evolutionist. - Edinburgh: Edinburgh University Press, 1975; Weiss P. The Living System: Determinism Stratified.—In: Beyond Reductionism. /Ed. A. Koestler and J. R. Smythies.—L.: Hutchinson, 1969.
19 Коshiand D. E. A Model Regulatory System: Bacterial Chemotaxis. Physiological Review, 1979, vol. 59, 4, p. 811—862.
Глава 6
1 Nicolis G., Prigogine I. Self-Organization in Nonequilibrium Systems. — N. Y.: John Wiley & Sons, 1977. [Русский перевод: Николис Г., Пригожин И. Самоорганизация в неравновесных системах. От диссипативных структур к упорядочению через флуктуации.—М.: Мир, 1979.]
2 Вaras F., Nicolis G., Malek Mansour М. Stochastic Theory of Adiabatic Explosion Journal of Statistical Physics, 1983, vol. 32, 1, p. 1.
3 См., например: Malek Mansour М., van den Broeck, Nicolis G., Turner J. W., Annals of Physics. 1981, vol. 131, 2, p. 283.
4 Deneubourg J. L, Application de l'ordre par fluctuation a la description de certaines etapes de la construction du nid chez les termites. Insects Sociaux, Journal International pour 1'etude des Anthropodes sociaux, 1977, t. 24, 2, p. 117—130. Первоначальная модель была затем обобщена и расширена в соответствии с новыми эксперимен­тальными исследованиями, см.: Bruinsma О. H. An Analysis of Building Behaviour of the Termite rnacrotermes subhyalinus. Proceedings of the VIII Congress IUSSI — Waegeningen, 1977.
5 Garay R. P., Lefever R. A Kinetic Approach to the Immu­nology of Cancer: Stationary States Properties of Effector—Target Cell Reactions. Journal of Theoretical Biology, 1978, vol. 73, p. 417— 438 и частное сообщение.
6 Allen Р. М. Darwinian Evolution and a Predator — Prey Ecology. Bulletin of Mathematical Biology. 1975, vol. 37, о. 389—405; Evolution, Population and Stability. Proceedings of the National Academy of Sciences, 1976, vol. 73, 3, p. 665—668. См. также: Czaplewski R. A Methodology for Evaluation of Parent—Mutant Com­petition. Journal for Theoretical Biology, 1973, vol. 40, p. 429—439.
7 Современное состояние теории изложено в книге: Eigen М., Schuster P. The Hypercycle. — Berlin: Springer, 1979. [Русский перевод: Эйген М., Шустер П. Гиперцикл. Принципы самоорга­низации макромолекул.—М.: Мир, 1982.]
398


8 May R., Science, 1974, vol 186, p. 645-647; см. также Мау R. Simple Mathematical Models with very Complicated Dynamics. Nature, 1976, vol. 261, p. 459-467
9 Hassell М. P. The Dynamics in Anthropod Predator—Prey Systems.—Princeton, N. J.: Princeton University Press, 1978.
10 Heinrich B.Artful Diners, Natural history, 1980, vol. 89, 6, p 42—51 (особенно с. -12).
11 Love М The Alien Strategy. Natural history, 1980, vol. 89, 5, p. 30—32.
12 Denenbaurg J. L., Allen P. N. Modeles theoriques de la division da travail des les ............................... Academie Rosale de Belgique, Bulletin de la Classe des Sciences, 1976, t. LXII, pp. 416—429; Allen P. М. Evolution in an Ecosystem with Limited Resources, ibid., p. 408—415.
13 Montroll E. W. Social Dynamics and Quanlifying of Social Forces. Proceedings of the National Academy of Sciences, 1978, vol. 75, 10, p. 4633—4637.
14 Allen Р. М., Sanglier M. Dynamic Model of Growth. Journal for Social and Biological Structures, 1978, vol. 1, p. 265—280; Urban Evolution, Self-Organization and Decision-Making. Environment and Planning, A, 1981, vol. 13, p. 167—183.
15 Waddington C. H. Tools for Thought. — St. Albans: Paladin, 1976, p. 228.
16 Gould S. J. Ontogeny and Phylogeny, Belknap Press, Harvard University Press, 1977.
17 Levi-Strauss C/ Methodes et ....................... Anthropologie structurale. — Paris: Plon, p. 311—3l7.
18 См., например: Russet С. R. The Concept oi Equilibrium in American Social Thought.—New Haveon, Conn.: Yuae University Press, 1966.
19 G оul S. J The Belt of Asteroid. Natural History, 1980, vol. 89, 1, p. 26—33.

Глава 7
1 Whitehead A. N. Science and the Modern World.—N. Y.: The Free Press, 1967, p. 186.
2 The Philosophy of Rudolph Carnap. /Ed. P. A. Schilpp.—Cam­bridge University Press, 1963.
3 Fraser J. T. The Principle of Temporal Levels: A Framework for the Dialogue? (сообщение на конференции «Scientific Concepts of Time in Humanistic and Social Perspectives (Bellagio July 1981))
4 См., например: Brush S. The Kind of Motion We Call Heat. Book II. Statistical Physics and Irreversible Processes — Amsterdam: North Holland Publishing Company, 1976. Особый интерес представ­ляют с. 616—625.
5 Фейер весьма убедительно показал, как культурная среда, окру­жавшая Бора в юности, привела его к поиску немеханистической мо­дели атома (Feuer L. S. Einstein and the Generation of Science. — N. Y.: Basic Bonks, 1974). См. также: Heisenberg W. Physics and Beyond.—N. Y.; Harper & Row, 1971; Serwer D. .................................of the Mechanical Atom 1923—l1925. Historical Sludies in Phisical Sciences, 1977, vol 8, p. 189—256.
6 Томас Кун (Кuhn Т. Black-Body Theory and the Quantum
399


Discontinuity, 1894—1912.—Oxford: Clarendon Press, N. Y.: Oxford University Press, 1978) нашел изящные аргументы, свидетельствую­щие о том, что Планк придерживался статистической трактовки необ­ратимости, предложенной Болъцманом.
7 Mehra J., Rechenberg H. The Historical Development of Quantum Theory. Vol. 1—4. — N. Y.: Springer, 1982.
8 Относительно концептуальных основ недавно предложенных экспериментальных проверок гипотезы о скрытых переменных в кван­товой механике см.: d'Espagnat В. Conceptual Foundations of Quantum Mechanics. 2nd aug. ed.—Reading, Mass.: Benjamin, 1976. См. также d'Espagnat B. The Quantum Theory and Reality, Scien­tific American, 1979, vol. 241, p. 128—140.
9 Относительно принципа дополнительности см., например: d'Esраgnat В. Conceptual Foundations of Quantum Mechanics. 2nd aug. ed.—Reading, Mass.: Benjamin, 1976; Jammer M. The Philo­sophy of Quantum Mechanics.—N. Y.—John Wiley and Sons, 1974; Petersen A. Quantum Mechanics and Philosophica Tradition.— Cambridge, Mass.: MIT Press, 1968; George С., Prigogine I. Coherence and Randomness in Quantum Theory. Physica, 1979, vol. 99A, p. 369—382.
10 Rosenfeld L. The Measuring Process in Quantum Mecha­nics. Supplement of the Progress of Theoretical Physics, 1965, p. 222.
11 Относительно квантовомеханических парадоксов, которые с полным основанием можно назвать кошмарами классического разу­ма, поскольку все они: и кошка Шредингера, и «приятель» Вигнера, и множественные миры Эверетта — призваны оживить идею-Феникс замкнутой объективной теории на этот раз в виде уравнения Шредингера. См. книги д'Эспаньи и Джеммера, указанные в примеча­нии 9 к этой главе.
12 Misrа В., Prigogine I., Courbage M. Lyapunov Va­riable; Entropy and Measurement in Quantum Mechanics. Proceedings of the National Academy of Sciences, 1979, vol. 76, p. 4768—4772; Prigogine I., George C. The. Second Law as a Selection Prin­ciple: The Microscopic Theory of Dissipative Processes in Quantum Systems. Proceedings of the National Academy of Sciences, 1983, vol. 80, p. 4590--4594.
l3 Minkowski H. Space and Time. The Principles of Relativi­ty.—N. Y.: Dower Publications, 1923. [Русский перевод: Mинковский Г. Пространство и время.—В сб.: Принцип относительности. Г. А. Лоренц, А. Пуанкаре, А. Эйнштейн, Г. Минковский.—M.—Л.: ОНТИ, 1936, с. 181.]
14 Сахаров А. Д. Письма в Журнал экспериментальной и теоретической физики, 1967, т. 5, вып. I, с, 32—35.
Глава 8
1 Lewis G. N. The Symmetry of Time in Physics. Science, 1930, vol. 71, p. 570.
2 Eddingtоn A. S. The Nature of the Physical World. — N. Y.: Macmillan, 1948, p. 74.
3 Gardner M. The Ambidextrous Universe: Mirror Asymmetry and Time-Reversed Worlds.—N. Y.: Charles Scribner's Sons, 1979, p. 243. [Русский перевод: Гарднер M. Этот правый, левый мир. — M.: Мир, 1967. Серия «В мире науки и техники».]
4 Planck M. Treatise on Thermodynamics.—N. Y.: Dover Pub-
400



lications, 1945, p. 106. [Русский перевод: Планк M. Лекции по тер­модинамике Макса Планка.—СПб., 1900, с. 91—92,]
5 Высказывание Берна приведено в работе: Denbigh К. How Subjective Is Entropy? Chemistry in Britain. 1981, vol. 17, p. 168— 185.
6 См., например: Кас M. Probability and Related Topics in Phy­sical Sciences. — L.: Interscience Publishers, 1959. [Русский перевод: К а ц M. Вероятность и смежные вопросы в физике. — M.: Мир, 1965.]
7 Gibbs J. W. Elementary Principles in Statistical Mechanics. — N. T: Dover Publications, 1960, Ch. XII. [Русский перевод: Гиббс Д ж. В. Основные принципы статистической механики, раз­работанные со специальным применением к рациональному обоснова­нию термодинамики. Гл. XII. О движении систем и ансамблей систем в течение больших промежутков времени.—В кн.: Гиббс Дж. В. Термодинамика. Статистическая механика.—M.: Наука, 1982, с. 463. Серия «Классики естествознания».]
8 Например, С. Ватанабе проводит резкое различие между ми­ром созерцаемым и миром, в котором мы действуем как активные агенты. По утверждению Ватанабе, непротиворечивое объяснение возрастания энтропии невозможно вне связи с воздействиями, произ­водимыми нами на мир. Но в действительности вся наша физика мо­жет рассматриваться как наука о мире, на который мы воздейству­ем, поэтому проводимая Ватанабе демаркационная линия между ми­ром созерцаемым и миром как ареной активных действий неспособ­на прояснить взаимосвязь между микроскопической детерминистиче­ской симметрией и макроскопической вероятностной асимметрией. Вопрос по-прежнему остается без ответа. Каким образом мы можем, например, придать смысл утверждению о том, что солнце необратимо сгорает? См.: Watanabe S. Time and Probabilistic View of the World.—In.: The Voices of Time. /Ed. J. Fraser.—N. Y.: Braziller, 1966.
9 Демон Максвелла впервые появился в работе: Maxwell J. С. Theory of Heat.—L.: Longmans, 1971, Ch. XXII. См. также; Daub E. Maxwell's Demon; Heimann P. Molecular Forces. Statistical Representation and Maxwell's Demon. — In.: Studies in History and Philosophy of Science, 1970, vol. 1. Этот том целиком посвящен Максвеллу.
10 Воltzmann L. Populare Schriften.—Braunschweig—Wiesbaden: Vieweg, 1979. [Русский перевод: Больцман Л. Статьи и речи.—M.: Наука, 1970, с. 6.] Как подчеркивал Элькана (Elkana Y. Воltzmann's Scientific Research Program and Its Alternatives.—In.: Interaction Between Science and Philosophy.—Atlantic, Highlands, N. J.: Humanities Press, 1974), дарвиновская идея эво­люции особенно отчетливо выражена во взглядах Больцмана на на­учное знание, т. о. в отстаивании Больцманом механистических мо­делей, подвергнутых энергетистами резкой критике. См., например, лекцию «Второй закон механической теории тепла», с которой Больц­ман выступил в 1886 г. (Boltzmann L. The Second Law of Ther­modynamics.—In.: Theoretical Physics and Philosophical Problems. /Ed. B. McGuinness.—Dordrecht: D. Reidel, 1974. [Русский перевод: Больцман Л. Второй закон механической теории тепла.—В кн.: Больцман Л. Статьи и речи.—M.: Наука, 1970, с. 3—28.])
11 Более подробно больцмановская интерпретация энтропии рас­смотрена в кн.: Prigogine I. From Being to Becoming—Time and Complexity in the Physical Sciences. — San Francisco: W. H. Freeman
401


& Company, 1980. [Русский перевод: Пригожин И. От существую­щего к возникающему.—М.: Наука, 1985.]
12 В своей «Научной автобиографии» Планк рассказывает о том, как изменялись его отношения с Больцманом, который сначала отри­цательно отнесся к введенному Планком феноменологическому различию между обратимыми и необратимыми процессами. По этому вопросу см. Elkana Y. Boltzmann's Scientific Research Program and Its Alternatives.—In.: Interaction Between Science and Philo­sophy. — Atlantic, Highlands, N. J.: Humanities Press, 1974; Вгush S. The Kind of Motion We Call Heat. Book II. Statistical Physics and Irreversible Processes.—Amsterdam: North Holland Publishing Com­pany, 1976, p. 640—651; относительно взглядов А. Эйнштейна см. ibid., р. 672—674; Schrodinger E. Science, Theory and Man.— N. Y.: Dover Publications, 1957.
13 Poincare H. La mecanique et 1'experience. Revue de Meta-physique et de Morale, 1893, vol. 1, p. 534—537; Poincare H. Lecons de Thermodynamique (1892). Ed. J. Blondin.—Paris: Her­mann, 1923-
14 Относительно споров вокруг больцмановской энтропии см. Brush S. The Kind of Motion We Call Heat. Books I, II.—Amster­dam: North Holland Publishing Company, 1976 и замечания Планка в его «Научной автобиографии» (Лошмидт был учеником Планка).
15 Prigogine I., George С., Henin F., Rosenfeld L. Unified Formulation of Dynamics and Thermodynamics. Chemica Scripta, 1973, vol. 4, p. 5—32 .
16 Park D. The Image of Eternity: Roots of Time in the Physical World.—Amherst, Mass.: University of Massachusetts Press, 1980.
17 По этому вопросу см:. Brush S. The Kind of Motion We Call Heat. Book I. Physics and the Atomists. Book II. Statistical Physics and Irreversible Processes.—Amsterdam: North Holland Publishing Company, 1976, а также составленную этим автором комментированную антологию: Kinetic Theory. Vol. I. The Nature of Gases and Heat. Vol. II. Irreversible Processes.—Oxford: Pergamon Press, I965, 1966.
18 Gibbs J W. Elementary Principles in Statistical .......... — N. Y.: Dover Publications, 1960. Ch. XII. [Русский перевод: Гиббс Д ж. В. Основные принципы статистической механики, разработанные со специальным: применением к рациональному обоснованию термодинамики.—В кн.: Гиббс Д ж. В. Термодинамика. Ста­тистическая механика.—М.: Наука, 1982. Гл. XII. О движении систем и ансамблей в течение больших промежутков времени.) Исторический обзор см. в работе: Mehra J. Einsein and the Foundation of Statistical Mechanics. Physica, 1974, vol. 79A, 5, p. 17.
19 Многие марксистские философы приводят следующее высказы­вание из «Анти-Дюринга» Энгельса: «Движение само есть противо­речие». Энгельс Ф. Анти-Дюринг.—В кн.: Маркс К, Эн­гельс Ф. Соч. Изд. 2-е, т. 20.—М.: Госполитиздат, 1962, с. 123. Ту же мысль приводит в «Философских тетрадях» В. И. Ленин (Конспект книги Гегеля «Наука логики»): «Противоречие же есть корень всякого движения и жизненности» (Ленин В. И Полн. собр. соч., т. 29, с.125).
20 Boltzmann L. Lectures on Gas Theory.—Berkeley: Uni­versity of California Press, 1964, p. 446f. [Русский перевод: Больцман Л. О статье г-на Цермело «О механическом объяснении необра-
402


тимых процессов».—В кн.; Больцман Л. Избранные труды.— М.: Наука, 1984.] Цит. по кн.: Popper К. Unended Quest.—La Salle, 111.: Open Court Publishing Company, 1976, p. 160.
21 Pоppeг К.., ibid., p. 160.
Глава 9
1 Voltaire. Dictionnaire Philosophique. — Paris: Gamier, 1954.
2 См. примечание 2 к гл. 7.
3 Рорреr К. The Arrow of Time. Nature, 1956, vol. 177, p. 538.
4 Gardner М. The Ambidextrous Universe.—N. Y.: Charles Scribner's Sons, 1979, p. 271—272. [Русский перевод: Гарднер М. .Этот правый, левый мир.—М.: Мир, 1967. Серия «В мире науки и техники».]
5 Einstein A., Ritz W. Phys. .........1909, Bd. 10, S. 323. [Русский перевод: Эйнштейн А., Ритц. В. К современному состоянию проблемы излучения.—В кн.: Эйнштейн А. Собрание научных трудов. Т. 3. —М.: Наука, 1966, с. 180.]
6 Poincare H. Les methods nouvelles de la mecanique celeste. — N. Y.: Dover Publications, 1967 [русский перевод: Пуанкаре А. Новые методы небесной механики.—В кн.: Пуанкаре А. Избран­ные труды, Т. 1, 2. — М.: Наука, 1971, 1972]; Whittaker E. T. A Treatise on the Analitical Dynamics of Particles and Rigid Bodies.— Cambridge: Cambridge University Press, 1965 [русский перевод: Уиттекер Э. Т. Аналитическая динамика.—М".—Л.: ОНТИ, 1937].
7 Моser J. Stable and Random Motions in Dynamical Systems. — Princeton, N. J.: Princeton University Press, 1974.
8 Более общий обзор см. в работе: Lebоwitz J., Penrоse О. Modern Ergodic Theory. Physics Today, 1973, 2, p. 23—29.
9 Сошлемся на обстоятельную монографию: Balescu R. Equilibrium and Non-Equilibrium Statistical Mechanics.—N. Y.: John Wiley & Sons, 1975. [Русский перевод: Балеску Р. Равновесная и неравновесная статистическая механика. Т. 1, 2.—М.: Мир, 1978.]
10 Arnold V., Avez A. Ergodic Problems of Classical Mechanics.—N. Y,: Benjamin, 1968.
11 Poincare H. Le Hazard,—In: Poincare H. Science et Methode.—Paris: Flammarion, 1914, p. G5. [Русский перевод: Пуан­каре А. Случайность. — В кн.: Пуанкаре А. О науке. —М : Нау­ка, 1983. с. 320—337.]
12 Мisrа В., Prigogine I., Courbage М. From Determi­nistic Dynamics to Probabilistic Description.—Physica, 1979, vol 98A, p. 1—26.
13 Parks D. N., Thrift N. J. Times, Spaces and Places; A Chronogeographic Perspective. — N.Y.: John Wiley & Sons, 1980.
14 Сourbаре М., Pгigоgin I. Intrinsic Randomness and Intrinsic Irreversibility in Classical Dynamical Systems. Proceedings of the National Academy of Sciences, April 1983, vol. 80.
15 Prigogine I., George C, The Second Law as a Selection Principle: The Microscopic Theory of Dissipative Processes in Quantum Systems. Proceedings of the National Academy of Sciences. 1983, vol. 80, p. 4590—4594.
16 Nabokov V. Look at the Harlequins!—McGrow-Hill, 1974.
17 Needham J. Science and Society in East and West. The Grand Titration. — L.: Alien and Unwin, 1969.
403


18 Подробности см. в работах: Misra В., Prigogine I., Courbage M. From Deterministic Dynamics to Probabilistic Des­cription. Physica, 1979, vol. 98A, p. 1—26; Misra В., Prigogi­ne I. Time, Probability and Dynamics.—In: Long-Time Prediction in Dynamics. /Eds. C. W. Horton, L. E. Recihl, A. G. Szebehely.— N. Y.: Wiley, 1983.
19 Prigogine I., George C., Henin F., Rosenfeld L. A Unified Formulation of Dynamics and Thermodynamics. Chemica Scripta, 1973, vol. 4, pp. 5—32.
20 Courbage M. Intrinsic Irreversibility of Kolmogorov Dynamical Systems. Physica, 1983; Misra В., Prigogine I. Letters in Mathematical Physics, September 1983.
Заключение
1 EddingtonA.S. The Nature of the Physical World.—N.Y.: Macmillan, 1948.
2 Levy-Bruhl L. La Mentalite Primitif. — Paris: PUF, 1922. [Русский перевод: Леви-Брюль Л. Первобытное мышление. — M.: Атеист, 1930.]
3 Mills G. Hamlet's Castle.—Austin: University of Texas Press, 1976.
4 Tagore R. The Nature of Reality. Modern Review (Calcutta), 1931, vol. XLIX, p. 42—43. [Русский перевод: Природа реальности. Беседа с Рабиндранатом Тагором. — В кн.: Эйнштейн А. Собрание научных трудов. Т. 4.—М.: Наука, 1967, с. 130—132.]
5 Kothari D. S. Some Thoughts on Truth.—New Delhi: Anniversary Adress, Indian National Science Academy, Bahadur Shah Zafar Marg, 1975, p. 5.
6 Meyeгson E. Identity and Reality. — N. Y.: Dover Publications, 1962.
7 Bergson H. Melanges. — Paris: PUF, 1972, p. 1340—1346.
8 Corespondence, Albert Einstein — Michel Besso, 1903—1955. Paris: Herman, 1972. [Частичный русский перевод: Переписка А. Эйнштейна и M. Бессо.—В кн.: Эйнштейновский сборник, 1975—1976.— M.: Наука, 1978. с. 5—42; Эйнштейновский сборник, 1977.—M.: Наука, 1980, с. 5—72.]
9 Wiener N. Cybernetics. — Cambridge, Mass.: MIT Press; N. Y.: John Wiley & Sons, 1961. [Русский перевод: Винер H. Кибернетика или связь в животном и машине. Изд. 2-е.—M.: Наука, 1983, с. 87—88.]
10 Merleau-Ponty M. Le philosophic et la sociologie. — In: Eloge de la Philosophie. Collection Idees.—Paris: Gallimard, 1960, p. 136—137.
11 Merleau-Ponty M. Resumes de Cours 1952—1960.—Paris: Gallimard, 1968, p. 119.
12 Valery P. Cahiers. La Pleiade.— Paris: Gallimard, 1973, p. 1303.
13 Наше изложение следует работам: Prigogine I., Stengers I., Pahaut S. La dynamique de Leibnitz a Lucrece. Critique «Special Serres», Jan. 1979, vol. 35, pp. 34—55. Английский перевод: Dynamics from Leibnitz to Lucretius. Afterword to Serres M. Her­mes: Literature, Science, Philosophy.—Baltimore: John Hopkins University Press, 1982, p. 137—155.
404


14 Pierсe C. S. The Monist, 1892, vol. 2, p. 321—337.
15 Whitehead A. Process and Reality: An Essay in Cosmology.—N. Y.: The Free Press, 1969, p. 240—241. См. также: Leclere I. Whitehead's Metaphysics.—Bloomington, Indiana University Press, 1975.
16 Serres M. La naissanse de la physique dans le texte de Lucrece. — Paris: Minuit, 1977, p. 139.
17 Lucretius. De Nalura Rerurn. Book П. Русский перевод: Лукреций. О природе вещей. Пер. с латин., вступительная статья и комментарий Ф. А. Петровского.—M.: Изд-во АН СССР, 1958 с. 65—66.]
Если же движенья все непрерывную цепь образуют,
И возникают одно из другого в известном порядке,
И коль не могут путем отклонения первоначала
Вызвать движений иных, разрушающих рока законы,
Чтобы причина .. шла за причиною истоков ....,
Как у созданий живых на земле не подвластная року,
Что позволяет идти, куда каждого манит желанье,
И допускает менять направленье не в месте известном
И не в положенный срок, а согласно ума побужденью?
18 Serres M. La naissance de physique dans le texte de Lucrece.—Paris: Minuit, 1977, p. 136.
19 Serres M., ibid., pp. 162, 85—86, Roumain at Faulkner traduisent l'Ecriture.—In: La Traduction.—Paris: Minuit, 1974.
20 Moscovici S. Hom mes domestiques et hommes sauvages.— Paris: Union general d'ed., 1974, pp. 297—298.
21 Kuhn T. The Structure of Scientific Revolutions. 2nd ed. increased.—Chicago: Chicago University Press, 1970. [Русский перевод: Кун Т. Структура научных революций.—M.: Прогресс, 1977.)
22 См. Whitehead A. N. Process and Reality: An Essay in Cosmology. — N. Y.: The Free Press, 1969; Heidegger M. Sein und. Zeit.—Tubingen: Niemeyer, 1977.
23 Weyl H. Philosophy of Mathematics and Natural Science.— Princeton. N. J.: Princeton University Press, 1949. [Частичный русский перевод: Вeйль Г. О философии математики. — M. — Л. 5 ГТТИ, 1934; Beйль Г. Избранные труды.—M.: Наука, 1984. Серия "Клас­сики науки».]
24 Neher A. Vision du temps et de l'histoire dans la culture juive.—In: Les cultures et le temps.—Paris: Payot, 1975, p. 179.
405
ЕСТЕСТВОЗНАНИЕ И РАЗВИТИЕ: ДИАЛОГ С ПРОШЛЫМ, НАСТОЯЩИМ И БУДУЩИМ (ПОСЛЕСЛОВИЕ)
Одна из причин, по которым книга И. Пригожина и И. Стенгерс вызвала оживленные дискуссии и привлек­ла внимание широкого круга читателей в различных странах мира, состоит в том, что «Порядок из хаоса» за­трагивает проблемы, находящиеся в философском «фо­кусе» многих наук, как естественных, так и гуманитар­ных. Представитель современного естествознания, будь то физик или биолог, геолог или химик, в большей ме­ре, чем его предшественник, склонен уделять внимание теоретико-познавательным и мировоззренческим пробле­мам. Результаты его собственных исследований и тех, которые проводят коллеги, оказывают более прямое и сильное воздействие на картину мира, чем когда-либо прежде. Целый ряд понятий, некогда бывших достояни­ем узкого круга специалистов, теперь становятся меж­дисциплинарными и общезначимыми, далеко выходя за рамки конкретного контекста и тех специальных задач, в связи с которыми они первоначально возникли. По словам В. И. Вернадского, в развитых областях наук о природе «есть некоторые более основные проблемы, есть учения и явления, есть коренные методологические вопросы, есть, наконец, характерные точки или пред­ставления о космосе, которые неизбежно и одинаковым образом затрагивают всех специалистов, в какой бы области этих наук они ни работали. Каждый из них подходит к этим основным и общим явлениям с разных сторон, иногда касается их довольно бессознательно. Но по отношению к ним он неизбежно должен высказывать определенное суждение, должен иметь о них точное представление: иначе он не может быть самостоятельным работником даже в узкой области своей специальности» (Вернадский В. И. Избр. труды по истории науки. М., 1981, с. 32—33).
406


Так, например, малоизвестное в прошлом за предела­ми гидродинамики понятие «турбулентность» ныне пред­ставляет общенаучный интерес. Хаос перестал быть синонимом отсутствия порядка и обрел структуру, по­добно тому как перестал быть синонимом «ничего» фи­зический вакуум.
Аналогичная метаморфоза произошла и с понятием «время». Переоткрытие времени в современной физике, низведенного в классической механике до роли вспомо­гательного параметра, «нумерующего» последователь­ность событий, — главная тема книги И. Пригожина и И. Стенгерс. Ей вторят многочисленные вариации и по­бочные темы: структура и направленность времени, воз­никновение и развитие необратимости в различных явле­ниях природы, роль необратимости в процессах самоор­ганизации, роль наблюдателя, не только фиксирующего, но и активно изменяющего ход явлений на макроско­пическом уровне, и т.д.
Разумеется, все эти (и многие другие) важные проб­лемы не впервые привлекают внимание физиков. Иссле­дования в соответствующих направлениях проводятся давно, начиная с классических работ Больцмана и Гиббса; ныне же они развернулись широким фронтом.
Известно, что в ходе развития науки выход на новый рубеж познания открывает не только новые перспекти­вы, но и ставит новые проблемы (позволяет вместе с тем по-новому взглянуть на старые). Книга И. Пригожина и И. Стенгерс «Порядок из хаоса», равно как и вышед­шая ранее книга Пригожина «От существующего к воз­никающему. Время и сложность в физических науках» (М., 1985), ценна тем, что она стимулирует воображе­ние читателя, привлекая его внимание к важному кругу идей, связанных с проблемами самоорганизации.
Авторам любой книги по самоорганизации трудно «угнаться за временем»: столь высок темп появления но­вых идей и результатов в этой еще только начинающей формироваться области науки. Не претендуя на то, что­бы компенсировать неизбежную неполноту охвата всех поставленных в книге «хороших» (по выражению О. Тоф-флера) вопросов, настоящее послесловие ставит своей целью поделиться некоторыми мыслями и соображе­ниями, возникшими после прочтения книги, с тем чтобы подключить читателя к самостоятельному раз­мышлению над рассматриваемыми в книге пробле-
407


мами, к активному диалогу с ее авторами.
Процессы в физических, химических и биологических системах подразделяются на два класса. К первому классу относятся процессы в замкнутых системах. Они ведут к установлению равновесного состояния, которое при определенных условиях отвечает максимально воз­можной степени неупорядоченности. Такое состояние мы называем физическим хаосом.
Современные представления о равновесном состоянии восходят к замечательным работам Больцмана и Гиббса, которые показали, что энтропия, введенная в термо­динамику Клаузиусом, служит одной из важных харак­теристик статистической теории — мерой неупорядочен­ности, или хаотичности, состояния системы. Знаменитая Н-теорема Больцмана и теорема Гиббса стали основны­ми инструментами при разработке современной статис­тической теории неравновесных процессов. Н-теорема Больцмана была установлена на примере временной эво­люции к равновесному состоянию в разреженном газе, когда описание системы проводится с помощью функ­ции распределения (фазовой плотности) в шестимерном пространстве координат и импульсов. Это соответствует вполне определенному — кинетическому — уровню опи­сания, когда распределение газа в шестимерном фазовом пространстве представляется в виде сплошной среды. Такое ограничение является, разумеется, весьма сущест­венным, поскольку при этом не учитывается (по край­ней мере явно) атомарно-молекулярное строение среды. Оно «скрыто» в понятиях физически бесконечно малого временного интервала и физически бесконечно малого объема, наличие которых (часто неявно) используется при построении кинетического уравнения Больцмана. Учет этого обстоятельства позволяет обобщить описание Больцмана, установить более общие уравнения и сфор­мулировать соответствующие обобщения Н-теоремы Больцмана.
Ко второму классу можно отнести процессы в откры­тых системах, в ходе которых из физического хаоса рож­даются структуры — диссипативные структуры, о кото­рых так много говорится в настоящей книге Пригожина и Стенгерс. Напомним, что сам термин «диссипативные структуры» был введен И. Пригожиным. Возникновение диссипативных структур в ходе временной эволюции в открытых системах через последовательность все бо-
408


лее упорядоченных диссипативных структур характерно для процессов самоорганизации.
Проблема самоорганизации в различных системах не является, разумеется, новой, о чем неоднократно упоми­нается в книге «Порядок из хаоса». Различным аспек­там этой проблемы посвящено много выдающихся ра­бот. Особое место среди них занимают работы Чарлза Дарвина о естественном отборе в процессе эволюции.
Одно время бытовало мнение, что существует явное противоречие между теорией Дарвина и вторым законов термодинамики. Действительно, но Дарвипу, в процессе биологического развития происходит усложнение струк­тур и степень упорядоченности возрастает. Согласно же второму закону термодинамики, в любой замкнутой си­стеме в процессе эволюции степень хаотичности (энтро­пия) возрастает. Это кажущееся противоречие отпало с осознанием того факта, что существуют два принци­пиально различных (указанные выше) процесса эволю­ции: процессы в замкнутых системах ведут к тепловому равновесию (физическому хаосу, в нашей терминоло­гии), а процессы в открытых системах могут быть про­цессами самоорганизации. При этом возникает необхо­димость введения количественной характеристики степе­ни упорядоченности различных состояний открытых сис­тем. Это необходимо для сравнительной оценки степени самоорганизованности — упорядоченности различных со­стояний, выбора пути наиболее эффективной самоорга­низации (см. об этом гл. 9 настоящей книги).
Из изложенного следует, что необходима единая тео­рия, которая бы естественным образом описывала два выделенных класса процессов. Она должна быть эффек­тивной на всех уровнях статистического описания: кине­тическом, гидродинамическом, диффузионном, термоди­намическом. Такая теория, благодаря усилиям многих исследователей, в частности И. Пригожина и представи­телей созданной им Брюссельской школы, успешно раз­вивается. Она позволяет решать очень широкий круг задач в различных областях знания. Ее можно назвать «статистической теорией неравновесных процессов». Из обширного материала этой теории мы отметим лишь не­которые идеи и результаты, составляющие основу на­ших представлении о структуре хаоса и турбулентном движении.
Понятие «хаос» играло весьма существенную роль
409


в мировоззрении философов древности, в частности представителей школы Платона. Не вдаваясь в детали, отметим лишь два сформулированных ими положения, сохраняющих свое значение и при использовании поня­тия «хаос» в современной физике.
По представлениям Платона и его учеников, хаос (если говорить современным языком) есть такое состоя­ние системы, которое остается по мере устранения воз­можностей проявления ее свойств.
С другой стороны, из системы, находящейся изна­чально в хаотическом состоянии, возникает все, что составляет содержание мироздания. Роль творящей силы — творца — Платон отводил Демиургу, который и превра­тил изначальный Хаос в Космос. Таким образом, все существующие структуры порождаются из хаоса.
Понятие «структура» также является чрезвычайно общим. Структура есть некоторый вид организации и связи элементов системы. При этом может оказаться важным не сам конкретный вид элементов системы, а совокупность их взаимоотношений.
В физике понятия «хаос», «хаотическое движение» являются фундаментальными, и вместе с тем недоста­точно четко определенными.
Действительно, хаотическим является движение ато­мов в любой системе, находящейся в состоянии теплово­го равновесия. Хаотическим является и движение броу­новских частиц, т.е. малых, но макроскопических тел. При этом понятия теплового и хаотического движения оказываются синонимами. Так мы говорим о хаотиче­ских — тепловых — колебаниях заряда и тока в электри­ческой цепи, находящейся в термостате, о хаотическом — тепловом движении электромагнитного излучения и т.д.
Во всех этих случаях речь идет о движении в состоя­нии теплового равновесия. Однако понятия «хаос», «хао­тическое движение» широко используются для характе­ристики состояний, которые далеки от теплового равно­весия, например для описания турбулентного движения.
На вопрос «Что такое турбулентность?» ответить не просто. Разноречивы, в частности, мнения о том, являет­ся ли турбулентное движение более хаотичным (менее упорядоченным), чем ламинарное. Многим представляет­ся почти очевидным, что переход от ламинарного тече­ния к турбулентному есть переход от упорядоченного движения к хаотическому.
410


«Долгое время турбулентность отождествлялась с хаосом или шумом. Сегодня мы знаем, что это не так. Хотя в макроскопическом масштабе турбулентное тече­ние кажется совершенно беспорядочным, или хаотическим, в микроскопическом масштабе оно высоко органи­зованно. Множество пространственных и временных мас­штабов, на которых разыгрывается турбулентность, со­ответствует когерентному поведению миллионов и мил­лионов молекул. С этой точки зрения переход от ламинарного течения к турбулентности является процес­сом самоорганизации. Часть энергии системы, которая в ламинарном течении находилась в тепловом движении молекул, переходит в макроскопическое организован­ное движение» (с. 195—196). Приведенная здесь трак­товка турбулентности подтверждается и в дальнейшем. Так на с. 225 мы читаем: «Не следует смешивать, одна­ко, равновесный тепловой хаос с неравновесным турбу­лентным хаосом». Однако во многих случаях «порядок» довольно трудно отличить от «хаоса»».
Таким образом, хотя авторы и считают переход от ламинарного движения к турбулентному процессом са­моорганизации, что соответствует точке зрения, разде­ляемой одним из авторов настоящего послесловия, во­прос о количественной характеристике степени хаотич­ности тех или иных состояний открытой системы оста­ется нерешенным. Рассмотрим, к примеру, движение жидкости по трубе, которое обусловлено перепадом дав­ления на концах трубы (градиентом давления). Примем за исходное состояние неподвижную (в гидродинамиче­ском смысле) жидкость, т. е. предположим, что перепад давления равен нулю. В неподвижной жидкости нет выделенных макроскопических степеней свободы — нет макроскопической структуры движения (поля скоро­стей). Имеется лишь тепловое — хаотическое — движе­ние атомов.
Например, при стационарном ламинарном течении несжимаемой жидкости на фоне теплового движения атомов возникает макроскопическая структура. Она оп­ределяется пространственным распределением средней скорости течения — профилем скорости. При гидродина­мическом уровне описания тепловое движение проявля­ется лишь в наличии малых гидродинамических флук­туации.
При увеличении разности давлений, т.е. по мере
411


приближения числа Рейнольдса к критическому значе­нию, интенсивность гидродинамических флуктуаций, а также время и длина корреляции возрастают. Это — предвестник перестройки движения и изменения макро­скопической структуры течения, в результате которой при дальнейшем увеличении числа Рейнольдса и возни­кает турбулентное движение. Микроскопический (моле­кулярный) механизм переноса импульса сменяется мак­роскопическим. Система переходит от «индивидуально­го» (молекулярного) сопротивления к «организованно­му» (коллективному) сопротивлению, вследствие чего закон сопротивления изменяется.
Турбулентное движение характеризуется большим числом коллективных степеней свободы. Оно чрезвы­чайно сложно, но сама по себе сложность движения еще не достаточна для того, чтобы его можно было считать хаотическим (разумеется, если не сводить все к тавто­логии, определяя термины «турбулентность» и «хаос» как синонимы). Подробный анализ показывает, что тур­булентные движения очень разнообразны и что некото­рые из них можно интерпретировать как очень сложные пространственно-временные структуры, возникающие в открытых системах из физического хаоса.
Общее понятие хаоса, как, впрочем, и понятие хаоса в повседневной жизни, лишено определенной количест­венной меры. По этой причине на таком уровне зача­стую трудно определить, какое из рассматриваемых со­стояний системы является более хаотическим или, на­против, более упорядоченным. Здесь в большей мере приходится полагаться на интуицию, чем на расчет.
Не более определенным во многих случаях является и понятие хаоса в физике, поскольку хаотическим назы­вают и тепловое движение в равновесном состоянии, и существенно неравновесное турбулентное состояние.
Необходима, следовательно, теория, позволяющая количественно оценивать степень упорядоченности раз­личных состояний в открытых системах, т.е. степень упорядоченности структур, возникающих из хаоса. Она, разумеется, должна базироваться на современной ста­тистической теории неравновесных процессов.
«Спектр» систем, для описания которых необходима количественная оценка степени упорядоченности различ­ных состояний, очень широк: от простейших систем до Вселенной. Изначальным может служить физический
412


вакуум, который обладает максимально возможной сте­пенью хаотичности и из которого при наличии управ­ляющих параметров в открытых системах возникают структуры. Вопрос о выборе (определении) управляю­щих параметров в теории самоорганизации является од­ним из наиболее существенных и вместе с тем трудных. При наличии нескольких параметров порядка возмож­ны различные пути самоорганизации — различные «сце­нарии» возникновения порядка из хаоса (гл. 6). При этом возникает возможность оптимального управления.
В качестве одной из характеристик степени упоря­доченности можно использовать (при определенных до­полнительных условиях) этропию Больцмана—Гиббca. Существенно, что в связи с исследованием сложных — хаотических (или, как часто говорят, стохастиче­ских) — движений динамических систем понятие энтро­пии расширилось. А. Н. Колмогоров ввел для таких систем понятие динамической энтропии. Ее называют также К-энтропия. (Об этом достаточно полно сказано в книге И. Пригожина и И. Стенгерс.) Основополагаю­щими для теории динамического хаоса являются работы Н. С. Крылова. Возможность использования энтропии Больцмана—Гиббса для количественной характеристи­ки степени упорядоченности при процессах самооргани­зации в открытых системах не представляется очевид­ной. Здесь следует выделить два подхода.
В одном случае в изолированной системе происходит эволюция к равновесному состоянию. При этом энтро­пия системы монотонно возрастает и остается неизмен­ной при достижении равновесного состояния. Этот ре­зультат был установлен Больцманом на примере раз­реженного газа. Он носит название Н-теоремы Больц­мана.
В другом случае рассматривается совокупность ста­ционарных состояний, отвечающих различным значени­ям управляющего параметра. Начало отсчета управляю­щего параметра может быть, в частности, выбрано та­ким образом, что его нулевому значению будет отвечать «состояние равновесия».
Аналог Н-теоремы Больцмана для открытых си­стем — так называемая S-теорема (Климонтович Ю. Л. Уменьшение энтропии в процессе самоорганиза­ции. S-теорема. Письма в Журнал технической физики 1983, т. 8, с. 1412 и другие его работы) сводится к сле-
413


дующему: если за начало отсчета степени хаотичности принять «равновесное состояние», отвечающее нулевым значениям управляющих параметров, то по мере удале­ния от равновесного состояния вследствие изменения уп­равляющего параметра значения энтропии, отнесенные к заданному значению средней энергии, уменьшаются.
Весьма важной особенностью книги И. Пригожина и И. Стенгерс является также тот факт, что рассмотре­ние весьма специальных вопросов чередуется в ней с анализом наиболее общих проблем развития познания и культуры. Соответственно с этим проблемы времени и развития представлены в книге в широком междисци­плинарном и в том числе гуманитарном аспекте, вклю­чая анализ времени человеческого бытия.
Каждая историческая эпоха по-своему уникальна и неповторима, и в этом отношении время, в которое мы живем, не является исключением: оно также уникально и неповторимо. Однако, признавая этот факт и зада­ваясь вопросом, в чем, собственно говоря, конкретно за­ключается уникальность и неповторимость исторических эпох, мы до сих пор склонны разделять этот общий во­прос на два разных вопроса, один из которых адресован в прошлое, а другой в настоящее. Такая разделенность имеет свои основания, в том числе и исторические. Прошлые исторические события обычно воспринимаются нами как нечто уже ставшее, законченное, завершенное и неизменное. Мы полагаем себя как бы находящимся в позиции «внешних наблюдателей» по отношению к ним. Иное дело — настоящее, «теперь».
Мы живем в эпоху исключительной временной «уп­лотненности», стремительного научно-технического прог­ресса, грандиозных свершений человеческого духа; эпо­ху, насыщенную острыми социальными конфликтами, быстрыми, необратимыми изменениями, неотложными глобальными и региональными проблемами, в перечне которых самой первоочередной и безотлагательной яв­ляется проблема прекращения и свертывания гонки ядерных вооружений на нашей планете и недопущение милитаризации космоса.
Мы все более сознаем, что время не есть нечто «при­надлежащее нам», но есть то, чему принадлежим мы сами. Однако само сознание нашей «принадлежности времени», «пребывания в нем» может быть качественно-разным. Это может быть сознание фатального пребыва-
414


ния в плену у времени, властвующего над нами абсо­лютно и безраздельно. Но может быть и сознанием то­го, что время принадлежит нам именно в той мере, в какой мы не уклоняемся от ответственности познать, понять, осознать его личностно, творчески и посредством своего настоящего «теперь», ибо другого реального, а не иллюзорного места во времени у нас нет. И здесь гори­зонт нашего времени претерпевает качественную транс­формацию, обретая новый, оптимистический смысл.
Меняется и облик прошлого. Оно оказывается гораз­до более многокрасочным, разнообразным и сложным. Многие заблуждения людей прошлого оборачиваются нашими собственными заблуждениями по поводу прош­лого или «проекциями» наших проблем на прошлое. Люди, жившие в прошлом, представляются не столь наивными и невежественными, а проблемы, над которы­ми они размышляли и спорили когда-то, приобретают неожиданную созвучность тем вопросам, над которыми размышляем мы сами.
Иначе говоря, адекватное восприятие нашего време­ни должно быть историчным в полном смысле этого слова.
«Историческое понимание материального и духовного мира, — пишет академик Д. С. Лихачев, — захватывает собой науку, философию и все формы искусства... Вре­мя отвоевывает и подчиняет себе все более крупные участки в сознании людей. Историческое понимание дей­ствительности проникает во все формы и звенья художе­ственного творчества. Но дело не только в историчности, а в стремлении весь мир воспринимать через время и во времени. Литература в большей мере, чем любое другое искусство, становится искусством времени. Время — его объект, субъект и орудие изображения» (Лихачев Д. С. Поэтика древнерусской литературы. М, 1979, с. 209). Эти слова оказываются удивительно созвучны­ми тому новому восприятию времени, его переоткрытию в современной науке, которое не просто изображается, "но которое «осуществляется» на страницах книги "И. Пригожина и И. Стенгерс.
Это переоткрытие времени по самой своей сути не является чем-то уже ставшим и завершенным. Пользу­ясь терминологией книги «Порядок из хаоса», можно сказать, что оно — неотъемлемая составная часть общего процесса самоорганизации, охватывающего всю систему
415


нашего миропонимания в целом и радикально меняюще­го его.
Но мы вступили бы в противоречие с самим духом книги И. Пригожина и И. Стенгерс, ее пафосом и общей направленностью, если бы механически и буквально ис­толковали этот процесс как совершающийся «сам по се­бе», автоматически и безличностно, вне связи с практи­чески-созидательной, творческой деятельностью людей.
Понятие самоорганизации в контексте образов и идей книги «Порядок из хаоса» предполагает существенно личностный, диалоговый способ мышления — открытый будущему, развивающийся во времени необратимый коммуникативный процесс. Подобный диалог представ­ляет собой искусство, которое не может быть целиком и полностью описано средствами формальной логики, сколь бы развитой и совершенной она ни была. В этом диало­ге нет готовых ответов на задаваемые вопросы, как нет и окончательного перечня самих вопросов. Каждая из вовлеченных в такой диалог сторон не является только спрашивающей или только отвечающей. Так что органи­зация подобного диалога, — а это одна из основных задач практики использования современных ЭВМ в лю­бых сложных, комплексных, междисциплинарных иссле­дованиях (см.: Моисеев Н. Н. Человек, среда, обще­ство. М., 1982), — с необходимостью предполагает един­ство формальных и неформальных методов мышления, единство логики и творческой интуиции. Отсюда и лич­ностный аспект диалога.
«Эксперимент и математическая обработка. Ставит вопрос и получает ответ — это уже личностная интерпре­тация процесса естественнонаучного знания и его субъ­екта (экспериментатора). История познания и история познающих людей». Эта мысль, принадлежащая М. М. Бахтину (Бахтин М. М. Эстетика словесного творчества. М., 1979, с. 370) и высказанная им в связи с его размышлениями о естественнонаучном и гумани­тарном знании, их различии и единстве в системе чело­веческой культуры, имеет принципиальное значение для понимания настоящей книги.
Одна из ее особенностей состоит в том, что тема диалога как формы коммуникации в сочетании с темой времени представлена на ее страницах в большом мно­гообразии вариаций, не всегда четко обозначенных, а лишь намеченных в качестве тем будущих обсуждений.
416


Диалоговый способ мышления, разумеется, не явля­ется изобретением науки нашего времени. Подобно пе­реоткрытию времени в современной науке, он открыва­ется заново как особое искусство «вопрошания» приро­ды; искусство, которое на протяжении человеческой ис­тории (начиная со времени изобретения письменности) принимало весьма различные формы.
Характеризуя принципиальные изменения в современ­ной научной картине мироздания, авторы книги с самого начала акцентируют внимание на происходящих в ми­ре сдвигах в направлении «множественности, темпоральности и сложности» (с. 34). Вполне естественно, что за указанными изменениями стоят также и изменения в способе научного мышления, которые можно охаракте­ризовать самым различным образом. В этой связи, на­пример, говорят о неклассическом, системно-кибернети­ческом, вероятностном, нелинейном и т.д. мышлении, свойственном именно современной науке и отличающем ее от классического естествознания прошлых веков.
Подобные характеристики (при всей их неопределен­ности) весьма существенны, поскольку подчеркивают качественное своебразие облика современной науки, но­визны присущего ей стиля мышления. Но и эти характе­ристики явно недостаточны, когда речь идет о преемст­венности в развитии научного познания, его связи с культурой, с общественным развитием в целом. Диалог как способ мышления позволяет выдвинуть на первый план идею преемственности развития научного позна­ния. Эксперимент же как средство реализации подобно­го диалога выступает, таким образом, не просто как ис­точник эмпирических фактов или свидетельств, но и (что особенно важно) как носитель специфической ком­муникативной функции в системе развивающегося науч­ного знания и познания в целом.
Такая диалогово-коммуникативная интерпретация эксперимента проливает новый свет на интегративную роль методов научного познания как таковых. В любой области деятельности методы выражают систему правил и принципов, на основе которых упорядочивается, дела­ется целесообразной и осмысленной деятельность челове­ка. Соответственно этому в ходе развития познания и формировались общие представления о научном методе, Научный метод в современном смысле слова предпола­гает множество характеристик: и способы фиксации и
417


выражения фактов, и строгую логику фактов, измерения и разработку исследовательских приборов, и строгость и систематизированность умозаключений, возможность обоснования любого научного положения опытным путем, и независимость научных суждений от мнений авто­ритетов, формы выражения знаний, и способы функцио­нирования и экстраполяции знаний, возможности ошибок и способы их устранения, и идею развития знаний и мно­гое многое другое.
Но в первую очередь научный метод подразумевает конструктивную деятельность интеллекта. Но в то же время вполне очевидно, что научное творчество не обла­дает монополией на интеллект. Научная деятельность может оттачивать или совершенствовать те или иные формы деятельности интеллекта, но последний является не менее существенной «основой» всех иных видов жиз­недеятельности человека — и в материальном производ­стве, и в политической деятельности, и в искусстве и т. д. Деятельность интеллекта имманентно включена в процессы научного действия, в структуру научного ме­тода, но специфику последним придает нечто другое.
Для человеческой деятельности особо характерен ее орудийный характер. Вообще можно сказать, что проис­хождение специфических видов человеческой деятель­ности стало возможным в процессе выработки особых орудий деятельности. Соответственно этому специфику научной деятельности, ее методов обусловливает глав­ным образом выработка, совершенствование и применение особых орудий, средств познания. Поскольку научное познание имеет, так сказать, и интеллектуальный (сугубо духовный) и материальный аспекты, то можно говорить об интеллектуальных и материальных орудиях познания. Процесс познания не только обеспечивается средствами исследования, но и закрепляется в них своими результатами.
Проблемы научного метода широко обсуждались с самого начала возникновения экспериментального есте­ствознания. Уже в эпоху Возрождения достаточно ясно осознавалось, что научный метод включает и экспери­ментальное (опытное) и теоретическое начало. Приборы и математика явились первыми специализированными инструментами осуществления диалога исследователей с природой. И в настоящее время считается само собой разумеющимся, что математика и эксперимент входят
418


в структуру научного метода, совершенствуясь с его развитием. Ныне положительное решение вопроса о воз­можности или необходимости применения математики и приборов в развитии познания не вызывает сомнений. А самый реальный и живой интерес вызывают такие, на­пример, вопросы: какую математику следует применять. в познании новых явлений? Что нового в конструировании приборов и измерительной техники? Какие принци­пиальные изменения происходят и развитии и примене­нии этих — уже ставших незаменимыми — орудий позна­ния? Ответить на эти вопросы можно лишь в том слу­чае, если мы будем рассматривать научное знание не только, и даже не столько в его готовой, полностью объ­ективизированной, «обезличенной» форме, но также и в процессе его становления, т.е. как знание, выступающее в виде средства и метода получения нового знания. Именно становление, глубокое осмысление начал научного метода привели в дальнейшем науч­ное познание (и прежде всего естествознание) к его важнейшим достижениям — разработке первых научных теорий как относительно целостных концептуальных си­стем. Таковыми явились классическая механика Ньюто­на, затем классическая термодинамика, классическая электродинамика, теория относительности, квантовая механика. Эти важнейшие достижения научного позна­ния в свою очередь оказали существенное воздействие и на сам научный метод — его понимание стало неотде­лимо от научной теории, процессов ее применения и развития. Если стройная теория есть высший результат развития познания тех или иных областей действитель­ности, то истинно научный метод есть теория в действии. Квантовая механика есть не только отражение свойств и закономерностей физических процессов атомного мас­штаба, но и теоретический метод дальнейшего познания микропроцессов.
Само развитие математических форм и эксперимента начинает ориентироваться на те обобщающие идеи, ко­торые воплощаются в научной теории. Научный поиск становится более целенаправленным, получает внутренне содержательное единство. «Диалогизм» научного мето­да, как показывает, в частности, книга И. Пригожина и И. Стенгерс, начинает все более определять динамизм концептуальных систем, современного научного мышле­ния.
419


Процесс «диалогизации» научного познания в наши дни в огромной степени стимулирован вхождением .ЭВМ в научные исследования. ЭВМ являются величай­шим и все совершенствующимся орудием, которое созда­но человеком нашего времени в его стремлении понять окружающий мир. Разработка и применение ЭВМ со­ставляют эпоху в развитии жизнедеятельности человека, расширяя и углубляя его коммуникативные возможно­сти, уровень его контактов с объективной реальностью.
Развитие ЭВМ, по общему признанию, связано с ка­чественным усилением: интеллектуального начала в жиз­недеятельности человека. Они условно применяются во всех основных сферах деятельности человека — и в про­изводстве (развитие технологии), и в системах связи, и в процессах управления. Без ЭВМ сейчас невозмож­но представить себе развития современных научных ис­следований, и в частности исследований всего комплекса вопросов, возникающих в связи с проблемой самоорга­низации. Не случайно многие из приведенных на стра­ницах этой книги графиков и рисунков представляют со­бой результаты выполненных с помощью ЭВМ числен­ных экспериментов. Таким образом, можно сказать, что диалоговый язык общения с ЭВМ оказывается в каком-то смысле и языком описания процессов самоорганиза­ции, инструментом познания их. В конце концов сам термин «самоорганизация» в качестве характеристики процесса развития диалога и его результата косвенно указывает на отсутствие в этом диалоге некоего внешне­го «посредника», арбитра или наблюдателя, к самому диалогу непричастного, а потому судящего обо всем происходящем объективно и беспристрастно, как лицо, уже обладающее готовым знанием всех возможных во­просов и ответов на них.
Развитие искусства вопрошания природы в той его форме, в какой оно сформировалось в рамках экспери­ментального диалога в естествознании, есть в этом смысле открытый будущему самоорганизующийся про­цесс, в котором ответы на поставленные вопросы вле­кут за собой постановку все новых и новых вопросов. На основе полученного в итоге нового знания наука вы­рабатывает все новые средства познания, благодаря ко­торым открываются все новые и новые возможности для дальнейшего проникновения в тайны строения и эволю­ции материального мира. «...Наука движется вперед, —
420


отмечал Ф. Энгельс, — пропорционально массе знаний, унаследованных ею от предшествующего поколения, сле­довательно, при самых обыкновенных условиях она также растет в геометрической прогрессии» (Маркс К-, Энгельс Ф. Соч., т. 1, с. 568). Кик сказал Л. де Бройль, «...наука непрерывно кует новое материальное и духовное оружие, позволяющее ей преодолевать встающие на пути ее развития трудности, открывать для ис­следования неразведанные области» (Л. де Бройль. По тропам науки. М., 1962, с. 308).
Так, представленные в книге «Порядок нз хаоса» те­мы диалога, коммуникации, средств и методов познания процессов самоорганизации подводят нас вплотную к фундаментальной философской проблеме познания общих закономерностей развития как диалектического процесса, присущего (хотя и в разных специфически конкретных формах) не только человеческому обществу, но и всему материальному миру, включая также и неор­ганический мир неживой материи.
На этот факт указывают и сами авторы книги, которые в обращении к советскому читателю подчерки­вают, что им «очень близка утверждаемая диалектиче­ским материализмом необходимость преодоления про­тивопоставления «человеческой», исторической сферы материальному миру, принимаемому как атемпоральный. Мы глубоко убеждены, что наметившееся сближе­ние этих двух противоположностей будет усиливаться по мере того, как будут создаваться средства описания внутренне эволюционной Вселенной, неотъемлемой ча­стью которой являемся и мы сами» (с. 10).
Действительно, материалистическая диалектика всег­да рассматривала как «...противоестественное представ­ление о какой-то противоположности между духом и ма­терией, человеком и природой, душой и телом, которое распространилось в Европе со времени упадка класси­ческой древности» (Маркс К., Энгельс Ф. Соч., т. 20, с. 496). С тех пор как были написаны эти слова, минуло более ста лет. В наши дни противоестественность противостояния человека и природы, необходимость ус­тановления их подлинной гармонии все более осознается как одна из самых актуальных и первоочередных за­дач социальной практики. Не случайно поэтому п со­ветской философской литературе последних лет особен­но подчеркивается, что в качестве общей теории разви-
421


тия природы, общества и отражающего их мышления материалистическая диалектика рассматривает природу «не как простой «объект», но как бытие активное, дея­тельное, диалектическое в себе самом» (Богомолов А. С. «Праксис» или практика? Послесловие к кн. Дж. Хоффмана «Марксизм и теория «праксиса». М., 1978, с. 310). Ибо «только такая природа может породить человека; только такая природа может быть превращена в подлинно человеческую «среду»» (там же). И именно на такое понимание природы ориентирована книга При­гожина и Стенгерс, воссоздающая на своих страницах картину обретения современным естествознанием своего нового, подлинно исторического, а тем самым и челове­ческого измерения.
Разумеется, картина эта далеко не полна и не со всеми представленными в ней деталями можно согла­ситься. Ряд суждений и оценок авторов книги выглядят весьма спорными или недостаточно аргументированны­ми. Это, в частности, касается и трактовки некоторых вопросов генезиса классической науки, а также оценки. значения философских идей М. Хайдеггера, А. Бергсо­на, А. Уайтхеда, выступающих в книге в качестве участ­ников диалога естествознания и философии, его крити­ков и проповедников интуитивных способов постижения реальности, альтернативных методам и средствам ее на­учного познания.
Однако, как уже отмечалось, книга «Порядок из хао­са» вовсе не ставит своей целью сообщить читателю не­кую совокупность готовых и окончательных истин. Не ставит такой цели и настоящее послесловие.
И все же думается, что каждый, кто взял на себя не­легкий труд внимательно прочитать книгу И. Пригожи­на и И. Стенгерс «Порядок из хаоса» или даже просто ознакомиться с ее отдельными главами, согласится, что оценивать эту книгу нужно в конечном счете в соответ­ствии с теми критериями и по тем законам, которые предполагает ее собственный нетрадиционный жанр. Мы говорим «в конечном счете» потому, что именно к такой ориентированной в будущее, рассчитанной на актив­ный заинтересованный диалог с читателем нас обязы­вает книга И. Пригожина и И. Стенгерс.
В. И. Аршинов,
Ю. Л. Климонтович,
Ю. В. Сачков

422


ИМЕННОЙ УКАЗАТЕЛЬ



Августин Блаженный 27
Авогадро Л. 174
Агассис Л. 257
Ампер А. М. 115, 125
Анаксагор 331
Аристотель 82—84, 95, 133, 229, 231, 377, 383
Арнольд В. И. 7 Архимед 85
Аршинов В. И. 422
Баттс Т. 72
Бах И. С. 290, 379
Бахтин М. М. 416
Башляр Г. 392
Белоусов Б. П. 207—209, 225
Бенар А. 196—198, 220, 225, 234
Бергсон А. 50, 107, 127, 141— 144, 147, 183, 231—233, 276, 365, 373, 422
Берлин И. 41, 52, 54, 128
Бернулли Д. 131
Берри Б. 60
Бертолле К. Л. 393
Берхаве Г. 156
Бессо М. 365—366
Биркгоф Дж. Д. 333
Блейк В.72
Богомолов А. С. 422
Больцман Л. 57—58, 175—182, 196—197 204, 220, 248, 282, 292, 299, 301, 306—313, 315— 317, 321—323, 343, 357, 359, 368, 401, 407—408, 413
Бор Н. 8, 41, 123, 288—289, 293, 364, 399
Борн М. 283—284, 300
Бриджмен П. 388
Бриллюэн Л. 279
Бродель Ф. 21-22
Бруно Дж. 57—58
Брунс Г. Э. 121, 332
Бухдаль Г. 389
Бюффон Ж. Л. Л. 113—115
Вааге П. 186
Валери П. 59, 373
Ватанабе С. 401
Вейль Г. 384
Вейсс П. 233
Венель 132, 382
Вернадский В.И. 406
Вико Г. 43
Винер Н. 367
Вольта А. 158
Вольтер 324—325
Вордсворт В. 74
Галилей Г. 84—89, 103, 377—378
Гальвани Л. 158
Гамильтон В. Р. 116—124, 316 Гарднер М. 299. 326
Гассенди 109
Гегель Г. В. Ф. 127, 139—141, 231, 232, 393
Гей-Люссак Ж.-Л. 161
Гейзенберг В. 27, 238, 284, 286—291,364, 368
Гельмгодьц Г. 147, 159, 161, 163, 393
Гесиод 81
Гёте И. В. 74, 181, 391
Гиббс Дж. В. 57, 304, 314—316, 318—319, 329, 401, 407—408, 413
Гиллиспи Ч. Ч. 73, 393
Гольбах П. А. 131
Грассе 241, 246
Гулд С. Дж. 264


423


Гульдберг К. 186
Гус Я. 27
Д'Аламбер Ж. Л, 98, 109, 112—114, 129, 131
Дайсон Ф. 169
Дарвин Ч. 24, 180—183 193 278, 306, 409
Де Бройль Л. 283—284, 421
Де Донде Т. 189
Дезагулье Дж. Т. 69
Декарт Р. 109, 129
Демокрит 42
Денюбург Ж. Л. 241
Джоуль Дж. 158—159
Дидро Д. 74, 127—135, 183, 190, 382, 393
Дирак П. А. М. 284, 295
Доббс Б. Дж. 391
Донн Дж. 101—102
Дриш Г. 229
ДЭспанья Б. 294, 400
Дюбуа-Реймон Э. Г. 126, 148 Дюгем П. 148
Дюрренматт Ф. 64
Евклид 229 Екатерина II 98
Жаботинский А. М. 207—209, 225
Зеебек Т. 158
Золя Э. 395
Иордан П. 284
Кальвин Ж. 27
Кант И. 127, 135—139, 160—161
Карнап Р. 276, 365
Карно Л. 163—164
Карно С. 163, 165—167, 172, 180—183, 193, 395
Кауфман С. А. 230
Качальский А. 38
Кеплер И. 95, 379
Кетле Л. А. Ж. 175
Кёстлер А. 75, 77
Кирхгоф Г. Р. 147
Кларк 9
Клаузиус Р. 165—167, 169—172, 298, 306
Клеро А. К. 112—113
Климонтович Ю. Л. 422
Койре А. 44, 75, 78—79, 389
Колмогоров А. Н. 7, 333
Колумб X. 278
Кондильяк Э. Б. 114 Кондорсе Ж. А. Н. 114 Конт О. 155
Коперник Н.101, 379 Котари Д. С. 364 Кристаллер 259
Крылов Н. С. 413
Кун Т. 380—381, 392 Кьеркегор С. 127
Кэллуа Р. 182

Лав М. 257
Лавуазье А. Л. 70, 160, 393
Лагранж Ж. Л. 98, 148, 154, 395
Лаплас П. С. 14, 70 98, 101, 114—115, 124—126, 137,154-155, 167, 339, 395
Леви-Брюль Л. 362
Леви-Строс К. 268, 389
Лейбниц Г. В. 9, 96, 100, 104,123, 374—375
Лейзер Д. 31
Леметр Ж. 277—278
Ленобль Р. 43
Либих Ю. 159
Лиувилль Ж. 316—317, 334 Лихачев Д. С. 415
Лоренц Г. А. 338—339
Лошмидт И. И. 310, 312
Лукреций 42, 195, 374, 376—377
Льюис Г. Н. 298 Людовик XIV 98
Лютер М. 27
Ляпунов А. М. 206

Майер Р. 159—160, 163, 394 Максвелл Дж. К. 101, 122—123, 175, 271, 298, 306—308, 353, 401
Мариотт Э. 161
Марков А. А. 302, 304, 306, 308, 342—345, 347—349, 353
Маркс К. 320, 421—422
Max Э. 99—100, 148, 391 Мейерсон Э. 364
Мерло-Понти М. 371
Меттерних К. 14
Минковский Г. 295, 400
Моисеев Н. Н. 416
Моно Ж. 43, 66, 79, 127, 133 Морен Э. 28
Московиси С. 65, 379


424


Набоков В. 347
Наполеон 98, 114, 393, 394
Нидэм Дж. 47, 90, 93—94, 347, 393
Нисбет Р. 127
Ницше Ф. 190, 396
Ньютон И. 9, 10, 23, 31—32, 35—36, 40, 69—71, 80—84, 100, 103—113, 115—116, 118, 125, 148, 172, 177, 281, 319, 377, 491
Онсагер Л. 191—194
Орд-Хъюм А. У. 389 Освальд В. В. 395—396

Паскаль Б, 79, 127
Пирс Ч. С. 58, 374—375
Пирсон К. 94
Планк М. 173, 280, 282—283, 286, 288, 299—300, 309, 395, 396, 402
Платон 48, 82, 115, 383, 410
Поппер К. Р. 45, 322—323, 326-327
Поуп А. 69, 115
Пруст М. 59
Пуанкаре А. 116, 121, 148, 206, 310, 321, 332, 340, 403
Пуассон С. Д. 239, 241

Рейнольдс О. 200, 413
Ресибуа П. 38
Рейхенбах Г. 148—149, 394
Ритц В. 326—327
Розенфельд Л. 8, 38, 293, 332

Сартр Ж- П. 27
Сахаров А. Д. 296
Сачков Ю. В. 422
Серр М. 155, 195, 375, 392, 395
Синай Я. Г. 7, 333
Смит А. 153, 270
Спиноза Б. 277, 384
Стент Г. 76
Тагор Р. 364
Тейяр де Шарден 59
Том Р. 27—28
Томсон В. 167
Тоффлер О. 33, 38 Тьюринг А. 207
Уайтхед А. Н. 51, 59, 74, 92, 96, 127, 144—147, 275, 278, 325, 374, 375, 383, 422
Уатт Дж. 153
Уиклиф Дж. 27
Уоддингтон К. 233, 393
Уэллс Г. 346

Фарадей М.158
Фейгенбаум М. Дж. 226
Фейер Л. С. 399
Фейнман Р. 89, 388
Фон Нейман Дж. 333
Фрезер Дж. Т. 277
Фрейд 3, 59
Фридман А. А.277
Фридрих II 98
Фурье Ж. Б. Ж. 53, 154—155, 157, 167—168, 189, 394

Хаббл Э. П. 277
Хайдеггер М. 75—76, 86, 127, 383, 422
Хао Байлинь 207 Хаусхер Р. 41
Хенкинс Т. 390
Хесс Б. 212
Хойкас Р. 390
Хопф Э. 333 Хоффман Дж. 422

Цермело Э. 57, 310, 321

Чжуан-цзы 65

Шенберг А. 290
Шрёдингер Э. 61, 284, 290—294, 400
Шталь Г. 132—133, 231, 234, 382
Эверетт 294, 401
Эддингтон А. 23, 47—48, 172, 298, 362
Эйген М. 252
Эйлер Л. 98, 112, 131
Эйнштейн А. 14, 41, 57, 58— 60, 63, 87, 88, 98, 100—101, 126, 276—278, 283, 288, 292, 309, 314—315, 318—319, 325— 327, 329, 340, 364—368, 373, 379, 384
Элиаде М. 83
Элькана И. 394
Энгельс Ф. 320, 421—422
Эпикур 42, 377
Эренфесты П. и Т. А. 300—302, 304, 306, 313
Эрстед Х. 158

Янч Э. 38


425


ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ


Автокаталитическая реакция 181
Активное вмешательство 84 Алхимия Ньютона 111—112, 391
Амёбы коллективные 212—216
Ансамблей теория Гиббса —
Эйнштейна 314—318
Ансамбль микроканонический 317
Антипатии 131
Античастицы 295
Аттрактор 206—208
— странный 207
Байт 11
Барьер энтропийный 59, 346— 350, 366—369
Белоусова — Жаботинского ре­акция 208—209, 225—228
Бенара неустойчивость 196
Бергсона «интуиция» 128, 141— 144
«Беспокойство современных людей» 43
Бифуркации 216—228, 239—240
— точка 217
Бифуркационная диаграмма 217
«Бог, играющий в кости» Эйн­штейна 14, 281
Больцмана принцип порядка 175—180
Больцмана соотношение 177
Больцмана H-функция 302—323
Брюсселятор 201
Венский кружок 148—149
Вероятность и необратимость 58—59
Ветвь термодинамическая 216—217
Взаимности соотношения Онсагера 191—192
Вигнера «приятель» 400 Витализм 133—134
Возрождение Каролингское 27 Времени обращение 108
— опространствование 59
— проблема, метафизиче­ская позиция 51
— — , позитивистская позиция 51
Времени стрела 23, 48—49, 53,. 59, 162—167, 172, 321—327
— — , связанная с биологи­ческой и исторической эво­люцией 31
— — , связанная с расши­рением Вселенной 31
— — , связанная с энтропи­ей 31
Временная тренированность 22
Временное пристрастие 21
Временные горизонты 21—22
Время 20—25, 275—280, 364— 366
— в классической механике-60
— географическое 21
— и пространство 60
— индивидуальное 9
— инновационное 9
— как мера изменения 109
— как параметр 60.


426


— локальное 59—60
— необратимое 25—26
— обратимое 23, 59—60
— периодически повторяю­щееся 9
— социальное 21
Всесилие науки и реализм 77—78
Вторая производная 104 Вторичные законы 48
Второе начало термодинамики 23—25, 48—49, 53, 58, 163, 175—178, 298—323
— — — как эволюционная парадигма 61
Газ Лоренца 338—340
Гамильтона функция 116—119
Гегеля философия природы 139—141
Гейзенберга соотношения не­определенности 286—290
Гипнон 240
Гликолиз 211—212
«Грамматика науки» Пирсона 94
Грубость 8—9
Две культуры 52
Движение и изменение 109—116.
«Движения организмов и их
связь с метаболизмом» Майера 394
Действия масс закон 186
Демон Лапласа 14, 101, 124:—126, 137, 339, 392
— Максвелла 101, 353, 401
— Детерминизм и свобода воли 27
— и случайность 28—29, 50
Детерминиоованность траекто­рии 106
Детерминистическая мировая машина 14—16
Диаграмма бифуркационная 217
Динамической системы пред­ставления 119—122
Дискретный спектр 285
Дискуссия между Больцманом и Цермело 57
— между Лейбницем и Кларком 9
— о живом 127—135


Диссипативные структуры 18,
54—56, 197—198
«Доктор Паскаль» Золя 395 Дополнительности принцип
289—290
Дуализм волна — частица 283
Естественное 48
«Единство физической картины мира» Планка 396
Задача трех тел 121
Задачи динамики, постановка 105
— — , решение 105
Закон всемирного тяготения Ньютона 105—106
— вторичный 48
— действия масс 186
— первичный 48
— Фурье 154—157
«Закон сохранеыия и превраще­ния энергии» Майера 394
Законы движения Ньютона 103—109
— динамика и случайность 109—110
— Кеплера 103
— природы 94—97
— рока 376
— свободного падения 103
«Изложение системы мира» Лапласа 114
Интегрирование 104
Интегрируемые системы 120
Искусственное 50
«Исследование о природе и при­чинах богатства народов» Смита 153
«Интуиция» Бергсона 128, 141— 144
Канонические переменные 118 Канонические уравнения 119
— — , консервативность 119
— — , обратимость 1 19
Карно цикл 164—167
Квантование 284
Классификация науки по Конту 155
Клинамен 195
Контрпросвещение 128
Кошка Шредингера 401
Креод 230, 308—309
«Критика чистого разума Канта 135


427


Лапласа демон 14, 101, 124—126, 137, 392
Лиувилля уравнение 316 Логистическое уравнение 253—258
Лоренца газ 338—340

Максвелла демон 101, 353, 401
Маркова цепи 302
Марковские процессы 302
«Математические начала нату­ральной философии» Ньюто­на 14, 16, 35, 40, 70
Машина тепловая 157
— — идеальная 165
— — и стрела времени 162—167
Машины простые 117
Медиатор 391
Механический эквивалент теп­ла 159
Микроканонический ансамбль 317
Мир Аристотеля 95
— качества 78—79
— классической физики 95
— количества 78—79
— небесных светил 83
— открытый 270—272
— подлунный 83
Мировоззрение механистическое 14
Миры множественные Эверетта
400
Модель Кристаллера 259—265
— урн П. и Т. А. Эренфестов 301
Морфоген 230
Мысленный эксперимент 87
«Направление времени» Рей-
хенбаха 394
«Наступление золотого века»
Стента 76
Натурфилософия 139—144 «Научная автобиография»
Планка 402
Научная революция 45
Начальные условия 105
— — , независимость от за­конов движения 105
Неинтегрируемые системы 121
Неолитическая революция 45, 80
Необратимость 56—59
Необратимый процесс 53, 157
Необходимость и случайность 26—28, 33
Неравновесный турбулентный хаос 225
Неопределенвостей соотноше­ния 286—290
Неустойчивость Бенара 196
«Новая наука» Вико 43—44
«Новая природа» 65
Ноуменальный уровень реаль­ности 136
Ноумены 125
Нуклеация 248
Ныотонианство 69—84, 109— 116
— и алхимия 31
— , пределы 97—102
«О природе вещей» Лукреция 42, 376
«О силах неорганической при­роды» Майера 394
«О цели естественных наук» Кирхгофа 147
Обратимость в динамике 107— 108
— траектории 106—108 Обращение времени 108
— скорости 108
Объект динамический 172—173
— теомодинамический 173
Общее 52, 54
Овременивание пространства 60
Онсагера соотношения взаим­ности 191—192
Оператор 284
Операторы некоммутирующие 287
Опространствование времени 60
«Оптика» Ньютона 70
Организация от Шталя до ро­мантиков 393
Орегонатор 208
«Острие объективности» Гил-лиспи 73

Палоальтонатор 201
Парадоксы квантовомеханиче-
ские 400
Параметры управляющие 201 Пассивное наблюдение 84 Первичные законы 48
Пифогорейцы 82


428


Повторяющееся 52, 54
Поезд Эйнштейна 87
Позитивизм 147—149
Порядок через флуктуации 238
Последовательность удвоений периода Фейгенбаума 226
Посткантианцы 139
Потенциал 118
— термодинамический 180
Предельный переход 104
«Преобразование пекаря» 336—338
Принцип дополнительности 289—290
— порядка Больцмана 175— 180
— сохранения энергии 158— 162
«Природа физического мира» Эддингтона 48
Производная 104
— вторая 104
Производство энтропии 171—
172, 192- 193
«Пространство и время» Мин-
ковского 400
Пространство фазовое 315
Простые машины 117
«Против течения» Берлина 41
Противоречие 402
«Процесс и реальность» Уайтхеда 144—147
Процесс марковский 302
Пуассона распределение 239
Равновесная структура 197
Равновесный тепловой хаос 225
Реакция автокаталитическая 181
— Белоусова — Жаботин-
ского 208—209, 225—228 Реакции путь 187
Регулярность траектории 106
Симпатии 131
Системы эргодические 333
Сложность природы 89—90
«Случайность» Пуанкаре 403
Собственная функция 285
Собственное значение 285
Соотношение Больцмана 177
Соотношения взаимности Онса­гера 191—192
— неопределенности Гейзен-берга 286—290


Сохранение энергии 158—167
Спектр 285
— дискретный 285
— непрерывный 285 Специфичное 52, 54
Сродство 112—114, 189
— избирательное Гёте 393
— Странный аттрактор 207
Стрела времени 23, 48—49, 53, 59, 162—167, 172, 321—327
— — и тепловая машина 162—167
— — и энтропия 324—327
— — , связанная с биологи­ческой и исторической эво­люцией 31
— — , связанная с расши­рением Вселенной 31
— — , связанная с энтропи­ей 31
Структурная устойчивость 250—253
Теорема о минимуме производ-ства энтропии 192—193
Тепловая машина 157
— — и стрела времени 162—167
— — идеальная 165 Термодинамика 15, 53—54, 150
— линейная 191—194
— необратимых процессов 191—194
Термодинамики второе начало 23—25, 48—49, 53, 58, 163,. 175—178, 298—323
— — — как парадигма 61
Термодинамическая ветвь 216—217
Термодинамический потенциал 180
Точка бифуркации 217
Траектории детерминирован­ность 106
— обратимость 106—108
— регулярность 106
Трансцендентальная философия 135—139
Универсальная миссия науки 47
Универсальная тенденция к де­градации энергии 167
Универсальность Фейгенбаума 226


429


Уникальное 52, 54
Уравнение логистическое 253— 258
— Лиувилля 316
— Шредингера 290—294
Уровень реальности ноуменаль­ный 136
— феноменальный 136
Уровень описания фундамен­тальный 98—99
«Фауст» Гёте 181
Феномены 128
Фейгенбаума последователь­ность 226
— универсальность 226 «Физики» Дюрренматта 64 Философия природы Гегеля 139—141
«Философия природы» Гегеля 393
Флуктуации 236—250
— и корреляции 238—241
Функция Гамильтона 116—119
— Больцмана H 302—323
Хаос неравновесный турбулент­ный 225
— равновесный тепловой 225

430
«Характерная европейская ши­зофрения» 47
«Химическая статика» Бертолле 393
Хроногеография 341
Цепи Маркова 302
Цикл Карно 164—167
Шум 223
Эпигенетический ландшафт 308
Эргодические системы 333
Эксперимент мысленный 87
Экспериментальный диалог 84—90
— метод, как искусство 86— 87
— как орудие теоретиче­ского анализа 87
Экспериментирование 44
Энтелехия 229
Энтропийный барьер 59, 346—350, 366-369
Энтропия 53, 169—174, 184
— и стрела времени 324— 327
— как принцип отбора 355—356



ОГЛАВЛЕНИЕ
От издательства 5
К советскому читателю 7
Предисловие. Наука и изменение. О. Тоффлер 11
Предисловие к английскому изданию. Новый диалог человека с природой
34
Введение. Вызов науке 40
ЧАСТЬ ПЕРВАЯ. ИЛЛЮЗИЯ УНИВЕРСАЛЬНОГО
Глава 1. Триумф разума 69
Глава 2. Установление реального103
Глава 3. Две культуры .... 127
ЧАСТЬ ВТОРАЯ. НАУКА О СЛОЖНОСТИ
Глава 4. Энергия и индустриальный век 153
Глава 5. Три этапа в развитии термодинамики 184
Глава 6. Порядок через флуктуации 236

ЧАСТЬ ТРЕТЬЯ. ОТ БЫТИЯ К СТАНОВЛЕНИЮ

Глава 7. Переоткрытие времени . 275
Глава 8. Столкновение теорий 298
Глава 9. Необратимость — энтропийный барьер 324
Заключение. С земли на небо: новые чары природы 362
Примечания 387
Послесловие. Естествознание и развитие: диалог с прошлым, настоящим и будущим (В И. Аршинов, Ю. Л. Климонтович и Ю. В. Сачков) 408
Именной указатель 423
Предметный указатель 426


431
И. Пригожин, И. Стенгерс
ПОРЯДОК ИЗ ХАОСА

Редактор О. Н. Кессиди
Художественный редактор Ю. В. Булдаков
Технический редактор Г. В. Лазарева, Е. В. Величкина
Корректор Г. А. Локшина

ИБ № 1 4489
Сдано в набор 10.03.86. Подписано в печать 20.11.86.
Формат 84X1081/32. Бумага типограф. № 1.
Гарнитура ли­тературная. Печать высокая.
Условн. печ. л. 22,68. Усл. кр.-отт. 23,68.
Уч.-изд. л. 21,97. Тираж 17 000 экз.
Заказ № 436. Цена 1 р. 70 к. Изд. № 40194.

Ордена Трудового Красного Знамени иадательство «Про­гресс» Государственного комитета СССР по делам из­дательств, полиграфии и книжной торговли. 119847, ГСП, Москва, Г-21, Зубовский бульвар, 17.
Московская типография № 11 Союзполиграфпрома при Государственном комитете СССР по делам издательств, полиграфии и книжной торговли. 113105, Москва, Нагатинская ул., д. 1.
Сканирование elvro@yandex.ru Елена






[1] Обозначение неправильное! Должно быть: галочка открытая книзу над r (при сканировании)

<<

стр. 3
(всего 3)

СОДЕРЖАНИЕ